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1.0     INTRODUCTION1

1.1 BACKGROUND 2

In May 1996, the U.S. Environmental Protection Agency's (EPA) Office of Pesticide Programs3

(OPP) presented two ecological risk assessment case studies to the FIFRA Scientific Advisory4

Panel (SAP) for comment on its methods and procedures.  While recognizing and generally5

reaffirming the utility of the current ecological assessment process for screening purposes, the6

Panel offered a number of suggestions for improving the process.  Foremost among the7

suggestions was that OPP move beyond the present single point deterministic assessment process8

and develop the tools and methodologies necessary to do probabilistic assessments of risk.  Such 9

assessments would address the magnitude of the expected impact as well as the uncertainty and10

variation involved in the estimates.  In addition, the SAP identified several areas in the11

assessments that could be expanded to present a more complete perspective or characterization of12

the potential environmental risk for the pesticides examined.  13

Following the recommendations of the SAP and building on previous efforts, the Environmental14

Fate and Effects Division (EFED) within OPP began a new initiative in 1997 to revise the15

assessment process.  The purpose of this initiative is to strengthen the core elements of the16

ecological assessment process by identifying, developing, and validating tools and methodologies17

to conduct probabilistic assessments and to improve risk characterization.  These methodologies18

are intended for use by OPP to evaluate the effects of pesticides on terrestrial and aquatic species. 19

Thus, they need to be developed within the context of the FIFRA regulatory framework and20

consider OPP resource and time constraints.  21

In recognition of the importance of involving stakeholders in redesigning its ecological22

 assessment process, OPP initiated several channels for external involvement.  This led to the23

formation of the Ecological Committee on FIFRA Risk Assessment Methods (ECOFRAM),  who24

was charged with conducting the primary review of the current assessment process and25
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developing new tools and methodologies for aquatic and terrestrial assessments.  ECOFRAM is1

comprised of scientific experts drawn from government agencies, academia, contract laboratories,2

environmental advocacy groups, and industry.   Participants were selected based on expertise,3

affiliation, and availability to ensure that the appropriate disciplines were represented along with a4

cross-section of affiliations.   5

ECOFRAM was divided into Aquatic and Terrestrial Workgroups.  This report reflects the work6

of ECOFRAM's Terrestrial Workgroup, which has been  developing methods and tools that could7

be used for revising the assessment process for  evaluating pesticide impacts on terrestrial species. 8

The report also identifies research areas and validation needs.  9

1.2  THE CHARGE TO ECOFRAM10

The Charge to ECOFRAM, which outlines the scope of the initiative, was as follows:11

"The ultimate goal of this initiative is to develop and validate risk assessment tools12

and processes that address increasing levels of biological organization (e.g.,13

individuals, populations, communities, ecosystems), accounting for direct and14

indirect effects that pesticides may cause. Achieving this goal may require more15

than the limited resources and time available for the initial effort.  Therefore, work16

groups will first address direct acute and chronic effects of pesticides on17

individuals and populations of high-risk species.  The species considered first will18

be terrestrial vertebrates and aquatic vertebrates and invertebrates.  Terrestrial19

invertebrates and terrestrial and aquatic plant species will be addressed20

subsequently, as resources permit.21

Work groups are charged with developing a process and tools for predicting the22

magnitude and probabilities of adverse effects to non-target aquatic and terrestrial23

species resulting from the introduction of pesticides into their environment.  The24
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methods developed should consist of standardized procedures that integrate1

estimates of pesticide exposure with knowledge about the potential adverse2

effects.  The methods should account for sources of uncertainty.  In addition, the3

methods must be developed within the context of the FIFRA regulatory4

perspective and follow the outline provided by the Framework for Ecological Risk5

Assessment (U.S. EPA, 1992).6

The tools that are developed need to have reasonable scientific certainty and be7

capable of acceptable validation within a reasonable time frame. Nevertheless,8

model development, as a primary tool, may be limited by a less- than-complete9

understanding of ecological systems and by the ways that various direct and10

indirect effects of pesticides may be expressed at higher levels of biological11

organization.  Probabilistic techniques developed should use existing fate and12

effects data where possible.  However, in developing new methodologies and13

improving risk estimates, it may be necessary to modify or discontinue current14

tests or to develop new ones.15

Methods developed for risk estimates should reflect a solid foundation in16

environmental toxicology and account for species sensitivity, environmental fate17

(including the transport, degradation, and accumulation of pesticides in the18

environment), and other variables.  The type of pesticide formulation, application19

techniques, habitat types (e.g., estuary, pond, stream, field, forest), and species20

associated with these habitats need to be considered. The translation of residue21

estimates into exposure estimates and routes of exposure should be incorporated22

into the methodology.23

Methods should be specific enough to allow different risk assessors supplied with24

the same information to estimate similar values of risk.  The rationale for the25

choice of scenarios needs to be clearly stated.  Assumptions and extrapolations26
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need to be specified and explained so the significance of the ecological risk1

estimates provided by the methods is easily understood.2

Finally, the workgroups are asked to define any additional developmental or3

validation efforts that are needed for the probabilistic methods developed. This will4

provide a firm scientific basis for use of the risk estimates by environmental5

decision makers."6

1.3 FOCUS OF THE REPORT7

8

The Terrestrial Workgroup met approximately monthly for a year and a half to take up the Charge9

to ECOFRAM.  They began their deliberations by discussing the focus described by the Charge. 10

They agreed to first address direct acute and chronic effects of pesticides to birds and mammals. 11

The Workgroup also discussed the importance of indirect effects and concluded that they are a12

significant issue.  However, assessments of direct toxicity drive the current pesticide registration13

process and are more tractable than addressing indirect effects.  Also, it was generally felt that14

indirect effects were too complex to adequately address within the time frame of ECOFRAM.  As15

a result, the Workgroup concluded that a focus on direct acute and chronic effects to birds and16

mammals was appropriate.17

The Terrestrial Workgroup also discussed the consideration of species other than or in addition to18

birds and mammals.  However, the larger databases of toxicity and life history information for19

birds and mammals  make them more amenable for developing a new process for risk assessment20

than other species.  Again, the Workgroup concluded that the focus as directed in the Charge was21

appropriate.22

1.4 ROLE OF THE NEW EPA GUIDELINES 23

The Terrestrial Workgroup, as specified in the Charge, followed the outline provided by the24
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Framework for Ecological Risk Assessment (U.S. EPA 1992) for developing ecological risk1

assessments.  The Framework was later expanded and replaced by  Guidelines for Ecological Risk2

Assessment (U.S. EPA 1998). 3

The Guidelines for Ecological Risk Assessment base the ecological risk assessment process on4

integrating  two major elements, characterization of exposure and characterization of effects5

(toxicity).  These elements provide the focus for conducting the three phases of risk assessment,6

which are described in Sections 1.4.1 - 1.4.3. 7

1.4.1 Problem Formulation8

Problem formulation is the first phase of the ecological risk assessment process.  In problem9

formulation, the purpose for the assessment is articulated, the problem is defined, and a plan for10

analyzing and characterizing risk is determined.  This phase begins by addressing the available11

information on stressor (chemical), sources of the stressor, and the characteristics of the non-12

target wildlife and ecosystem at risk.  This results in assessment endpoints and conceptual models,13

which are used to complete an analysis plan, the final step in problem formulation.14

1.4.2 Analysis of Exposure and Effects (Toxicity)15

The second phase of the assessment process is analysis of exposure and effects (toxicity).  This16

phase provides an exposure characterization, which includes estimates of dose and/or dose17

distributions.  This phase also provides an effects (toxicity) characterization, which includes the18

determination of dose-response factors, such as the LD50 or EC50 and dose-response slope,19

and/or distributions of dose-response factors.   20

The initial step in this phase is identifying the strengths and limitations of the data on exposure,21

effects, the ecosystem, and animal life history.  Data are then analyzed to characterize the nature22
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 of potential or actual exposure and the ecological response under the circumstances defined in1

the conceptual model.2

1.4.3 Risk Characterization3

The third phase is risk characterization. This phase integrates the exposure and effects4

characterizations through the risk estimation process.  It includes a summary of assumptions,5

scientific uncertainties, and the strengths and limitations of the analyses.  Output of the risk6

characterization phase include the results of integrating the exposure and effects characterizations,7

discussed the ecological effects that are predicted, and the uncertainties and lines of evidence that8

were involved.9

1.5. TERRESTRIAL WORKGROUP'S APPROACH TO ADDRESSING THE10

CHARGE11

Using the above outline as specified in the Charge, the Workgroup developed the following steps12

to address the tools, methods, and data needs for conducting probabilistic assessments for13

pesticides:    14

• Defined and developed assessment questions (endpoints) and conceptual models.15

• Defined the scope of the initial model development given time and resource constraints.16

• Identified major variables that influence pesticide exposure and effects to non-target17

terrestrial species.18

• Developed the structure of the risk assessment models.19

• Defined distributions for these variables or how to estimate them.20

• Defined the uncertainties associated with available data and additional data needed to21

support methods identified or were being developed.22

• Tested the models using three of four case studies scenarios.23

• Defined additional developmental and validation work required.24
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• Developed suggestions on how these new tools and models could be incorporated into the1

pesticide registration assessment process.2

As the Terrestrial Workgroup began to move through these steps, they realized that not enough3

time or resources were available to adequately address all of them.  While most steps were4

addressed and are discussed in this report, it became obvious that developing probabilistic models5

and refining them to a stage that could be applied to case studies would not be feasible.  They6

were also unable to develop the associated case studies and thus limited their efforts to developing7

examples of concepts identified and how they could be applied.  It should be noted that Chapter 78

provides recommendations regarding the steps that were not fully developed.  It also provides key9

concepts and conclusions based on the discussions of the steps that were fully addressed.    10

In this report, the Terrestrial Workgroup presents their findings based on their discussions as they11

worked through this approach.  It proposes a sequential organization to probabilistic assessments,12

includes relatively simple assessments that may be broadly applicable, and identifies more complex13

case-specific assessments designed for the unique features of each pesticide use scenario.  Each14

probabilistic approach is demonstrated through the use of examples.  15

1.6 ORGANIZATION OF REPORT16

The report begins with this introductory chapter, which provides background information,17

including a discussion of the charge to ECOFRAM, the focus of the report, the role of the EPA18

Guidelines, and the Terrestrial Workgroup's approach to addressing the Charge.  It also provides19

a brief overview on probabilistic assessments and other assessment methods and the basic model20

structure for probabilistic assessments.  21

Chapters 2 - 5 follow the basic elements of EPA's guidelines as described in sections 1.4.  Chapter22

2 presents problem formulation, including a discussion of assessment endpoints,23
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 conceptual models, questions often posed by risk managers, and additional considerations. 1

Chapters 3 and 4 present the findings of the Terrestrial Workgroup regarding Exposure and2

Effects, respectively.   Chapter 3 provides an introduction and a discussion of the factors affecting3

exposure pathways.  It also presents discussions regarding the dose resulting from various routes4

of exposure.   Chapter 4 discusses the scope of the effects assessment, the suitability of current5

toxicity tests,  indirect and sub-lethal effects, and provides a discussion of intra- and interspecies6

methods and variability.  7

Risk assessment methods are presented in Chapter 5.  The focus of this chapter is to present8

various methods for integrating the exposure and effects characterization into estimates of risk.    9

Chapter 6 provides levels of refinement for the assessment process and discusses ways to10

implement probabilistic risk assessments into the pesticide registration process.  Chapter 711

provides the Terrestrial Workgroup's recommendations and conclusions.  This includes 12

recommendations for further development of approaches, data needs, and research needs to13

address the limitations in the understanding of the effects of pesticides in the environment.   14

The report concludes with references and the appendices in Chapter 8 and 9, respectively.15

1.7 A BRIEF OVERVIEW ON PROBABILISTIC ECOLOGICAL RISK ASSESSMENT16

1.7.1 Why Do A Probabilistic Ecological Risk Assessment?17

The SAP stated that the methodologies and specific endpoints used by OPP have several18

limitations in relation to their utility in risk assessment. Consequently, they recommended that19

OPP develop the necessary databases and methodologies to conduct probabilistic assessments of20

risk.  21

"OPP believes that its current procedures for ecological risk assessment generally provide22

a cautious and protective evaluation of the potential for widespread damage to non-target23

fish and animals from use of pesticides according to label directions.  However, while24
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these current procedures can serve as a screen to identify possible environmental damage,1

they often provide less information on the likelihood of damage and the uncertainty in2

such estimates as is desirable in balancing risks and benefits as required under FIFRA" (US 3

EPA 1997).4

The current use of deterministic quotients provides an assessment that the estimated risk, in the5

form of an index value, would be less than or greater than a defined level of concern.  However, 6

the index value provides no information about the probability of an unacceptable risk or the7

magnitude of risk. Although a quotient value of 10 is several times higher than most numerical8

levels of concern, the relationship between risk quotient values and the risk to the environment is9

unknown, so it is not possible to determine the significance of an index value of 10.  Nor is there10

sufficient understanding to compare the relative risk between quotient values of 10 and 50.11

Theoretically, a value of 50 means greater risk than a value of 10, but it is not possible to12

determine if the real risk between the two quotient values is substantial or negligible.  Addressing13

issues of the probability or magnitude of risk requires alternative approaches that incorporate14

what we know about measured or estimated parameters and their associated uncertainty.15

Suter (1993) states that the 16

"uses of probabilistic analysis can help to clarify the relationship between decision making17

and uncertainty.  They can be used to justify a particular degree of conservatism in the18

face of uncertainty or can be used to justify making additional measurements or conduct19

additional tests to reduce uncertainty. ... Thus this approach provides a means of20

determining the need for more data, and for prioritizing data needs. One would do the21

research that would do the most to decrease the total uncertainty within the restraints of22

time and money.  In addition, these curves [probability density functions] make clear the23

advantage of estimating the expected effects and associated uncertainties, rather than24

using worst case assumptions or arbitrary safety factors.  Because there is no objective25
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 scale of badness or safety, there is no objective way to compare the defensibility of safety factors1

or to justify how bad a worst-case must be. Probabilistic analysis provides a means of comparing2

assumptions, models, and data put forth by the parties in an environmental dispute."  3

Consequently, probabilistic assessments provide a means to go beyond ambiguous qualitative4

narrative assessments to more explicitly quantify what is quantifiable and to state specifically the5

assumptions made in the assessment.6

1.7.2  What is Probabilistic Ecological Risk Assessment?7

There is no unified term that is used to designate assessments that quantitatively characterize the8

uncertain variables in estimates of ecological effects. Various terms are used in the literature to9

delineate this type of an assessment. While ECOFRAM used the term "Probabilistic Risk10

Assessment", as mentioned in the Charge, other terms can be used to identify similar types of11

assessments.  These include risk assessment (Suter 1993), quantitative policy analysis (Morgan12

and Henrion 1992), quantitative risk analysis (Vose 1996), stochastic modeling (Ott 1995),13

probabilistic analysis (EPA, 1997), and Monte Carlo Analysis (EPA 1997). These terms all are14

used to delineate assessments that predict the magnitude and probability of effects, where15

probability is the characterization, quantitatively, of the uncertain variables.16

Probabilistic risk assessments are not new.  They have been performed to predict the probability17

of nuclear accidents (Covello and Merkhofer 1993), traffic accidents (Fischhoff et al. 1981),18

weather events, food safety (Covello and Merkhofer 1993), and risk of acidification of lakes19

(Linthurst et al. 1986, Baker and Harvey 1984).  However, there is a growing awareness among20

scientists and decision makers of the value of integrating these uncertainties into the21

characterization of ecological risks from the use of pesticides.  The proliferation of user-friendly22

software packages that can incorporate parameter variability and uncertainty has greatly23
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 increased the number of scientists with direct access to the tools for conducting probabilistic1

assessments.2

The basis for probabilistic risk assessment is relatively simple. The major uncertain  variables that3

influence the risk of concern are identified and their parameters (e.g., distribution type,  mean,4

variance, and correlation to other uncertain variables) are defined or estimated. Using the laws of5

mathematical statistics, the uncertain variables are combined to estimate the parameters of the6

distribution of the risk of concern. For simple additive or multiplicative models the math is7

relatively straightforward.  However, the math can quickly become relatively complex and8

tedious.  With the advent of powerful desktop computers, commercial software packages have9

been developed that can perform the mathematical operations through Monte Carlo sampling of10

the input variable distributions to estimate the output distribution of risk with relative ease. The11

underlying theory of Monte Carlo sampling is grounded in the frequency interpretation of12

statistics. In Monte Carlo methods, samples are randomly drawn from a defined distribution. 13

1.7.3 Uncertainty and Probabilistic Risk Assessment14

The three major types of uncertainty variables addressed in current risk assessment literature are15

natural variability, lack of knowledge, and model error. Natural variability is defined as the true16

heterogeneity or natural variation in the risk estimate and may be better defined though increased17

sampling to approach the true variability (bounds) in the population. Uncertainty is defined as18

ignorance or lack of knowledge about the estimate of risk due to absence of data or incomplete19

knowledge of important variables or their relationships. Uncertainty may be reduced through20

further research.  Model error results from the chosen model failing to adequately mimic the21

system in question. In practice, it is often difficult to completely separate the 3 major types of22

uncertainty, because they are somewhat inter-related.23

Several techniques have been developed to address the absence of knowledge in assessing risk.24

While the Terrestrial ECOFRAM Workgroup did not discuss these techniques in depth due to25
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time limitations, they were briefly discussed and will need further attention as the Agency moves1

to probabilistic risk assessments of pesticides. (See Chapter 7.)  Briefly, two of the more common2

methods employed entail the use of conservative models or subjective judgement. While not3

without limitations, they provide methods which can be used to provide a “best estimate of risk”4

given the state of knowledge and can provide separate estimates of the uncertainty from natural5

variability and lack of knowledge.6

The  use of conservative models to represent reasonable worst case scenarios (e.g., 100% of diet7

contaminated, residues levels measured immediately after application) is an approach that has8

been used to compensate for the absence of empirical information. An alternative is to use9

conservative estimates of input distributions. Maximum entropy inference (MEI) uses a formal set10

of rules to specify input distributions according to the amount of information available (Lee and11

Wright, 1964). This maximizes the uncertainty in input distributions that can be assigned based on12

the  lack of knowledge. The MEI approach has several advantages compared to subjective13

judgements by individuals.  It avoids human bias and helps mitigate against unfounded confidence14

in our predictive skills (Moore 1996). These approaches could be viewed as a reasonable way to15

minimize type two error, that is, missing effects that are occurring or could occur.16

Subjective or Bayesian statistical methods incorporate the absence of knowledge into risk17

assessment through subjective judgement. Actually, the probability theory used for the Bayesian18

approach is identical to the classical approach, but the underlying philosophy is different. Warren-19

Hicks and Butcher (1996) point that out the major difference between a Bayesian and classical20

approach is the concept of probability employed. For the classical case, probability is regarded as21

representing the frequency with which an event would occur in repeated trials. For the Bayesian22

case, probability is regarded as representing a degree of reasonable belief based on existing23

information. Bayesians do not require assumptions about repeated trials to make inferences about24

output, but rather the inferences are made based on the available data. This information takes on25

two forms: sample information and prior information. Each must be available for the Bayesian26
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paradigm to be implemented and probability statements about the risk are made based only on1

these two sets of information.2

Numerous publications are available which discuss extensively the approaches to developing3

probabilistic risk assessments and potential sources of errors and biases that can be introduced4

into the analysis (Vose 1996, Morgan and Henrion 1990, Hammersley and Handscomb 1964,5

Kloek and Van Dijk 1978, Hammersley and Mortan 1956, Wilson 1984). The reader is referred to6

these publications for an in-depth review. 7

It is assumed that probabilistic assessments will reduce uncertainty in decision-making by8

interactively refining our models to reflect new data and understanding of ecological relationships. 9

We may thus achieve greater certainty that our model predictions are a reasonable reflection of10

field responses.  However, by acknowledging the natural variation in the numerous measures of11

exposure and effects rather than using worst-case assumptions, model predictions of risk will12

reflect the tremendous variability in risks to individuals that exist in terrestrial systems. 13

Consequently, as we reduce the uncertainty in our model(s) of the environment, we are14

simultaneously and increasingly acknowledging the variation in risks at the level of the individual15

within a population or a landscape.16

1.7.4 EPA Guidance on Probabilistic Risk Assessment17

The U.S. Environmental Protection Agency has also developed guidance on the basic principles of18

probabilistic risk assessment, which includes 16 guiding principles for developing probabilistic risk19

assessments (Appendix A1).  These principles help to ensure good scientific practices when20

developing these type of assessments (US EPA 1997).  Although all 16 principles are important,21

two warrant special attention.22

The first principle is that the assessor needs to pay particular attention to the difficulty of23

developing and justifying input distributions. While the limitations induced by these components24
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of developing probabilistic risk assessments are generally acknowledged, often their consequences1

are given insufficient attention (Ferson 1995).2

Mis-specification of the sampling distribution can drastically change the shape of the out put3

distributions. In probabilistic risk assessments, the distribution from which the samples are drawn4

is assumed to be the true distribution or, when information is scant or nonexistent, a distribution5

of the parameter of interest is assumed. The degree that the sample distribution or the assumed6

distribution differs from the true distribution can significantly influence the results, particularly if7

the mis-specified distribution occurs for a sensitive parameter in a multi-parameter model. Before8

attempting to fit probability distributions to a set of observed data, the properties of the observed9

data should be considered. Vose (1996) points out, 10

”The properties of the distribution or distributions chosen to be fitted to the data should11

match those of the variables of interest. Software like BestFit has made fitting distributions12

to data very easy and removes the need for any in-depth statistical knowledge. These13

products are generally extremely useful but, through their automation and ease of use,14

inadvertently encourage the user to attempt fits to wholly inappropriate distributions.” 15

Vose (1996) as well as the other reference text above on probabilistic risk assessment review in-16

depth various statistical methods for fitting distribution to data.17

While there are numerous references for estimating distributions from empirical data, these18

standard approaches are of limited value when few data exist.  Where data are severely limited,19

several methods have been advanced to define the “best” estimate of the distribution in question.20

These include (1) employing maximum entropy criteria to select distributions from a priori21

constraints (Lee and Wright 1994), (2) focusing on extreme value distributions when the tails are22

of interest (Lambert et al. 1964), (3) gathering empirically fitted distributions (Haimes et al.23
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 1994), and (4) using default distributions such as the triangular or exponential (Bartley et al.1

1983, Finley et al. 1994, Haimes et al. 1994). Ferson (1995) points out, however, that 2

“in the absence of a complete empirical  base, all of these methods for selecting input3

distributions require assumptions that cannot be justified by appeal to evidence and4

therefore may be false. These unsubstantiated assumptions can make a difference in the5

results. As Bukowski et al (1995) showed, the choice about distribution shape can have a6

sizable effect on the risk analysis, again especially in the tails.” 7

Ferson (1995) believes that this can be overcome using probability bounds and reviews some8

computational methods to estimate probability bounds dependent on the amount of empirical data9

available.  He further suggests that in all cases, the bounds will enclose the true probability10

distributions and provide a conservative expression of the potential risk. While it is beyond the11

scope of this report to review these methods in depth, assessors should become familiar with these12

various methods for estimating distribution shapes and their limitations.13

The second guiding principle that needs to be emphasized is falsely assuming statistical14

independence and/or inadequately accounting for correlation between input variables. In the15

absence of understanding or accounting for variable dependancy or correlation, the potential to16

underestimate potential effects can be significant. If the assessor assumes that input variables are17

independent, principles of probability will lead to the conclusion that the potential for the18

dependent output is a multiple of the input variable, which results in a much lower probability of19

occurrence than for any of the input variables. However, if the input variables are dependent, but20

highly correlated, the probability of occurrence of the output variable may be close to the21

probability of any one of the input variables. If the correlations are small to moderate in strength,22

the central tendencies are generally not greatly influenced, but the tails of the distribution can be23

extremely sensitive, leading to under estimation of the probability of rare events. This can be24

extremely critical in estimates of risk to endangered species or other populations where a25

threshold may exist, which if exceeded, result in a low  potential for recovery. Not accounting for26
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correlation, that is assuming independence among input variables, or inadequately accounting for1

correlations can lead to such an underestimate and an erroneous conclusion of potential effects.2

Also, the type of correlation is critical. As Ferson (1995) points out, 3

4

“linear correlation is not the only form of statistical dependence, which is the reason, of5

course, that uncorrelatedness does not guarantee independence. And pair wise6

independence does not imply mutual independence in the general multi variate case. In7

short, there are more things in the heaven of arithmetic on random variables than have8

been dreamt of by practicing risk analysts.”9

Numerous publications, including the ones referenced above, are available that outline statistical10

techniques to determine dependency and correlation of variables and methods to incorporate the11

relationships into assessment models. However, these techniques are dependent on the available12

data.   In cases when the relationships of the variables are not known, these methods and13

techniques maybe of little value.14

1.7.5  Application of  Probabilistic Risk Assessment to Terrestrial Ecotoxicology15

Implementation of probabilistic approaches will necessitate several changes in the ecological risk16

assessment process  for pesticides.  The greatest change is the increase in supporting data when17

refinements of assessments are needed to reduce the uncertainty in the predicted effects. The point18

estimates for toxicity (e.g., LC50, LD50, NOEC) and exposure (e.g., maximum residue19

concentration on food types) would be replaced by distributions of values that capture the natural20

variability in these parameters and our uncertainty due to measurement error or lack of knowledge21

about the biological or chemical system in question.  The distributions of exposure would have to22

express the variability of parameters both spatially (e.g., heterogeneity of residues throughout23

fields) and temporally (e.g., degradation of residues over time).  The results of toxicity tests24

would be expressed as the complete dose-response relationship, including the slope and25
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confidence limits of the relationship.  Instead of focusing on the species with the lowest toxicity1

values, the measured or estimated distribution of toxicity values among all species would be used.2

In expressing the uncertainty in the estimates of exposure and toxicity, there are several additional3

parameters that may need to be considered to more completely characterize the risk.  For4

example, the exposure profile may be refined by information about the specific characteristics of5

the pesticide, such as degradation rates, movement in the environment, timing of applications, and6

application methods.  The effects profile may be refined by information about mode of action,7

temporal development of effects, intra- and interspecific differences in toxicity, and behavioral8

responses to exposure. The incorporation of additional explanatory parameters is intended to9

address the many shortcomings of the simplistic risk quotients.10

To better estimate the exposure of wildlife to agricultural pesticides, it will be necessary to11

estimate the dose received by individual animals via the various routes of exposure rather than12

simply using environmental concentrations (e.g., residues concentrations on food) as a surrogate13

for exposure.  Consequently, current dietary tests that report a toxicity endpoint in units of14

concentration in the food may have to be revised to express test endpoints as the ingested dose15

producing a response.16

The changes implicit in a probabilistic risk assessment process also require changes in the17

interaction between risk assessors and risk managers. Ultimately, the output of ecological risk18

assessments will be presented as the probability that a specific risk may occur or the probability of19

a specified magnitude of risk may occur.  These probabilities also will be associated with20

quantifiable uncertainties related to stochastic variability, measurement error, and model error that21

can be used to assess the level of confidence in the model predictions.  A dialogue between risk22

assessors and risk managers will be necessary to define specifically the goals of the assessment,23

the degree of certainty required for acceptable model output, the conservativeness of model24

assumptions, and the magnitude of risk that is acceptable.  While it is implicitly understood that25

conservative assumptions are part of a screening assessment, at higher tier26
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 assessments the use of conservative assumptions needs to be clearly identified and their potential1

influence on the assessment acknowledged by both risk assessors and managers.  Conservatism is2

a value judgement deliberately introduced to account for uncertainty.  It requires the involvement3

of risk managers so that risk assessors are not forced to go beyond their role as providers of4

assessments.  Risk managers need to understand the potential for distortions of the assessment5

due to cascading of biases from conservative assumptions.6

1.7.6 Potential Problems in Applying Probabilistic Risk Assessment to Ecological Systems7

As suggested, the theory and tools exist to properly specify the structure and input probability8

distributions for probabilistic risk assessments. However, the appropriate representations of the9

model equations in relation to  the true environmental interactions, the identification of the10

appropriate variables, their distribution and the relationship between them remains a serious11

challenge in probabilistic ecological risk assessment. Ecological complexities suggest obvious12

questions about the ease with which probabilities can be attached to the immeasurable states of13

nature likely to occur. The simplest information on chemical specific  residues and  fate data in the14

environment is often scant, and chemical specific toxicity data on species likely to be exposed is15

rarely available. Further, life history data on the numerous species potentially at risk from the use16

of pesticides is limited and where available, is confined in space and time. A large proportion of17

the discussions in this report address the limitations in the available data and suggest ways to18

estimate or collect additional data to reduce the associated uncertainty. 19

Ideally, to reduce the uncertainty to a minimum, each of the critical variable distributions should20

be defined through rigorous scientific investigation. Then through the systematic integration of21

these distributions, using appropriate probability theory, a clear delineation of the potential22

ecological risk could be made. However, when attempting to assess the possible consequence of a23

pesticide application under the infinite conditions in the environment, one cannot enumerate the24

complete set of input variables or outcomes nor repeat the experiment often enough to be able to25

reasonably estimate the probabilities of each critical input variable or outcome occurring.  The26
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practical constraints and our less than perfect understanding of natural systems and their1

interaction with pesticides  suggest that developing probabilistic ecological risk assessments for2

pesticides will require a substantial commitment of time and resources.3

1.8 OVERVIEW OF METHODS CONSIDERED FOR PERFORMING4

ECOLOGICAL PESTICIDE ASSESSMENTS AND INTEGRATION INTO THE5

REGULATORY PROCESS6

While the Terrestrial ECOFRAM Workgroup mainly addressed assessment methods that7

predicted the magnitude and probability of effects, other methods were also discussed. In the8

discussions, particularly when addressing the integration of probabilistic tools into the regulatory9

process, it became apparent that not every assessment requires or warrants a quantitative estimate10

of the magnitude and probability of effects. In some circumstances, a quantitative assessment may11

be warranted, but the limitations in data and/or the understanding of the system requires12

assumptions which introduce such large uncertainty in the predicted effects that the assessments13

would not be scientifically defensible. Therefore, the Workgroup believed there was a need to14

explore or at least identify assessment methods that could be used as screening tools when data15

limitations imposed restrictions on full probabilistic techniques. 16

The options for performing ecological pesticide assessments are outlined below in order of17

increasing complexity and potential realism:18

• Deterministic quotients (a ratio of single values of exposure divided by toxicity),19

• Assessment methods that involve a comparison of the exposure distribution to an effects20

value (fixed value), and21

• Methods that incorporate functions to integrate exposure and effects distributions. 22

All of these methods have their value and can be applicable to ecological risk assessments. The23

simplest methods can be used for screening in order to scope the risk assessment. As additional24
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refinements of the assessment are required, the more complex tools and methods can be1

implemented to better define the associated uncertainties in the assessment and with additional2

data they may be reduced. This approach to the risk assessment process discussed by the3

workgroup was labeled “levels of refinement” and Figure 1.8-1 illustrates the general approach. 4

As previously indicated, not all assessments require or warrant a quantitative estimate of the5

variability and uncertainty. It may be unnecessary to perform a probabilistic assessment when6

screening calculations clearly show the potential for adverse effects are minimal. If the inputs into7

the  screening calculations have been established based on conservative assumptions, the certainty8

of the estimate of minimal risk should be, while maybe not quantified, relatively high. In cases9

where the potential for adverse effects is high long with a high level of certainty, further10

assessment may need to be considered. 11

Level 1 in Figure 1.8-1 involves simple models with deterministic inputs and outputs. An12

assessment at this level uses conservative assumptions, ignores minor pathways and effects and13

utilizes the standard laboratory studies and existing data. However, it should be noted that the14

conservative input is established based on distributions or conservative estimations of distributions15

for both exposure and effects. Depending upon the potential for effects and the quantity and16

quality of data, additional refinements of the assessment may be appropriate. 17

An assessment at the higher levels of refinement (Levels 2 - 4) uses more complex models with18

inputs being the distribution of the major variables and probabilistic output. Additionally,19

conservative assumptions are replaced by data and would include an analysis for all significant20

pathways and direct effects. The highest level of refinement would involve special studies or21

focused field studies and would be defined through sensitivity analysis of the model to help22

determine which variables are contributing to the uncertainty the most. These additional studies23

could include toxicity studies on species that may be at the highest risk, foliar dissipation studies24

to define residues distributions in space and time more accurately, or wildlife monitoring studies25

to better estimate the use of contaminated areas. 26
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        Level 1                Level 2 Level 3                  Level 4

•Deterministic inputs

•Deterministic outputs

•Simple models

•Conservative assumptions

•Ignore minor pathways and effects

•Use only standard studies

•Use only existing field data

•Probabilistic inputs

•Probabilistic outputs

•Complex models

•Assumptions replaced by data

•Include all significant pathways and effects

•Include special studies where needed

•Include focussed field studies where needed

Figure 1.8-1. The concept of Levels of Refinement. The Terrestrial ECOFRAM developed the concept of Levels of
Refinement as a means of organizing the variety of tools available  for probabilistic risk assessments. The Levels are
not intended to imply a rigidly tiered assessment process (see Chapter 6). Instead, there is a continuum between the
lowest and highest Levels and tools from different levels may be used for different parameters, according to the needs
of each assessment. 
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These four levels of refinement are not rigid steps from one level to the next. They are intended to1

be a flexible path to refine assessments as needed and may include various levels of refinement of2

the variables and assumptions in a single assessment. Chapter 6 address the level of  refinement3

approach in greater detail.4

An important point to understand as assessments are refined is the difference in defining5

uncertainty and reducing uncertainty. As the more sophisticated probabilistic methods are used,6

the uncertainty in the estimates should become better defined.  However, to lower uncertainty7

requires additional information or data. For example, the basic toxicity studies, the LC50 or the8

LD50 provide only a point estimate of the toxicity value. The 95% confidence limits that are9

usually reported do not give information about the precision of the median lethal dose or10

concentration estimate. These limits define an interval such that if all possible replicate 95%11

confidence intervals were determined for the sampled individuals under the same conditions, 95%12

of them would include the true median lethal dose of the population. The LC50 or the LD50 and the13

reported confidence limits describe the distribution of the susceptibilities of the individual test14

organisms in that test, but gives no indication of the reproducibility or repeatability of the test. To15

obtain the precision of the estimated median lethal dose or concentration, replicate tests must be16

conducted (Stephan 1977). The number of replicates required is dependent on the precision17

wanted and the natural variation in the population for the chemical being tested. For a number of18

the variables which are identified, current testing provides only point estimates.  Depending on the19

sensitivity of the assessment results to a particular variable, further replication may be required to20

provide better estimates of the potential effects.21

1.9 BASIC MODEL STRUCTURE FOR PROBABILISTIC RISK ASSESSMENT22

The basic structure of the model for estimating the magnitude and probability of pesticide effects 23

to non-target species can be expressed in the familiar, general equation outlined in the Ecological24

Risk Assessment Guidelines:25

Risk = f(exposure, toxicity).26



1-23

Risk is a function of exposure and toxicity, and therefore assessments of risk are based on the1

characterization of exposure and effects.  Whether, the risk assessment is deterministic or2

probabilistic, it is based on an exposure and a toxicity (effects) assessment. The major difference3

is that in probabilistic assessments, you define and use distributions of one or more variables4

instead of point estimates of the variables and combine the distributions to estimate the probability5

and magnitude of effects.6

There are alternative, and in some cases more complete, definitions of probabilistic risk7

assessments.  However, we will define probabilistic assessments as those that estimate the8

cumulative percentage probability that the percentage of non-target organisms adversely affected9

by pesticides will be (1) less than or equal to or (2) greater than any given percentage of concern.  10

Probabilistic risk assessments are generated by integrating estimated distributions of dose (which11

constitute an exposure assessment) with distributions of experimental dose-response factors12

such as the LD50 or EC50 and the dose-response slope (which constitute an effects assessment).13

This section contains a brief discussion on how to generate Monte-Carlo based probabilistic risk14

assessments as defined previously.  15

1.9.1 PDFs, Normal and Lognormal PDFs, and CDFs16

Distributions for the independent (input) variables or dependent (output) variables for any17

equation can be presented as probability density functions (PDFs) and/or as cumulative18

distribution functions (CDFs).  PDFs are statistical distributions that give the fractional probability19

(as a function of a random variable x) that any randomly selected value from the distribution will20

be equal to x.  Examples of two types of PDFs that are commonly used in environmental21

assessments are the normal and lognormal distributions (Ott 1995):22

Normal: ,    4 < x < 4  (Eq. 1.9-1)23 ( )[ ] ( )[ ]f x xN x x x( ) / exp /
.

= − −1 2 22 0 5 2 2π σ µ σ

Lognormal: The lognormal distribution is normal for the transformed variable y = ln x. For the24
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untransformed variable x, the lognormal distribution is given by:1

,    0 < x < 4         (Eq. 1.9-2)2 ( ) ( )f x x xLN y y y( ) / exp ln /
.

= 



 − −



1 2 22

0 5 2
2π σ µ σ

where3

Fy
2 = variance for the transformed variable y4

µy = mean of the transformed variable y5

Estimates of the variance and the mean of the ln transformed variable y (sy
2 and my) can be6

computed from estimates of the variance and mean of the untransformed variable x (sx
2 and mx)7

with the following equations (PRZM3 Manual):8

                                                                                     (Eq. 1.9-3)9 ( )[ ]s s my x x
2 2 21= +ln /

                                                            (Eq. 1.9-4)10 ( )[ ]m m s my x x x= − • +ln . ln /0 5 1 2 2

Note that even though y = ln x, my is not equal to ln mx and that exp my = geometric mean of x,11

not the arithmetic mean mx. 12

CDFs are integrals of the PDFs from the lower bound "a" of the PDF  to any value of the random13

variable v < to the upper bound "b" of the PDF (Ott 1995):14

                                                                                              (Eq. 1.9-5)15 F v f x dx
a

v

( ) ( )= ∫

where F(v) is the area under the PDF from a to v16

As v —> the upper bound "b" of the distribution, F(v) —> 1 such that the complete area under17

the PDF from a to b is given by:18

                                                                                                      (Eq. 1.9-6)19 f x dx
a

b

( )∫ = 1
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where1

a = lower bound of the distribution2

b = upper bound of the distribution3

The cumulative probability that any value x randomly selected from the PDF will be < to some4

specific value of the random variables v is given by the CDF (Ott 1995):5

                                  (Eq. 1.9-7)6 Cumulative Probability( ) ( ) ( )x v F v f x dx
a

v

≤ = = ∫

From equations 1.9-5 and 1.9-7, it can be seen that the cumulative probability that any value x7

randomly selected from the PDF will be greater than some specific value v or be within some8

interval c to d are given respectively by (Ott 1995):9

                                                    (Eq. 1.9-8)10 Cumulative Probability( ) ( )x v F v> = −1

                     (Eq. 1.9-9)11 Probability( ) ( ) ( ) ( )c x d F v d F v c f x dx
c

d

≤ ≤ = = − = = ∫

1.9.2 Monte Carlo Simulations12

Equations giving an output (dependent) variable as a mathematical function of other input13

(independent) variables (such as equations for estimating pesticide concentrations, dose or effects14

in the environment) can be used deterministically or probabilistically.  An equation being used15

deterministically estimates a single value for the output (dependent) variable based upon single16

values being substituted for each of the input (independent) variable in the equation.  An equation17

being used probabilistically generates a distribution of values for the output variable based upon a18

distribution of values being substituted for one or more of the input variables in the equation. 19

Distributions of values for the output variable of an equation are generally obtained by performing20
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Monte Carlo simulations.  In Monte Carlo simulations, statistical distributions in the form of1

probability density functions are assigned to one or more of the input variables.  The computer2

algorithm generating estimated values of the output variable is then run numerous (generally3

thousands of) times.  For each of the runs, the values of the input variables for which statistical4

distributions are assigned are randomly selected from their distributions.   5

The random selection of input values for each run gives different combinations of input values and6

a different resulting estimated output value for each run.  The thousands of runs result in a7

distribution of estimated output values. 8

In performing a Monte Carlo simulation, any significant correlations between any of the input9

variables must be accounted for to avoid randomly generating nonsensical combinations of values10

for the input variables for some of the runs that would not actually occur (Vose 1996).  The11

correlation between any two variables is generally represented by the magnitude of the linear or12

rank order correlation coefficient depending upon the requirements of the Monte Carlo software13

being used. 14

Correlations among all of the input variables can be represented by a correlation matrix in which15

element ij is equal to the linear or rank order correlation coefficient between the variable16

representing row i and the variable representing column j (Farrar 1997).  If the variables are not17

correlated, the element is set equal to zero.  Computations with the correlation matrix vary18

depending upon the software being used and whether linear or rank correlation coefficients are19

used.  However, in each case, the correlation matrix is used to ensure that correlations between20

input variables are maintained during the random selection of input values. 21

In performing a Monte Carlo simulation, the scale and location of the input distributions should be22

comparable to the scale and location of the simulation. For example, if the scale and location of23

the simulation is Iowa, distributions of input variables for the entire United States or for Florida24

should not be used.25
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1.9.3 Functional Relationships Between Risks, Dose, and Dose-Response Parameters1

Risk is a function of dose and dose-response parameters such as the LD50 or EC50 and the dose-2

response slope. Alternatively, risk can be viewed as a function of dose and the sensitivities3

(tolerances) of non-target organisms where the sensitivity (tolerance) of an individual organism is4

defined as the threshold dose required to cause the organism to exhibit an adverse effect such as5

death, growth or reproductive effects. Dose-response functions (equations defined by dose-6

response parameters) and sensitivities are closely related because a dose-response function7

represents the CDF of a sensitivity PDF  (Finney 1962). 8

Dose is a function of animal behavior or other animal characteristics (such as food and water9

ingestion rates, inhalation rates, diet, and body weight) and of pesticide concentrations in10

environmental media .  Pesticide concentrations in environmental media are functions of numerous11

parameters including the application rate (which helps to determine the initial concentration),12

characteristics of the environmental media (such as plant biomass) and dissipation rate constants.13

1.9.4 Basic Steps in Generating a Probabilistic Risk Assessment 14

There are 4 basic steps in generating a probabilistic risk assessment for a single non-target species15

foraging over a single defined pesticide use area for a specified time interval. The steps can be16

repeated for the same species in other use areas or for other species in the same use area.17

The steps are discussed below and are graphically presented in Figures 1.9-1 through 1.9-5. 18

The normal looking PDFs represented in Figures 1.9-1 through 1.9-5 are only for illustrative19

purposes and are not meant to imply that all of the distributions are normal. In fact, environmental20

data often follow lognormal or other types of skewed distributions (Ott 1995). 21

1.9.4.1 Step 1: Exposure Assessment22
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A dose distribution is generated using a Monte Carlo simulation consisting of numerous individual1

runs. Statistical distributions in the form of PDFs are assigned to one or more of the input2

variables affecting dose such as food ingestion rate, initial residue concentrations, and dissipation3

rate constants.  The computer algorithm generating estimated values of the dose is then run4

numerous (generally thousands of) times.  For each run, the values of the one or more input5

variables for which statistical distributions are assigned are randomly selected from their6

distributions.   7

The random selection of input values for each run gives different combinations of input values and8

a different resulting estimated dose for each run.  The thousands of runs result in a distribution of9

estimated doses in the form of a PDF.  The exposure assessment process is graphically10

represented by Figure 1.9-1.  Sub-figure A represents one or more input PDFs for dose related11

animal characteristics such as the ingestion rate, body weight, and percent diet for different types12

of food.  Sub-figure B represents one or more input PDFs for concentration related parameters13

that are used to estimate concentration versus time series in environmental media such as the14

initial concentration, plant biomass, and dissipation rate constants. Sub-figure C represents the15

dose PDF output of an exposure assessment16

1.9.4.2 Step 2:  Effects Assessment17

In a laboratory dose-response study, regression is used to estimate the values of dose-response18

parameters (such as the LD50 or EC50 and the dose-response slope) that best fit dose-response19

data to a dose-response equation (such as the probit) and its associated dose-response curve. The20

dose-response equation and its associated dose-response curve give the percentage (or some21

transformation of the percentage) of experimental organisms affected as a function of22

experimental dose (or some transformation of the dose). Each dose-response experiment will 23
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Figure 1.9-1Exposure Assessment. Step 1: Probabilistic Exposure Assessment
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generate a single LD50 or EC50, a single dose-response slope, a single dose-response equation,1

and a single dose-response curve.  Based on repeated dose-response experiments,  distributions of2

dose-response parameters such as the LD50 or EC50 and  the dose-response slope can be 3

generated. Depending upon the quantity of dose-response data available, such distributions can be4

best fit PDFs, hypothetical PDFs generated by selecting a distribution type based on the literature5

and computations of the mean and standard deviation of the available data or empirical non-6

parametric distributions. 7

Recall that the sensitivity (tolerance) of an individual is the threshold dose required for the8

organism to exhibit an adverse effect and that a dose-response equation is the CDF for a9

sensitivity PDF. Each dose-response equation (defined by a LD50 or EC50 and a slope) has an10

associated sensitivity PDF. If the PDFs for dose-response parameters (such as the LD50 or EC5011

and the slope) can be assumed to be independent, a set of n random selections from each dose-12

response parameter PDF will result in n dose-response equations and  n corresponding sensitivity13

PDFs. 14

One or more dose-response equations (each defined by a specific value of the LD50 or EC50 and15

the slope) can be used to generate one or more sensitivity (tolerance) PDFs for use in Method A16

of Step 3 (section 1.9.4.3) to help generate a risk PDF. Alternatively, one or more dose-response17

equations can be used more directly in Methods B and C of Step 3 to help generate a risk PDF.18

The effects assessment process is graphically represented in Figure 1.9-2.  Sub-figure A represents19

the frequent case where only a single dose-response equation (represented  by its associated dose-20

response curve) is available. Nevertheless, the single dose-response equation  is sufficient to21

generate an associated sensitivity (tolerance) PDF as represented by Sub-figure B. Sub-figure C22

represents the much less frequent case where multiple dose-response equations (represented by23

their associated dose-response curves) are available.  In such cases, single PDFs can be generated24

for the various dose-response parameters such as the LD50 or EC50 (Sub-figure D) and the dose-25

response slope (Sub-figure E). 26
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Assuming that the PDFs for the LD50 or EC50 and the dose-response slope are independent,1

multiple dose-response equations (defined by the LD50 or EC50 and the slope) can be generated2

by randomly sampling from both their distributions. Therefore, because a sensitivity (tolerance)3

distribution is associated with each dose-response function,  multiple sensitivity (tolerance) PDFs4

can be generated from the LD50 or EC50 and dose-response slope PDFs as represented by the5

arrow going from Sub-figures D and E to Sub-figure F. 6

1.9.4.3 Step 3: Generation of  a Risk PDF7

A risk PDF gives the probability of  the percent of organisms affected being equal to any given8

value of the random variable x as a function of x. There are various methods for generating a risk9

PDF from the outputs of the exposure and effects assessments. Three methods are as follows:10

Method A of Generating a Risk PDF: This method uses the dose PDF and one or more sensitivity11

PDFs generated in steps 1 and 2, respectively. The simulation consists of N groups of n runs each.12

Each run represents a different single individual and results in the individual being classified as13

adversely affected or not affected. The classification is based upon a comparison of the14

individual’s randomly selected dose (from the dose PDF) to its randomly selected sensitivity (from15

a sensitivity PDF).  Recall that an individual’s sensitivity (tolerance) is the threshold dose16

necessary for the organism to exhibit an adverse effect (death, reduced reproduction, reduced17

growth, etc.).  If an individual's randomly selected dose (from the dose PDF) is greater than or18

equal to its randomly selected sensitivity (from the sensitivity PDF), the individual is classified as19

being adversely affected.  If an individual's randomly selected dose is less than its randomly20

selected sensitivity, the individual is classified as not being adversely affected. In the case where21

there are PDFs for the LD50 or EC50 and the slope, the sensitivity distribution for a given run22

(from which the sensitivity is randomly selected) is generated from a dose-response equation23

defined by randomly selected values of the LD50 or EC50 and the slope from their PDFs.24
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Figure 1.9-2 Effects Assessment. Step 2: Probabilistic Effects Assessment
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Each set of n runs only generates a single point (percent of organisms adversely affected) on the1

risk PDF. However, N sets of n runs each generates N points (percent of organisms adversely2

affected) on the risk PDF. 3

Method A is graphically represented  in Figure 1.9-3. Sub-figure A represents the Dose PDF4

generated in Step 1.  Sub-figure B represents one or more sensitivity PDFs generated from a5

single dose-response equation or from multiple dose-response equations derived from the random6

selection of LD50 or EC50 and slope values from their PDFs. The arrow to Sub-figure C7

represents the generation of the risk PDF (Sub-figure C) from the dose and sensitivity PDFs  8

Method A is used in an example model (Paret) discussed in Chapter 5 and Appendix A2.9

Method B of Generating a Risk PDF: This method uses the dose PDF generated in step 1 and10

either a single dose-response equation or the LD50 or EC50 and slope PDFs generated in step 2.11

The simulation consists of N groups of n runs each. Each run represents a different single 12

individual and results in the individual being classified as adversely affected or not affected. The13

classification is based upon a comparison of the individual’s percent probability of being affected14

to a randomly selected percent from the uniform distribution.  If an individual’s probability of15

being affected is greater than or equal to the percent randomly selected from the uniform16

distribution, the individual is classified as being adversely affected. If an individual’s probability of17

being affected is less than the percent randomly selected from the uniform distribution, the18

individual is classified   as not being adversely affected.19

The individual’s percent probability of being adversely affected is determined by substituting a20

randomly selected dose (from the dose PDF) into the dose-response equation for the given run.21

Although the response in a dose-response equation is experimentally expressed as the percent of22

organisms adversely affected at a given experimental dose, it is also equivalent to the percent 23



1-34

Figure 1.9-3 Method A  Step 3 Generation of a Risk PDF

Method A: Simulation consists of N sets of n runs each.

Each run represents an individual and results in classifying the individual as affected or not affected based on a
comparison of the individual’s randomly selected dose and its randomly selected sensitivity (the threshold dose 
for the organism to exhibit an affects).

Each set of n runs generates a single point for the percent organisms affected on the risk PDF. N sets of n runs each
generates N points of the  % of organisms affected on the risk PDF.

Note: The risk PDF depicted byC gives the percent probability that the percent organisms affected is equal to any given
value x on the x axis as a function of x.
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probability that an organism randomly selected from the population will be affected by the given1

dose. 2

In the case where there are PDFs for the LD50 or EC50 and the slope available, the dose-3

response equation  for a given run (in which a randomly selected dose is substituted to determine4

the percent probability that the organism will be adversely affected) is defined by randomly5

selected values of the LD50 or EC50 and the slope from their PDFs.6

Each set of n runs only generates a single point (of percent of organisms adversely affected) on7

the risk PDF.  However, N sets of n runs each generates N points (of percent of organisms8

adversely affected) on the risk PDF. 9

Method B is graphically represented in Figure 1.9-4. The top row of Sub-figures represent the10

case where there is only one dose-response function available.  The dose PDF (Sub-figure A)11

generated in Step 1, a single dose-response function (Sub-figure B) generated in step 2  are12

combined to generate a risk PDF (Sub-figure C). The second row of Sub-figures represent the13

case where LD50 or EC50 and slope PDFs are available.  The dose PDF (Sub-figure D)14

generated in Step 1, the LD50 or EC50 PDF (Sub-figure E) and the slope PDF (Sub-figure F)15

generated in step 2  are combined to generate a risk PDF (Sub-figure G).16

Method B is used in the Dixon Granule Model (see Appendix A3). Method B should give17

identical results to those of Method A when applied to the same data using the same number N of18

sets and the same number n of runs per set in the simulation.19

Method C of Generating a Risk PDF:  This method uses the dose PDF generated in step 1 and20

either a single dose-response function or the LD50 or EC50 and slope PDFs generated in step 2.21

The simulation consists of N runs. Each run represents a different subpopulation of an unspecified22

large number of organisms. All individuals within the subpopulation are assumed to receive the23
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Figure 19-4 Methods B and C Step 3: Generation of A Risk PDF

Method B: Simulation consists of N sets of n runs each.

Each run represents an  individual and results in classifying the individual as affected or not affected (based on a comparison
of the individual’s randomly selected percent probability of being affected with a randomly selected Percent from the uniform
distribution).

Each set of n runs generates a single point of the percent of organisms affected on the risk PDF. The N sets of n runs each generates
 N points of the % of organisms affected on the risk PDF.

Method C: Simulation consists of N runs.
Each run represents an unspecified large number of individuals and generates a single percent of organisms affected point on the
risk PDF. N runs generates N% of organisms affected points on the risk PDF. The figures for method C are identical to those for
method B.
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 same randomly selected dose and to respond according to the same dose-response function.  In1

the  case where there are PDFs for the LD50 or EC50 and the slope available, the dose-response2

equation for a given run is defined by randomly selected values of the LD50 or EC50 and the3

slope from their PDFs.4

Each run generates a single point (percent of organisms adversely affected) on the risk PDF.  A5

total of N runs generates N points (percent of organisms adversely affected) on the risk PDF. 6

Figure 1.9-4 is applicable to Method B and also applicable to Method C.7

Method C is simpler than Methods A and B, because it eliminates the additional step of classifying8

each individual as being adversely affected or non-affected. Therefore by using Method C, it is not9

necessary for the simulation to consist of N sets of n runs each where each run represents a10

different single individual instead of a different single subpopulation.  Instead the simulation can11

consist of N runs where each run represents a different single subpopulation.  12

Although method C is simpler than Methods A and B, Method C does not account for the13

sampling error associated with small populations like Methods A and B do. Therefore as14

discussed in Appendix D1, Method C is probably only applicable to large populations.15

1.9.4.4  Step 4: Generation of a Risk CDF and (1 - CDF) from the Risk PDF 16

The risk PDF generated in Step 3 should be included in a risk assessment to graphically show17

the estimated distribution of percentages of organisms adversely affected.  However, the18

quantitative information a risk PDF provides is of limited value for assessing risk because it gives19

the percent probability that the percentage of organisms adversely affected is equal to any given20

value x on the x axis as a function of x. 21

From a risk assessment standpoint, the risk CDF and (1 - risk CDF) provide more useable22
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information than the risk PDF. The risk CDF gives the cumulative probability that the percent of1

affected organisms is < any given value v on the x axis as a function of v. The (1 - risk CDF)2

function gives the cumulative probability that the percentage of organisms affected is > than any3

given value v on the x axis. Therefore, the risk CDF and (1 - risk CDF) should also be provided4

along with the risk PDF.5

As previously indicated, the CDF is obtained by integrating the PDF from the lower bound of the6

PDF to any value of the random variable v < upper bound of the PDF as shown by equation 1.9-7. 7

Only the simplest PDFs such as the exponential or triangular can be integrated analytically.8

However, tables reflecting numerical integration are available for all standard PDFs.  In addition,9

off the shelf Monte Carlo software such as @RISK and CRYSTAL BALL readily generate CDFs10

from their corresponding PDFs.11

The differences between a PDF, a CDF, and 1 - CDF are graphically represented in Figure 1.9-512

by Sub-figures A, B, and C, respectively. 13
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Figure 1.9-5 Step 4 Generate A Risk CDF and (1-Risk CDF)
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 2.0    PROBLEM FORMULATION1

2.1 ASSESSMENT QUESTION (ENDPOINTS) AND  CONCEPTUAL MODELS2

The initial discussions of the Terrestrial Workgroup focused on defining the assessment questions3

or endpoints (problem formulation). According to the EPA Guidelines for Ecological Risk4

Assessment, assessment endpoints are explicit expressions of the actual environmental value that5

is to be protected and is directly related to a characteristic of an ecological component that may6

be affected by exposure to a stressor.  There are several criteria for selecting assessment7

endpoints, which include ecological relevance, susceptibility to the stressor, and the relationship8

of the assessment endpoints to management goals and societal value. Each assessment endpoint9

must contain two elements, the valued ecological entity and the characteristic of that entity which10

is potentially at risk and is important to protect.11

The Guidelines for Ecological Assessment indicate that assessment endpoints are critical to12

problem formulation because they direct the assessment to address management concerns and are13

central to conceptual model development. Their relevance is determined by how well they target14

susceptible ecological entities. The Guidelines indicate that the ability of assessment endpoints to15

support risk management decisions depends on whether they are measurable ecosystem16

characteristics that adequately represent management goals. Therefore, the interaction among risk17

assessors, risk managers, and other interested parties are extremely important in the development18

of the risk assessment.  The Guidelines also emphasize that risk assessment and risk management19

are two distinct activities. The former is the evaluation of the likelihood of adverse effect, while20

the latter is the selection of a course of action in response to an identified risk.  Risk management21

is based on many factors in addition to the risk assessment, including social, legal, political, and/or22

economical considerations.23

 The scope of the ECOFRAM’s charge includes the development of probabilistic risk assessment24

methods to address the array of pesticide uses now and in the future, including all application25
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methods and crops in all environments throughout the United States.  Clearly this task is too1

broad to define specific assessment endpoints for all assessments.  The ecological entities concern2

in Florida avocado fields treated with foliar insecticides will be different from one in a California3

strawberry field treated with a soil fumigant.  The risk assessment must be tailored for each4

unique situation. However, the Workgroup believed that generalized assessment endpoints could5

be drawn which would be applicable for developing probabilistic methods. These methods should6

be adaptable for use in a large majority of ecological pesticide risk assessments. 7

In defining the assessment endpoints, the Workgroup, as previously indicated, followed the8

outline presented in the Guidelines for Ecological Risk Assessments.  The Guidelines indicate that9

the initial work in problem formulation includes integration of available information on the10

pesticide and its use, identifying the species and ecosystem at risk, and the important variables that11

influence exposure and effects. From this information, the guidelines indicate two products are12

generated from the problem formulation, assessment endpoints and conceptual models. In13

developing the general assessment endpoints and conceptual models, the Workgroup focused on14

the following points:15

• Risk management questions,16

• Potential ecological effects of pesticides, and17

• The major variables that influence these effects. 18

2.2 RISK MANAGEMENT QUESTIONS19

In defining the ecological risk assessment questions or endpoints, the Workgroup believed it was20

extremely important to consider the questions often posed by risk managers. For the assessment21

to be useful in the decision-making process, they must address questions which are both22

understood and believed relevant to the regulatory decision by the risk manager. If the questions23

addressed in an assessment are not considered relevant or understood by the risk manager, they24



2-3

would contribute little to the regulatory decision. Therefore, risk assessments should address1

clear, predetermined questions (US EPA 1992).2

In 1997 a workshop was held to begin this initiative.  It included a presentation by Steve Johnson,3

then the Acting Deputy Office Director of OPP, summarizing the questions often posed by risk4

managers.  In Mr. Johnson's presentation, he identified the questions most often posed by risk5

managers:6

• What are the effects of concern?7

• Why are they of concern?8

• What is the magnitude and probability of these effects?9

• Will there be population(s) impacts?10

• Will the population(s) recover?11

• Are the effects seen across different species?12

• Will the effects influence the density and diversity of the species?13

• How confident are we in our estimate of the effects?14

• What models did we use?  Have they been validated?15

• Are the models widely accepted and scientifically sound?16

• How predictive and confident are we in using the models?17

• Have you completed a comparative analysis of the potential environmental effects with18

similar compounds and/or alternatives?19

• Is there any monitoring data?  How have you factored the monitoring data into your20

assessment?21

• If there are unresolved scientific issues, can data be developed/studies conducted to22

answer these questions?23

• How long will it take to conduct the studies and how much will they cost?24

• Have other agencies and/or countries assessed the environmental risks?25

• How do our assessments compare with those of other agencies and/or countries?26

• For each question already mentioned are there any mitigation measures (i.e. buffer zones,27
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filter strips, use reduction, etc.) that will eliminate or reduce the calculated risk?1

• Can we measure/monitor to determine if our mitigation measures are working?2

• In summary, help me put this pesticide and its potential environmental risk in perspective.3

In addition, several risk managers participated in the initial ECOFRAM meeting that followed the4

workshop.  The risk managers emphasized that bright lines could not be specified to guide risk5

management decisions involving ecological risk.  They also indicated they wanted as complete a6

picture as possible of the potential ecological impacts from pesticides, including a clear7

understanding of the uncertainties associated with the assessment. They also indicated that they8

were interested in estimates of risk at the individual, population, community, and ecosystem9

levels, accounting for direct and indirect effects. They acknowledged assessment limitations, but10

believed that assessments should provide the most complete picture of ecological riska that is11

scientifically defensible. 12

2.3 TYPES OF ECOLOGICAL EFFECTS13

In defining the assessment questions (endpoints), the Workgroup discussed the potential risk the14

use of pesticides pose to non-target species. These include direct poisoning and death by15

ingestion, dermal exposure, and\or inhalation; sub-lethal toxic effects indirectly causing death by16

reducing resistance to other environmental stresses such as diseases, weather, or predators;17

indirect effects through reduced food resources or alteration of habitat;  altered behavior such as18

abandonment of nest or young, change in parental care, or reduction in food consumption; or19

lowered productivity through fewer eggs laid, reduced litter size, or reduced fertility.  These20

effects will manifest themselves in wildlife through reduced survival and/or lower reproduction21

success.22

The major emphasis in assessing pesticide impacts to non-target wildlife has been direct lethal23

effects.  This emphasis has been driven by the type of laboratory toxicity data that is generally the24

most prevalent. While certainly of concern, the workgroup believed limiting the assessment to the25
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magnitude of toxicity might miss the more subtle, but equally disruptive sub-lethal or indirect1

effects. Not all exposure to pesticides result in the immediate death of an animal. Sub-lethal doses2

of some pesticides can lead to changes in behavior, weight loss, impaired ability to reproduce,3

inability to avoid predators, and lower tolerance to extreme temperature and other environmental4

conditions. 5

These lethal and sub-lethal effects can be further aggravated by the intended effects of the6

pesticides through reduced food supplies or altered habitat. Pesticides are intended to alter the7

agro- or other ecosystems on which they are used, and therefore by their vary nature, have the8

potential to disrupt the system to which they are introduced. Wildlife food sources can be reduced9

by both herbicides and insecticide applications and can have significant effects on individual10

animals and local populations. Insect-eating animals lose a portion of their food supply when11

insecticides are applied within their home range. Herbicides can reduce availability of both plants12

and insects as food supplies. Spraying herbicides on weedy areas destroys insect habitat, leading13

to less abundant and diverse insect populations available as wildlife food sources. Loss of seed14

producing weed species from repeated herbicide use results in an additional decline in food15

resource and habitat alteration.16

As previously indicated, the application of pesticides may have indirect effects on non-target17

species by altering food supply or habitat integrity. While establishing a causal relationship18

between such ecosystem alterations and wildlife effects is difficult to demonstrate, it is clear that19

indirect effects are possible because of the interdependency of species within an ecosystem.20

Therefore, in defining the assessment endpoints and understanding management goals, the21

interrelationships existing among the various components of the ecosystem needs to be22

considered.23

2.4 MAJOR VARIABLES24

In defining the assessment endpoints and in developing conceptual models, major variables that25
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influence exposure and effects were identified and discussed. As indicated in the previous chapter,1

the basic structure of the risk assessment model is divided into exposure characterization, effects2

characterization, and integration of exposure and effects to generate a risk characterization. The3

results are integrated into a characterization of the risk.4

The main objective of the exposure part of the risk assessment process is to estimate the5

distributions of dose to non-targets. Dose is the amount of pesticide introduced into or taken up6

by an organism. The variables that influence dose can be separated into two components, the7

chemical/physical component and the biological component. The chemical/physical component of8

estimating the dose are the environmental and chemical variables that influence the distribution of9

residues levels in time and space in environmental media (e.g., air water, soil, food). The10

biological component addresses the animal behavior attributes that affect the frequency and11

intensity of the contact with the various environmental media.12

For terrestrial wildlife there are three major routes of exposure: oral, dermal, and inhalation. The13

major chemical/physical variables that influence dose for such exposure routes include:14

• The chemical/fate properties of the pesticide,15

• Plant/crop characteristic and agricultural properties,16

• Meteorological conditions,17

• Soil properties, and18

• Wildlife water source properties.19

For the biological component, the major variables that influence dose for such routes of exposure20

is species dependent and include:21

• Food, water, and soil ingestion rates,22

• Inhalation rates,23

• Dietary diversity,24
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• Habitat requirements and spacial movement,1

• Direct ingestion rates (granular formulation), and2

• Dermal and inhalation absorption rates.3

The objective of the effects part of the risk assessment process is to estimate the distributions of4

specific effects to non-target species at a given distribution of exposure, the dose-response5

relationship. The major variables that influence the response of individual animals includes:6

• Toxicity (intra- and inter-species variability),7

• Age and sex,8

• Nutritional status,9

• Breeding status,10

• Environmental conditions, and11

• Duration and extent of exposure.12

A number of the variables that influence exposure and effects are discussed in Chapters 3 and 4. 13

Ways to estimate their distributions and some of the uncertainties associated with these techniques14

are also discussed, although not all are explored in the same depth due to the absence of data15

and/or time.  Chapter 5 provides a skeleton structure for integrating some of the important16

variables to estimate the probability and magnitude of effects. While additional developmental17

work will be required to establish working assessment tools and research will be needed to define18

or better define the major variables and their influence on effects, these tools and methods 19

provide a basis for advancing ecological risk assessments of pesticides.20

2.5 CONCEPTUAL MODEL AND ASSESSMENT ENDPOINTS21

From the discussions of the potential exposure pathways and effects of pesticides to non-target22

species, the identification of the major variables that could influence these exposure and effects,23

and the input from the risk managers, the Workgroup developed several conceptual models. 24
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Figure 2.5-1 shows the initial model developed by the Workgroup. It includes a large number of1

potential exposure and effect routes for a variety of organisms under varying combinations of site2

and application combinations and as well as consideration of indirect effects. Other conceptual3

models were also developed and are presented in following chapters as well as in the appendixes. 4

Based on the input from the risk managers and the Workgroup discussions of the potential effects5

of pesticides to non-target species and the major variables that influence these effects, the6

following general list of assessment endpoints were defined for ecological risk assessments of7

pesticides:8

 INDIVIDUAL ENDPOINTS9

• Survival of valued ecological entity*10

• Reproduction of valued ecological entity*11

• Growth and development of ecological entity12

• Morbidity of valued ecological entity 13

POPULATION LEVEL EFFECTS14

• Population size of valued ecological entity*15

• Persistence of valued ecological entity*16

• Demographics of valued ecological entity17

COMMUNITY AND SYSTEM VALUES18

• Patterns of taxonomic diversity19

• Patterns of functional diversity20

• Changes in compositional integrity21

• Nutrient cycling22

• Energetics23

(*) Primary endpoints considered by ECOFRAM24
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As specified in the Charge and as agreed upon by the majority of the Workgroup, direct acute and1

chronic effects of pesticides to birds and mammals at the individual and population levels would2

be addressed first.  As previously indicated, the focus on direct toxicity does not imply it is the3

more important than other effects. However, the Workgroup felt the assessment of direct toxicity4

drives the current pesticide assessment process and is more tractable than addressing other, more5

complex interactions. Also, given the time frame of ECOFRAM, the scope of the questions6

potential effects addressed needed to be limited. And, in fact, even narrowing the scope to direct7

effects at the individual and population levels was believed by some as an ambitious goal.  8

Similarly, the focus on birds and mammals does not imply they are the most important taxonomic9

groups.  As indicated in Chapter 1, the larger databases of toxicity and life history information on10

these species was believed to make them more amenable for developing a new process for11

pesticide risk assessment. As the process developed, birds received the majority of the emphasis12

because of the emphasis of current assessment process on avian species and the expertise of13

Workgroup members.  However, the methods developed could easily be applied to mammalian14

and other vertebrate species.  15

Also, as discussed in later sections, the hope to address population level effects was limited by the16

available data. The Workgroup felt that a complete probabilistic assessment of pesticides to non-17

target species should consider other groups of non-target vertebrates, invertebrates,18

microorganisms, and plants. Thus, they concluded that the developmental effort needs to be19

continued beyond this initiative and be expanded to include other types of species as well as20

population and overall ecosystem effects.  Appendix B1 discusses further the development of the21

assessment endpoints. 22
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2.6 ADDITIONAL CONSIDERATIONS FOR PROBLEM FORMULATION FOR1

PESTICIDES2

The task of defining specific endpoints for all assessments is difficult due to the numerous3

conditions and areas where pesticides are used.  However, there are some special considerations4

that appear appropriate to factor into the problem formulation phase of the assessment for5

chemical specific assessments. These include pesticide formulation and use patterns, defining the6

agro-ecosystem at risk, identifying the time scale to be considered, and identifying high risk7

species in the agro-ecosystem of concern.8

2.6.1  Formulation and Use Patterns9

All pesticides registered under FIFRA are required to have a label which provides specific10

instructions and information for users.  The label also provides important information for the11

problem formulation and risk characterization phases.  The label, for example, identifies the12

formulation type.  These include liquids (emulsifiable concentrates,  suspension concentrates, and13

suspo-emulsions), solids (water dispersible granules, wettable powders, water soluble powders,14

tablets, granules, pellets, and baits) and others (water soluble bags, gels, pastes, water-based15

solutions).  It also provides information on use patterns which are defined by the formulation type,16

carrier type, crop and region, pest complex, application method and rates, number, and frequency17

of application. 18

This information is important when considering the risk posed by pesticides.  For example, the19

application method ( aerial, ground-directed boom spray, in furrow granular application) will20

affect route and probability of exposure.  The application rates, number and frequency of21

applications will contribute to exposure estimates.    Dry applications present a special case for22

terrestrial exposure and will require special risk assessment methodology.  (See Chapter 3,23

granular applications.)  Thus, it is of primary importance to consult the current or proposed label24
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for each product to establish potential exposure issues that need to be factored into the problem1

formulation.  2

2.6.2 Defining the Ecosystem at Risk3

In the problem formulation phase, it is important to define the ecosystem at risk. Meaningful4

definitions of any ecosystem are elusive because it is difficult to precisely define their spatial and5

temporal scales. To circumvent this difficulty, at least in initial assessments, the term agro-6

ecological scenario will be defined as the agricultural land, for example a field orchard, capable of7

supporting commercial crop production and its border area. This definition is suggested because it8

describes the habitat used by the species at risk and represents the area that will receive the vast9

majority of residues by direct application or drift.  Operationally, the individual agricultural field is10

the basic spatial unit for pest management because recommendations for treatments will be made11

at that spatial level. 12

The particulars about an agro-ecological scenario that should be considered during problem13

formulation include (1) cultural practices, including annual pattern of planting, (2) cultivation and14

harvest, (3) irrigation, (4) weed management, and (5) insect management.  Each of these facets of15

production agriculture can affect risk.  Another consideration is that not all of the border will be a16

non-crop.  Often agricultural fields are adjacent to other agricultural fields.  Finally, the body of17

data on pesticide drift indicates that the levels of pesticide residues in the border will be much18

lower than the residue levels in the target crop fields.19

When initiating a risk assessment, the assessor would first identify the range of agro-ecological20

scenarios for the pesticide.  Each scenario would then be characterized in terms of the variables21

which affect exposure, either deterministically or probabilistically.  A risk assessment could then22

be conducted separately for each scenario.  The results could then be combined, taking into23

account the relative frequency of each scenario, to arrive at an overall assessment of the24

magnitude and probability of adverse effects for a given region.  25
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The border area surrounding the specific crop is often  a more suitable habitat for terrestrial1

vertebrates than the treated field itself.  This border comprises a wide variety of vegetation types and2

associated ecotones surrounding the cultivated field edge. It is possible to derive estimates for the3

maximum areas of crop field borders that have potential to contain residues.  These depend on the4

area of the crop, field size, and field shape. 5

For the purpose of preliminary or screening-level assessments, it would be preferable to avoid 6

evaluating the full range of relevant scenarios and to identify which of the relevant scenarios are7

most likely to generate a high risk for wildlife.  This scenario would be used for screening8

purposes.9

Initially, the task of identifying and defining the scenarios will be onerous.  However, much of the10

information will be generic, applying equally to the assessments for many pesticides used on a11

particular crop.  Over time, an increasingly comprehensive set of scenarios would be accumulated,12

in effect a large database of 'model environments'.  If this database is computerized and designed13

to sort variables by frequency and geographic distribution, the effort required to select the14

scenarios and many of the computations for  risk assessment could be strongly facilitated.  Such a15

database could become the basis for landscape level assessments of risk. 16

 The primary variable in defining an agro-ecological scenario is the type of crop (e.g., corn,17

cotton, etc.) or at least a general category of similar crop types (e.g., forage, grain, etc.) because18

the crop defines the invertebrate pest problems which in turn determine the pesticide use19

scenarios.  Another important variable or group of variables is the characteristic of the non-crop20

habitat adjacent to, and interspersed among, fields of the crop of interest.  In many cases,21

identifying the state or local region will establish the general nature and plant species range of the22

non-crop habitat that might be associated with the crop.  This is important because these habitats23

influence the kinds and numbers of wild species inhabiting the region.  24
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Geographic regions also generally define meteorological conditions that determine the need for1

irrigation. Irrigated crops and habitats in otherwise semi-arid conditions usually support very2

different wildlife populations, even populations that would not occur in that location under natural3

conditions.  Additional important geographic variables include soil type, terrain, and temperature4

regime.  Four examples of important agro-ecological scenarios and brief discussions of some of5

their ecological characteristics that would need to be considered are provided in Appendix B2.6

The agro-ecosystem concept developed above is a very useful vehicle for real-world application7

of the generalized exposure model developed in Chapter 3.  Ecological risk assessment for8

pesticides do not often attempt to include a realistic treatment of spatial relationships.   The extent9

of the growing area of a particular crop, the timing of crop production, the relationship of the10

crop agro-ecosystem to other ecosystems, and market share are given limited attention.  Explicit11

identification of terrestrial vertebrate species at risk are often not attempted, and the relationship12

of these species with the agro-ecosystem are often not specified.13

The agro-ecosystem concept, with its spatially explicit scale and identification of focal species,14

can provide greater understanding of potential impacts of pesticides to non-targets.  One can15

readily see the value of the concept and how it can be applied in simulation models such as those16

illustrated in Appendix A2 (e.g., PARET).  Yet certain elements of risk, such as the likelihood and17

magnitude of effects and the likelihood of recovery, are in some situations inextricably related to18

even larger spatio-temporal characteristics of the crop agro-ecosystem in question.  These19

characteristics may not be appropriate for lower levels of refinement, but may be considered in20

certain cases where additional refinements of the assessment are appropriate.  (See Chapter 6.)21

For the purposes of this section, information on the spatial and temporal relationship of the agro-22

ecosystem with other ecosystems or agro-ecosystems would form the basis for a higher level23

assessment.  In the Guidance Document for Ecological Risk Assessment, such information falls24

into the category “Measures of Ecosystem and Receptor Characteristics”.  The important25

characteristics will depend on the stressor and the crop.  These characteristics could include,26
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among other things, field size, spatial extent and patchiness, proximity to the same or other crop1

agro-ecosystems, proximity to other ecosystems, the composition of the field border, terrestrial2

vertebrate species that actually use the crop agroecosystem, timing of crop production, timing of3

pesticide application, and so on.  Because such information would be relevant only at the higher4

levels of refinement, specific information would only be presented on a case-by-case basis.5

Technology has advanced and the inclusion of larger spatial and temporal scale information in6

ecological risk assessments is feasible.  These advances include access to satellite imagery, more7

powerful computers, Geographical Information Systems, suitable radiotracking equipment, Global8

Positioning Systems, and readily available public databases.  The challenges in making use of this9

information in probabilistic assessments at scales larger than  the agro-ecosystem will be to reach10

agreement about when such information should be included in an assessment, how the information11

will be used, and how the results will be interpreted.12

As the discussion above indicates, there have been few ecological risk assessments that have13

considered the spatial scale of an agro-ecosystem.  However, as pesticide risk assessments are14

refined, spatio-temporal data based on the  agro-ecosystems of interest need to be factored into15

the assessment.16

2.6.3  Time Scale17

Time-related processes have an important influence on risk. The most familiar example is the18

dissipation of residues. Dissipation rates vary widely between pesticides and, if the half-life is19

short, risk may be greatly reduced. Depuration rates have a critical influence because it is the20

balance between intake, internal metabolism,  and depuration which determines whether a21

significant internal dose will accumulate. Depuration is rarely explicitly considered in current22

assessment procedures, although it occurs in toxicity tests and therefore is accounted for23

implicitly. The balance between intake and depuration may also be affected by short-term24

variations in feeding rate, especially in situations where animals consume most or all of their daily25

requirement in a few minutes or hours (gorging behavior). Also, timescale is important for26

pesticides exhibiting delayed or cumulative effects (e.g. anticoagulants, organochlorines).27
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If risk a assessment is to take account of these types of temporal variation, it is necessary to1

express dose per unit of time (i.e. mg pesticide per kg bodyweight per unit time) as a function of2

time, and for the time unit (e.g., days, hours, etc.) to be sufficiently small that any significant3

peaks and troughs are represented.  For chronic assessments, it is also necessary to compute total4

and average doses over multiple time units, possibly extending over several days to weeks.  This5

is relatively straightforward provided changes in residues, behavior, and other factors can be6

modeled on the appropriate timescale.  The difficulty lies in measuring effects on a comparable7

timescale. Three options were considered:8

Option 1:  Base the entire effects assessment around internal dose (body burdens) rather than9

external dose. This requires measurement or estimation of depuration, and the measurement or10

estimation of effects in relation to body burden rather than external dose. Substantial research11

would be required to develop this approach, and it would probably require new types of routine12

testing. 13

Option 2:  Estimate an exposure/time profile first, then use it to customize the exposure profile in14

effects tests. This would be impractical for routine use, as the studies would be significantly more15

complex and would be relevant only to a very narrow range of scenarios. However, it might be a16

useful option in special cases, for scenarios where temporal variation appeared critical to the17

assessment outcome.18

Option 3:  Identify a limited number of key time scales and carry out matched exposure and19

effects assessments for each in turn. This may enable the retention of constant exposure profiles as20

a reasonable approximation in effects tests, combined with the use of time-weighted averages in21

the exposure assessment when appropriate. This is probably the most practical option for routine22

use.23

Option 3 is the simplest, providing suitable time scales can be identified. There would be24

enormous advantage in using time scales similar to existing effects tests, if possible, to maintain25

the usefulness of existing data. In the acute oral test, the dose is administered in one or a few26

minutes; in the dietary test birds are exposed for 5 days and in the current avian reproduction27
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study for 20 weeks.1

Consideration of the existing test time scales, the processes mentioned at the start of this section2

and historical examples of pesticide impacts suggests the definition of three time scales as follows:3

Short Term:  Minutes to hours, representing gorging behavior, diurnal peaks in feeding (e.g. dawn4

and dusk), and pesticides which depurate or dissipate very rapidly. Relevant existing effects test, 5

LD50.6

Medium Term:  Hours to days, representing scenarios with relatively high exposures over several7

days. Also appropriate for acutely toxic pesticides with delayed effects (e.g. rodenticides).8

Relevant existing effects test, avian LC50.9

Long Term:  Days to weeks,  representing long-term, low level exposures. Especially relevant to10

pesticides with bioaccumulative effects (e.g. organochlorines). Relevant existing effects test, 11

avian reproduction study.12

These time scales are illustrated conceptually in Figure 2.6-1. 13

In the following sections, the three standard time scales defined above are used as the general14

basis for both exposure and effects assessments. In screening assessments, exposure will be15

estimated over the three standard time scales and compared to the corresponding effects tests16

which use constant exposure levels over time. All three time scales should be considered for every17

pesticide. In some cases the screening assessment may indicate that one or more of the 18
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Figure 2.6-1. The exposure analysis produces a profile of exposure over time, usually starting at the time of pesticide application. In1

screening assessments, this profile will be used to generate three estimates of exposure, integrated over the three standard time scales2

(short, medium and long-term). These will usually correspond to the exposure periods used in the standard effects tests (currently <13

day, 5 days, and 20 weeks for birds). In refined assessments, special effects tests may be conducted to reflect the predicted exposure4

profile more closely.5
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time scales is sufficiently unlikely to cause significant exposure and further assessment is not1

required. When a refined assessment is required, exposure should be examined in more detail (as a2

continuous trend over time) to identify the magnitude and duration of potentially significant3

peaks. If this suggests that non-standard time scales and varying exposure over time may be4

critical to understanding risk, the use of special effects studies may be considered.5

2.6.4 Identification of Species at Risk6

Another important consideration in problem formulation and the analysis phase of the assessment7

process is the identification of the species to be addressed. Most agro-ecological scenarios8

provide habitat for numerous species of birds and mammals.  These species utilize the crop and9

surrounding environment in different ways and in different intensities.  It is impractical to attempt10

to develop a risk assessment that would include all bird species in a given region.  Additionally,11

some of these species may utilize their environment so they are rarely at risk of exposure to12

pesticide applications.  Thus, little value would be added to the risk assessment by considering13

these species.  14

The concept of concentrating a risk assessment on a few key species stems from the awareness of15

these circumstances and an understanding of the extreme cost of conducting a comprehensive risk16

assessment.  The proper use of key species in risk assessments can result in an assessment based17

on the species most sensitive to the test substance and ecologically most susceptible to exposure. 18

Thus, an assessment based on elected key species provides safety considerations for a much19

broader array of species.  However, this concept is only effective when appropriate consideration20

is given to the selection of the key species.21

Behavior is a major factor used to help identify key species.  Certain species may utilize22

agricultural habitat for foraging, nesting, or both and, by the nature of their behavior, be at much23

greater risk of pesticide exposure.  A species which (1) spends a large proportion of its time in the24

treated crop and (2) has a foraging technique and preferred food (e.g., ground-gleaning25

invertebrate eaters) that maximizes the risk of exposure would be an ideal key species.  The26

combination of foraging technique and food preference are characteristics by which birds and27
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mammals may be broadly grouped for the purpose of risk assessment.  Thus, by identifying1

specific ecological characteristics, such as if and how much it forages and/or nests in or near the2

crop of interest, one can estimate the probability and degree of exposure.  Additionally, the3

sensitivity of the species to the pesticide is important in the risk determination of acute or chronic4

effects.  Taxonomic considerations may also be important when selecting key species because of5

varying sensitivity among species.  6

The use of key species provides several advantages when conducting a risk assessment.  These7

include narrowing the focus of the investigation, increasing the efficiency and sensitivity of the8

assessment, and increasing the tractability of the assessment while reducing the cost. 9

Unfortunately, there are major data gaps in our knowledge of some of the parameters mentioned10

above for wild avian species. Little data is available on comparative sensitivity to pesticides11

among wild bird species.  Some information may be found in published acute toxicity tests and12

through pesticide incident databases.  Also, in most cases, we do not know what proportion of13

avian species’ diets comes from pesticide treated habitats. 14

In the risk assessment process, the initial assessment may want to consider the substitution of15

hypothetical "generic birds" and mammals in place of specific key species, which may provide16

adequate sensitivity while also facilitating an efficient and less costly assessment.  The17

hypothetical birds and mammals would have defined body size, life history strategy, foraging18

technique and food selection that make them representative of three primary avian groups.  These19

are (1) small, granivorous passerine birds or small mammals, (2) small, insectivorous passerine20

birds or small mammals, and (3) a bird of prey that consumes passerine birds and small mammals. 21

Physiological and ecological characteristics can be assigned to these hypothetical birds which22

characterize them as having high medium or low probability of pesticide exposure.  23

A dose-response equation (curve) defined by the LD50 and dose-response slope can be developed24

for the hypothetical bird species.  The LD50 for the hypothetical bird species can be estimated25

from the LD50 of one or more experimental bird species by using the extrapolation factors26

discussed in Chapter 4.  Theoretically, similar extrapolation methods could be used to estimate the27

dose-response slope for the hypothetical bird species from the dose-response slope(s) of one or28
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more experimental bird species.  However, because the dose-response slope database is currently1

inadequate for extrapolation purposes, it will be assumed that the dose-response slope for the2

hypothetical bird species is equivalent to that of the experimental bird species. 3

If during the regulatory process, the screening level assessment uses (1) the hypothetical animals4

with high probability of exposure and (2) the risk of negative effects is determined to be low, 5

further assessment may not be needed.  If such a risk assessment indicates potential for higher6

risk, a more refined assessment may be conducted to more definitively characterize the risk. 7

Recommended criteria for the screening-level assessments, hypothetical bird and mammal species8

are given in Appendix B3.9

In cases where further refinement of the risk assessment is required, it may be appropriate to use10

species that occur in the areas of or proposed use of the pesticide and may require additional11

laboratory or field studies beyond those considered in the initial risk assessment. Since it may be12

impractical to address all species potentially at risk, careful selection of key species will help13

ensure the assessment provides a reasonable estimate of the potential risk to the more sensitive14

species.  A proposed set of criteria for key species selection follows:15

Criteria 1: The species are commonly nesting and foraging in and/or adjacent to (within the16

drift zone) the agro-ecological scenario.  The greater the proportion of time spent17

on the treated field (PT), the stronger the justification for selection as a key18

species.19

Criteria 2: Their foraging techniques render the species subject to exposure.20

Criteria 3: The species obtain a substantial portion of their diet from the treated field or21

adjacent habitat within the drift zone.  The greater the proportion of diet obtained22

on the treated field (PD), the stronger the justification for selection as a key23

species.24

Criteria 4: The species is sensitive to the test substance.25
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Criteria 5: Data verifying criteria 1 - 3 are available or obtainable.1

• Acute toxicity data is available for the selected species or data are available from2

other species that can be scaled to represent the sensitivity of the selected species3

• Data are available on PD and PT (see Section 4.2 for discussion of PD and PT) or4

can be obtained for the selected species from field studies of the selected species.5

Criteria 6: Appropriate measurement and assessment endpoints can be evaluated in the field6

or laboratory for the selected species.  (See Section 3.5 for discussion of7

measurement and assessment end points.)8

Appendix B3 provides further information and example for selecting key species.9
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3.0 EXPOSURE ASSESSMENT1

3.1 INTRODUCTION2

.3

3.1.1 Objective of an Exposure Assessment4

The objective of the exposure assessment portion of a terrestrial ecological risk assessment of5

pesticides is to estimate PDFs of pesticide intake or dose to non-target terrestrial organisms. What6

is meant here by the term “dose” is a quantifiable amount of material introduced into or taken up7

by an organism. For the dose estimate to be useful in the estimation of ecological risk, it should be8

expressed in terms of pesticide weight per organism body weight per unit time, i.e. mg/kg/day.9

While environmental concentrations, such  as ppm on wildlife food sources,  have been used to10

estimate exposure to wildlife, they do not directly address the amount of chemical ingested by the11

individual, the critical quantity producing the response. Unlike exposure concentrations, estimates12

of dose take into account biological factors affecting exposure such as ingestion rates, foraging13

patterns, and percentage of diet represented by different food types.  As further discussed in the14

effects section, current wildlife toxicological tests may have to be modified so exposure estimates15

in weight of pesticide per body weight per time can be directly compared to results of wildlife16

toxicological test endpoints.  17

 18

A caveat must be noted concerning the relationship of toxicant dose to the quantity of toxicant19

actually reaching a site or sites of action within the organism. The relationship was not explicitly20

considered in the Terrestrial Workgroup discussions.  To produce an effect, an ingested21

compound must first be absorbed, for example in the gastrointestinal system.  The compound is22

then circulated to the site of action via blood plasma.  Toxicants are delivered to most organs and23

tissues (other than the gut and liver) by systemic blood circulation.  The proportion of a chemical24

dose reaching the blood along with the toxicity of the chemical will determine how much dose an25
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organism can receive before its exhibits an adverse effect.. Bioavailability is defined as the ratio of1

a compound in the plasma to that consumed by oral ingestion (Amdur et al., 1994).  Systemic2

availability may be modified by reduced absorption after oral ingestion, intestinal3

biotransformation,  hepatic biotransformation, and formulation ingredients that modify solubility,4

particle size, or uptake of compounds.5

Bioavailability could sometimes be determined in higher tier risk assessments for special cases in6

which prior information indicates bioavailability could be an issue. However, in most cases it will7

sufficient to base the assessment on the external dose, i.e. the total toxicant entering the organism8

and external dose response curves. The methods proposed in this chapter therefore focus on9

estimating external dose.10

11

3.1.2 Conceptual Model of Exposure Pathways 12

The initial step in an exposure assessment is identifying routes of exposure and the major variables13

that potentially could influence the distribution of doses.  Terrestrial wildlife can be exposed to14

pesticides through multiple pathways (Fig 3.1-1). They may ingest contaminated food or soil,15

drink or swim in contaminated water, and breathe contaminated air. They may also directly ingest16

granular formulated pesticides mistaking them for grit or seeds.  Dermal exposure may occur if17

the animal’s skin contacts spray particles or contaminated vegetation, water or soil.  Residues18

deposited on skin, fur and/or feathers may become a source of oral exposure during grooming,19

preening or other activities. Because wildlife species are mobile, moving among and within20

various habitats, exposure can vary depending on habitat use and the extent of contamination of21

its components. As a consequence, estimation of wildlife exposure requires the consideration of a22

number of variables including environmental residues, routes of exposure, habitat requirements23

and spatial movements for the species associated with the pesticide use area.24

For terrestrial wildlife, three major exposure pathways can be identified (Figure 3.1-1).  They are25

oral, dermal, and inhalation. Oral exposure occurs through the consumption of 26



3-3

Total

Exposure

(mg/kg bw/day)

Total

Oral

Dermal

Inhalation

Dietary

(Food)

Other Oral

(Non Food)

Vegetation

Seeds & Fruits

Invertebrate prey

Vertebrate prey

Surface Water

Granules/Baits

Soil

Preening

Direct Contact

Air

Figure 3.1-1.  Conceptual model of exposure pathways for birds and mammals.  Thickness of
arrows denotes relative  importance of pathways.
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contaminated food, water, or soil and direct ingestion of granular products mistaken as grit or a  1

food source. Dermal exposure occurs when pesticides are absorbed directly through the skin2

when the animal contacts spray particles directly or contacts contaminated biotic or abiotic3

components of the habitat. Exposure from inhalation occurs when volatile pesticides or fine4

particulates or droplets are respired into the lungs.5

3.1.3 Content of the Exposure Assessment Chapter6

The following sections of the Exposure Assessment Chapter explore various aspects of estimating7

dose distributions to non-target  terrestrial organisms.  Descriptions of the factors affecting dose8

and information applicable to all dose equations are provided in Section 3.2.  Dose equations and9

discussions on estimating dose equation variables are provided for different exposure pathways10

and associated environmental media in Sections 3.3 (ingestion of food), 3.4 (ingestion of water),11

3.5 (ingestion of granules), 3.6 (ingestion of soil), 3.7 (overall ingestion), 3.8 (inhalation of air),12

and 3.9 (dermal contact with various environmental media).  Estimating pesticide concentrations13

in environmental media, outputs from and inputs to exposure assessments, and different proposed14

levels of exposure assessment are discussed in Sections 3.10, 3.11, and 3.12, respectively.15

3.2 FACTORS AFFECTING DOSE 16

The pesticide dose non-target organisms receive will depend upon pesticide concentrations in17

environmental media and the frequency and magnitude of the ingestion of, inhalation of, and18

dermal contact with the pesticide contaminated environmental media (food, water, granules, soil,19

and air). 20

3.2.1 Physical Chemical and Biological Components of Dose21

The numerous factors affecting dose can be divided into two types or components, a physical22

chemical component and a biological component. The physical chemical component consists of 23
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physical chemical properties of the pesticide and environmental media  that influence the1

concentrations of pesticides in pertinent environmental media (e.g., food, water, granules, soil,2

and air) as a function of time and location within each medium. The biological component consists3

of animal behavior/attribute factors (which along with various properties of the environmental4

media) affect the frequency and magnitude of the ingestion of, inhalation of, and dermal contact5

with pesticide contaminated environmental media. 6

Some variables described below such as the food ingestion rate are explicitly included in the dose7

equations provided  in Sections 3.3 through 3.9.  Others variables such as dissipation rate8

constants are not explicitly included in the dose equations, but are used to estimate the variables9

which are explicitly included in the dose equations such as the pesticide concentrations in10

environmental media.11

For each of the exposure pathways depicted in Figure 3.1-1, a number of physical, chemical and12

biological variables influence the extent of exposure. The major physical chemical variables that13

influence dose for each of the routes of exposure include the following:14

Pesticide and Degradate Properties:  Aqueous solubility,  acid/base (pKas), Henry’s constant,15

octanol/water partition coefficient, diffusivities,  soil/water partition coefficients, plant/water16

partition coefficients, foliar washoff,  overall and process specific dissipation rate constants in17

various environmental media, and (for degradates) formation rate constants.18

Plant/Crop Characteristics and Agricultural Practices:  Dates of planting, emergence and muturity19

of wildlife food sources; crop, crop and field edge cover; foliar interception, field vegetative20

residue cover, root depth, soil incorporation depth, tillage practices, irrigation practices, spray21

elevation, spray nozzle size, droplet size spectrum and number, dates, rates, and method of22

pesticide applications.23

Meteorological Conditions:  Precipitation, temperature, solar irradiation, relative humidity, wind24
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speed, and wind direction.1

Soil Properties:  Organic content, pH, soil texture, initial soil moisture, field capacity, wilting2

point, saturated hydraulic conductivity, slope, temperature, bulk density and porosity as a function3

of vertical and/or horizontal segmentation.4

Wildlife Water Source Properties(Dew and Surface Water):  Pesticide loading due to direct5

application, runoff, soil erosion and spray drift, size of water source, pH, temperature, suspended6

sediment concentration, dissolved natural organic concentration, redox potential, base flow, depth7

and width of water source, and dispersion coefficients.8

For the biological component the major biological variables that influence dose for each of the9

routes of exposure is species dependent and include the following:10

Food, Water and Soil  Ingestion Rates:  Food type or types and availability, feeding strategy,11

developmental stage, reproduction status, sex, environmental conditions, individual weight, food12

and water requirements related to metabolic strategies of species, availability of water sources,13

and acceptability of contaminated food or water.14

Dietary Diversity: Total number of ingested media, and the  proportional ingestion rate of each15

media.  16

17

Habitat Requirements and Spatial Movements:  Home range, spatial arrangements of habitat18

components, quantity and quality of habitat components,  habitat use in time and space and19

portion of habitat that is contaminated. 20

Direct Ingestion (Granular Formulations):   Granular size, granular shape, carrier, color, natural21

grit availability, and species grit use.22

23
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Inhalation and Dermal Absorption Rates:  Inhalation rate, preening/grooming behavior, dust-1

bathing behavior, locomotory behavior and its effects on the frequency and degree of contact with2

contaminated soil, water, foliage etc., physico-chemical properties affecting uptake across3

membranes.4

While it’s impossible to include all of the variables and their possible interactions which may affect5

the distribution of dose, it is possible to address most of the important variable distributions that6

are believed to contribute most to the variation in dose to non-target terrestrial species. There are7

literally thousands of variables that can influence the extent of exposure. A number of these are8

inter-dependent and they can vary spatially and temporally. These facts make it a challenge to9

accurately estimate dose to non-target species. However, if advancements in estimating ecological10

risk are to be made, these challenges must be addressed and through time, if the resources are11

committed to research, the uncertainties in risk estimates will be better defined and reduced.12

3.2.2 Information Applicable to all Dose Equations in Sections 3.3 through 3.913

Equations for estimating the pesticide doses (to birds or mammals) associated with the various14

exposure pathways and associated environmental media discussed in Section 3.2 are provided15

below in Sections 3.3 through 3.9. The equations give the one day dose on any given day i (in16

mg/kg body weight*day), the cumulative dose over multiple days Ni (in mg/kg BW), and the17

average daily dose (in mg/kg BW*day) as a function of pesticide concentrations in various18

environmental media. 19

For purposes of illustration, we have chosen to base the dose equations provided below in20

Sections 3.3 through 3.9 on a daily time step. However, the same equations would be applicable21

to a different time step such as a hourly one as long as the variables were defined in terms of the22

different time step instead of a daily time step. 23

The dose equations provided in Sections 3.3 through 3.9 imply a ‘cell’ model of habitat structure24
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and animal movement. The environment is divided into a number of fields, some of which may be1

treated with pesticide while others are untreated or receive only spray drift. Animals move from2

one field to another, accumulating exposure via the various routes (dietary, dermal etc.) as they3

go. Note that although the spatial unit used in the dose equations is described as ‘field’, in4

practice other habitat types such as hedgerows and wetlands may also need to be considered. In5

this case, the subscript j in the equations will refer not just to fields, but to all of the different6

habitat cells which are considered in the assessment.  The equations do not preclude the bird or7

mammal foraging over more than one field or other habitat unit in each time unit (e.g. more than8

one field or habitat unit per day). 9

In the dose equations provided below in Sections 3.3 through 3.9, the pesticide exposure10

concentration Cijk in environmental medium k within field j on day i should theoretically be the11

time averaged concentration over the period in which the organism is exposed to environmental12

medium k in field j on day i: 13

                                                                                           (Eq. 3.2-1)14 ( )C

C t dt

t t
ijk

ijk
t

t

ij ij

ij

ij

=
−

∫ ( )
1

2

2 1

where,15

tij1 = beginning of the exposure period in field j on day i (hr) 16

tij2 = end of the exposure period in field j on day i (hr)17

Cijk(t) = pesticide concentration in medium k in field j during day i as a function of time18

Assigning ij subscripts to the beginning and end of exposure  periods within a given field j on a19

given day i is necessary because a bird can be in more than one field on a given day and may20

revisit the same field on one or more additional days.21
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If the organism is in field j all of day i, (tij2 - tij1) = (ti+1 - ti) = 1 day and Cijk(avg) will be the average1

concentration over the whole day.  However, if the organism is not in field j for the entire day, the2

time averaged concentration over the exposure period (tij2 - tij1) will be either greater than or less3

than the time averaged concentration over the entire day depending on whether the organism is in4

field j early or later on day i.  To be conservative and to simplify computations, Cijk for the entire5

day can alternatively be assumed to be equal to the initial pesticide concentration in media k6

within field j at the start of day i at t=ti: Cjk(t=ti).  Such an assumption also works well with a daily7

time step model which provides a different estimated concentration for each succeeding day.8

3.3 DOSE RESULTING FROM INGESTION OF CONTAMINATED FOOD9

3.3.1 Detailed Equations for Dose Through Food10

The detailed equations below for dose through food are similar to simpler ones provided by11

Pastorok et al. (1996) and Sample et al. (1997) except they are summed over different fields or12

different fields and days.  The one day dietary dose for any foraging day i, the cumulative dietary13

dose over Ni foraging days and the average daily dietary dose over Ni foraging days a bird or14

mammal receives through ingestion of pesticide contaminated foods (k) from foraging over one or15

more fields (j) per day are given respectively by:16

          17 One Day Dose (in mg / kg body Wt * day)dietary(day i) = •
=

=

=

=

∑∑ FIR C Wijk ijk
k

k N

j

j N
kj

/
11

  (Eq. 3.3-1)                        18

19 Cumulative Dose ( N days in mg / kg body Wt)diet i = •
=

=

=

=

=

=

∑∑∑ FIR C Wijk ijk
k

k N

j

j N

i

i N kji

/
111

(Eq. 3.3-2)20
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Average Daily Dosedietary in mg/kg BW*day = Cumulative Dosedietary/Ni                      (Eq. 3.3-3) 1

where,2

k = index for different food types (e.g., short grass, long grass, insects, fruits, seeds , soil, etc.) 3

Nk = maximum number of different food types consumed by the bird or mammal4

j =   index for different foraging fields5

Nj = maximum number of fields foraged by the bird or mammal over the foraging period of6

interest7

i = index for different foraging days 8

Ni = number of days during the foraging period of interest for which a dose is to be computed 9

FIRijk = food intake rate (kg fresh weight/day) of food type k by the bird or mammal in field j on10

day i (FIRijk = 0 if the bird or mammal is not in field j on day i or if food type k is not in11

field j)  12

Cijk = initial or average pesticide concentration on/in food type k in field j on day i (mg13

         pesticide/kg fresh weight food mass). If the field j has not been treated or has not received14

         spray drift by day i, Cijk = 0.15

W = body weight of the bird or mammal (kg)16

The food intake rate of food type k by a bird or mammal in field j on day i is given by: 17

                                      (Eq. 3.3-4)18 ( )( )( )( ) ( )[ ]FIR PF TFIR PD FRD AVijk ij i ijk ik ijk= −1

where,19

PFij = proportion of total food or diet obtained from field j on day i (dimensionless)20

TFIRi = total food ingestion rate = total food consumed on day i (kg dry weight/day)21

PDijk = proportion of food or diet obtained from field j on day i that was derived from22

food type k 23

FDRik = fresh to dry weight ratio for food type k on day i (dimensionless)24
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AVijk = avoidance factor for food k in field j on day i = amount by which animal reduces1

consumption of food j in field k on day i when it is contaminated, as a fraction of2

what consumption would be if the food was not contaminated (dimensionless). The3

avoidance factor is a function of the contaminant level Cijk.4

Note that the representation of avoidance by AVijk in equation 3.3-4 is a simplistic representation5

of the combined effect of several types of possible avoidance behavior. Avoidance might occur by6

animals reducing the consumption of specific contaminated food items, by reducing their total7

food intake (e.g. if temporarily incapacitated, or suffering general loss of appetite), or by moving8

to feed in less-contaminated habitats. These three different types of avoidance behavior could be9

represented in more detail, by making PDijk, TFIRi, and PFij all a function of Cijk. In practice, it is10

unlikely to be possible to measure these different responses separately, so they are combined as11

AVijk . However, this is not entirely satisfactory as it does not specify whether animals compensate12

for avoidance of one food type by increasing the consumption of another. The estimation of AVijk13

is discussed further below and in Appendix C2.14

Note that the fresh to dry weight ratio FDR is not needed in cases where residue concentrations15

are given in mg chemical/kg dry weight of food instead of the more usual units of mg chemical/kg16

fresh weight of food.  The reason is that in such cases, the food consumed can also be kept on a17

dry weight basis. Conversion of food consumption to a fresh weight basis, to be consistent with18

concentration on a fresh weight basis, is then not necessary. 19

When possible, residue concentrations should be expressed on a dry weight instead of a fresh20

weight basis.  When residue concentrations are expressed on a wet weight basis, changes in21

concentration often reflect changes in water content as well as dissipation and it is generally not22

possible to distinguish between the two different sources of the change.  Also, as previously23

indicated, the FDR factor is not needed when residue concentrations are expressed on a dry24

weight basis. 25

Combining Equations 3.3-1 and 3.3-4 gives the full equation for the one-day dose in mg/kg26

BW*day: 27
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1 ( )( )( )( ) ( )[ ]One Day Dosedietary (day i) = −
=

=
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(Eq. 3.3-5)2

An analagous equation can be given for the Cumulative Dose by combining 3.3-4 with 3.3-2.3

3.3.2 Simplified equations for dose through food4

As already mentioned, Equation 3.3-5 implies a ‘cell’ model of habitat structure and animal5

movement. To use it as shown, in its detailed form, requires a very large amount of information.6

For example, estimates are required of pesticide concentrations on a range of  food types in each7

field within the organism’s foraging range, in each time unit (daily or even hourly). The8

movements of the animal between the fields, and its behavior in each, must also be modeled. If9

empirical data were used for all these parameters, the assessment would become prohibitively10

expensive. However, in most cases this level of complexity will not be required, as a much simpler11

version of the model will estimate exposure with sufficient certainty. 12

To simplify the equation, the overall habitat can be divided into only 2 categories: the area which13

is treated with pesticide, and that which is not.  In this case a third category, a drift area, is not14

considered. If the untreated area contributes nothing to exposure, it can be disregarded in the15

model. The subscript j can then be dropped from the equation. Also, PF  is replaced by the16

fraction of total food obtained in the treated area, which can be denoted as PT. Mathematically,17

PT and PF are related by the following equation:18

                                                              (Eq. 3.3-19 PT
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6)1

However, in practice it may more often be estimated or measured directly, as data on food intake2

for each individual field will rarely be available. 3

A further simplification is to assume AV is the same for all food types. This is a practical necessity4

as data on AV will usually be available for only one food type, i.e. standard test diet. (See below.) 5

With these simplifications, equation 3.3-5 becomes:6

7 ( )( )( )( ) ( )[ ]One Day Dosedietary(day i) = −
=

=

∑ PT TFIR PD FDR AV C Wi i ik ik i
k

k N

ik

k

1
1

/

(Eq. 3.3-7)8

9

PT, TFIR and AV now require only a single estimate for each day (although note that AV is still a10

function of C, as before). PD, FDR and C only require one estimate per food type (k). In effect,11

these six parameters are averaged over all fields in the treated area for Equation 3.6-6, whereas12

separate values are used for each field in equation 3.6-5. Where averages are used, care is13

required to ensure that they are properly representative of different parts of the treated area.14

Equation 3.3-7 is equivalent to that given by Pastorok et al. (1996), except that the latter uses15

different parameter names (FIR for TFIR, and DWR for FDR) and does not include any term for16

avoidance (AV). Also, the Pastorok equation provides estimates for more than one species, by17

using an extra subscript to allow PT, FIR and PD to vary between species. Equation 3.3-7 is also18

similar to that of Sample et al. (1997).19

The simplifications in Equation 3.3-7 imply some important assumptions. Perhaps most20

importantly, it is assumed that all treated areas are equivalent to one another. In reality, some of21

the untreated areas will receive spray drift – this can be accommodated easily in the full model22

(Eq. 3.3-5) but is ignored in 3.3-7.  If equation 3.3-7 is used as the basis for a risk assessment,23
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consideration should be given to whether the result would be different using more realistic1

assumptions. If this appears possible, the assessment may need to be repeated with the full model. 2

Further simplifications can be made to Equation 3.3-7. For example, if it is assumed that the3

animal feeds exclusively within the treated area, and exclusively on one food type (for example,4

that with the highest concentration of pesticide), and there is no avoidance, then:5

   (Eq. 3.3-8)6 ( )( )One Day Dose  (in mg / kg body Wt)dietary (day i) = TFIR FDR C Wi i i /

This is equivalent to the simple estimate of exposure which has been used in the past and is often7

regarded as conservative for screening purposes. 8

In a probabilistic assessment it may often be desirable to examine the effects of variation in PT,9

PD and AV. Equation 3.3-7 is therefore taken as the main basis for assessing exposure through10

food. Nevertheless, the preliminary screening assessment will often be equivalent to the simpler11

model 3.3-8, and it may sometimes be necessary to progress to the more complex model 3.3-5 in12

more refined assessments. 13

The following sections examine the types of data which are available for estimating the parameters14

in these simplified equations, and how the estimates can be refined when necessary. Estimating15

pesticide concentrations in food (Cfood) is discussed in more detail in Section 3.10 and Appendix16

C4. Estimating PT and AV are also discussed in more detail in Appendices C1 and C2.17

3.3.3  PT - Proportion of diet obtained in treated area18

Animals which obtain all their food from within the treated area are likely to ingest a larger dose19

of pesticide than those which obtain a proportion of their diet elsewhere.  This variation is20

represented by PT in Equation 3.3-7. Current approaches tend to assume PT = 1, at least in the21

screening stages of risk assessment. In fact, PT may be close to one in situations where there is22

little non-crop habitat and large areas are treated with the same pesticides at the same time. 23
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Often, however, animals will obtain a significant proportion of their diet from non-crop areas, or1

from adjacent non-treated crops of the same or different types.  In these cases, setting PT = 12

substantially overestimates exposure. Setting PT = 1 remains reasonable as a conservative 3

assumption for the screening stages of the assessment.  However, predicting the magnitude and4

frequency of exposure will require information on the distribution of PT for relevant species in5

relevant habitats.  6

The range of possible approaches to estimating PT is considered in detail in Appendix C1.7

Ideally, one would estimate PT as the proportion by weight of the diet which is obtained from8

treated areas.  This can be done in some circumstances using detailed field studies, but is generally9

too difficult to be a realistic option. 10

An alternative is to measure the proportions of time that the animal spends in treated and11

untreated areas.  This is simpler but can only be used as a measure of PT if the amount of time12

spent in each area is proportional to the amount of food obtained there.  This will not be true if13

some parts of the habitat are used primarily for foraging, and others primarily for other activities14

such as resting; or if feeding rate is higher in some parts of the habitat than others due to15

differences in food availability.  The two main approaches to estimating PT for time are visual16

observations and telemetry (radio-tracking).  17

Counts of unmarked animals in treated and untreated areas are of little help in estimating PT,18

because it is not possible to determine (a) whether successive counts in the same area are the19

same animals or different ones, or (b) whether the individuals seen in one area are the same or20

different as those seen in adjacent areas.  21

A more reliable record of individual behaviour can be obtained if the animals are marked, for22

example with coloured bands.  Even then, however, continuous observations are difficult to23

obtain, and foraging records are likely to be biased in favour of those habitats where animals are24

most easily observed (e.g. more open habitats).25
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In principle, these limitations can be overcome using radio-tracking techniques.  These may be1

manual (where the radio-tagged animal is followed by observers on foot or in vehicles) or2

automatic (where fixed receiver stations automatically record signal information from which the3

animal’s location can be calculated).  4

An example of manual tracking specifically designed to measure PT is provided by recent studies5

in UK apple orchards (Crocker et al., in prep.). The results showed that different species had6

different patterns of use of the orchard environment, and that the potential for exposure to7

pesticides varied widely between individuals. An example of the results is shown in Figure 3.3-1,8

for European blackbirds.  Most individuals spent less than 10% of their time in the orchard center,9

but a few individuals spent up to 70% of their time there.  10

Distributions such as that shown in Figure 3.3-1 could be used for a probabilistic analysis of PT.11

(See Appendix C1.)  However, the data may be affected by biases of several types.  Careful12

interpretation is essential.13

• Animals captured for tracking may be a biased sample of the local population,14

• The populations which are studied may not be representative of other populations, and 15

• The proportion of time spent in the treated area may not be a good measure of the16

proportion of food obtained there.  17
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Figure 3.3-1.  Distribution of time spent in the central (sprayed) areas of UK apple orchards by
European blackbirds, obtained by radio-tracking. 
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A third approach to estimating PT might be to use existing information on home ranges. For1

example, if the average home range for a species was smaller than the area of a typical treated2

field, then at least some individuals may have their home range entirely contained within a single3

treated field.  This at least would show that using a conservative assumption (PT = 1) is a4

reasonable upper limit for the species in question.  However, it is more difficult to estimate the5

distribution of exposures by this approach.  This would require data on the spatial and temporal6

distribution of pesticide applications, and a means of defining the central point of each home7

range. It is concluded that obtaining a reliable quantitative estimate of PT using home range is8

unlikely.  However, if interpreted by suitable experts, data of this sort may be adequate to make9

semi-objective assessments of the upper limit to PT for a particular species and, perhaps, to guess10

at ‘typical’ values.  This would not be reliable enough for a final assessment of exposure but might11

be helpful at intermediate levels of assessment, in deciding whether PT is sufficiently important to12

warrant measuring in the field.13

So far, this section has implied that the world comprises just two types of habitat, treated and14

untreated, as assumed in Equation 3.3-7. In reality the situation is more complex. For example,15

some species might spend very little time in the treated crop itself, but obtain nearly all its food in16

the drift zone immediately around the crop. For example, in the study described earlier, most17

European blackbirds spent very little time in the orchard center, but about twice as much time18

(average about 35%) in hedgerows and scrub immediately adjacent to sprayed areas. To assess19

the contribution of these drift zone habitats to overall exposure would require estimates of PT for20

the drift zone as well as the treated area. It would also require estimates of pesticide residues in21

the drift zone, which will generally be much lower than in the treated area itself. These might be22

obtained by field measurements, or perhaps using models of spray drift to estimate the proportion23

of the application rate which is received by the drift zone. This approach could be accommodated24

in the full model (Equation 3.3-5), where PT is replaced by PF, by using the subscript j to25

distinguish the drift zone from the treated and untreated areas. 26

The full model could also be used to distinguish between different types of treated, drift, and27

untreated  areas, if sufficiently detailed data on PF were available. For example, it might be28

desirable to distinguish fields with different crops, or fields treated with the same pesticide applied29
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at different times or different dose rates. In the real world, animals may encounter several different1

pesticides which may have additive or synergistic effects, but it is currently very rare to rake2

account of this in risk assessment and was not considered.3

4

This section has referred to treated areas, untreated areas and drift zones without considering5

their spatial and temporal distribution. In reality, pesticide applications are clumped in time and6

space, not random, and the same is true of animals and their foraging activities. If pesticide7

applications and animal foraging were both randomly distributed in space, every individual would8

have the same chance of encountering a treated field. If pesticide applications and animal foraging9

were very strongly clumped, most individuals might never encounter a treated field, while a few10

might find their whole foraging range treated. Real exposure scenarios lie somewhere between11

these extremes, depending on the degree of clumping which is present. Ignoring clumping in12

situations where it is important will tend to under-estimate exposure for the most-exposed part of13

the population. The effects of clumping can be assessed using models of exposure which take14

account of spatial patterns. 15

Models of exposure can be made spatially explicit, for example by using the techniques of16

Geographic Information Systems (GIS).  The components of such a system are illustrated in17

Figure 3.3-2.  First, the model landscape would be defined.  This could be a hypothetical18

landscape, or an actual one (e.g. based on maps or satellite imagery), but would need to be19

broadly representative of the type of landscapes relevant to the risk assessment.  Residue20

distributions in the landscape could be simulated using information on spatial and temporal21

patterns of pesticide use within the landscape, and by modelling transfers between treated and22

untreated areas and degradation over time.  The species present would be identified, for example23

from local surveys or information on national distributions.  Animal movement patterns within the24

landscape would be defined using information on habitat preferences, home ranges and behavior,25

which could include visual observations or telemetry data of the types discussed 26
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define representative landscape
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simulate pesticide use
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and environmental 
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for each key species

output = distribution of dose/time curves for each key species
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Figure 3.3-2. Illustration of a spatially explicit approach to modeling
 wildlife exposure to pesticides
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earlier.  This needs to be repeated for each of the species under consideration. Finally, exposure1

estimates could be obtained by simulating the movements of each individual and recording its2

intake of pesticide as it moves through the landscape.  Using Monte Carlo techniques this could3

be repeated for many individuals (and perhaps landscapes), producing a set of dose/time curves to4

show the range of variation in the population.5

Technology has advanced to a state where this type of approach is beginning to be feasible.  An6

example of a model using standardized hypothetical landscapes, with simple rules for animal7

movements through the landscape, is provided by Freshman and Menzie (1996). Another example8

is the PARET model which has been developed as part of the Terrestrial Workgroup's efforts.9

(See Chapter 5.5 and Appendix A2). Examples of GIS approaches using data on real landscapes10

and behavior are provided by Henriques and Dixon (1996) and Banton et al. (1996).  This type of11

approach is much more costly to develop, and is only likely to be considered in cases where12

spatial factors are thought to make a critical difference to the outcome of the risk assessment.13

It is concluded that PT is likely to be an important and highly variable parameter influencing14

exposure, but is difficult and costly to measure reliably in many agricultural habitats.  A sequential15

approach is therefore recommended, as outlined below, to ensure that effort is only expended on16

estimating or measuring PT in those cases where it is important to the outcome of the risk17

assessment.  18

If it appears that spatially-explicit approaches may be required often then there would be19

opportunity for sharing the cost of collecting much of the data, as they are not specific to20

individual pesticides. 21

For screening assessments, it will generally be appropriate to assume PT = 1. To refine the22

assessment, estimated lower and upper limits for PT could be developed using expert judgement23

and existing information on:24

• Foraging ecology and behavior of key species, including time budgets, habitat use (including25

the drift zone) and home ranges;26
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• The spatial distribution of habitat types and crops; and1

• The spatial and temporal distribution of pesticide applications.2

If the data are good enough, they can be used to construct a hypothetical distribution for PT. If3

exposure in the drift zone is likely to be significant, the simple model (3.3-7) can be expanded to4

distinguish it from the treated and untreated areas. The proportion of food obtained in the drift5

zone can then be estimated as well as PT, and used to estimate the relative contributions of the6

drift zone and treated area to overall exposure.7

If it appears (e.g. from sensitivity analysis) that PT has a critical influence on exposure, it may be8

worth attempting to measure it in field studies, or using a landscape model to examine spatial9

effects. Depending on the field scenario, visual observations or telemetry may be used to quantify10

distributions of PT in the field for appropriate species in a representative range of conditions11

relevant to the risk assessment. If it appears that the spatial distribution of treated areas may have12

a critical influence on the risk outcome, it can be accounted for in spatially-explicit models or GIS13

approaches. 14

3.3.4   TFIR – Total Food Intake Rate 15

Total food intake rate (TFIR) is an estimate of dietary consumption in units of kg or g food /16

time. TFIR is typically reported in units of dry matter. 17

The time step is critical in risk assessments and will often be standardized to match units of18

toxicology studies or time steps of toxicological concern.  (See Chapter 2 for a discussion of19

time-scale.)  For example, some animals may gorge-feed in short bouts, while others may graze20

steadily throughout a day or at a steady rate for weeks.  Thus time steps of toxicological concern21

could be acute short-term feeding bouts (e.g., 5 min) or chronic multi-day exposure periods (e.g.22

5 days or 20 weeks).  These are referred to below as short-term and medium/long-term feeding23

scenarios, respectively.24

In the wild, TFIR can be highly variable within and among individuals, age-classes, or species, and25
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over time, depending on factors such as metabolic demand, food availability, food type, weather,1

competition for food, and storage capacity of the animal.  Birds and mammals may reasonably2

increase TFIR 2 to 3 fold after short bouts of starvation in poor weather. An upper limit to intake3

is thought to be about 5 fold normal daily consumption (Kirkwood 1983).  Examples of gorge4

feeding are provided by data on pigeons feeding on treated seed. Captive feral pigeons can be5

trained to consume most of their daily requirement in less than 10 minutes (Pascual et al., in6

press). In the field, over 50% of Woodpigeons feeding on newly-sown cereals consumed less than7

0.25 g/minute, but about 1% fed at over 2 g/minute (Hart et al., in press).8

Methods for estimating daily food intake are presented by EPA (1993). TFIR can be estimated as:9

                                                                                       (Eq. 3.3-9)10 TFIR FMR ME= /

where, 11

FMR = Field Metabolic Rate (kJ/day)12

ME = Metabolizable Energy content of diet (kJ/g).13

Field metabolic rate (FMR), is the daily sum of energy that a bird or mammal would use for14

maintenance, basal metabolism, thermoregulation and activity, but not reproduction, growth or fat15

storage.  Field studies of FMR for birds and mammals that were conducted with similar16

methodology were examined by Nagy (1987).  He derived regression equations to estimate FMR17

in units of kJ / day for birds and mammals.  (See Table 3.3-1.)  Different equations were18

calculated for different taxonomic and ecological groupings of birds and mammals.  The equation19

takes the form of:20

                                                                                (Eq. 3.3-10)21 log log log   y a b x= +
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Table 3.3-1.  Summary of regression statistics for the relationship of body mass to field metabolic rates (kJ/d) and feeding (dry matter1
ingestion) rates (g/d), after Nagy (1987). Some equations for food intake by birds were recently updated by Nagy et al. (in prep) and have2
improved statistical relationships compared to the earlier equations: these are indicated by asterisks in the table.3

Group4 units of

y

log a (SE) 95% CI of log a b (SE) 95% CI of b N r2 P

Mammals5
All eutherians6 kJ/d 0.525 (0.057) 0.410 - 0.640 0.813 (0.023) 0.767 - 0.859 46 0.967 <0.001

g/d -0.629 (0.065) -0.760 - 0.497 0.822 (0.026) 0.769 - 0.874 46 0.958 <0.001

Rodents7 kJ/d 1.022 (0.141) 0.734 - 1.310 0.507 (0.087) 0.330 - 0.684 33 0.524 <0.001
g/d -0.207 (0.194) -0.602 - 0.189 0.564 (0.119) 0.322 - 0.807 33 0.421 <0.001

Birds8
All birds9 kJ/d 1.037 (0.064) 0.908 - 1.166 0.640 (0.030) 0.580 - 0.699 50 0.907 <0.001

g/d -0.188 (0.060) 0.310 - (-0.067) 0.651 (0.028) 0.595 - 0.707 50 0.919 <0.001
g/d* -0.310 0.720

Passerines10 kJ/d 0.949 (0.059) 0.809 - 1.088 0.749 (0.037) 0.663 - 0.835 26 0.899 <0.001
g/d -0.400 (0.075) -0.554 - (-0.247) 0.850 (0.053) 0.741 - 0.960 26 0.915 <0.001
g/d* -0.409 0.822

Non-11

passerines12

kJ/d 0.681 (0.102) 0.442 - 0.920 0.749 (0.037) 0.663 - 0.835 24 0.899 <0.001

g/d -0.521 (0.132) -794 - (-0.248) 0.751 (0.048) 0.652 - 0.850 24 0.919 <0.001
g/d* -0.373 0.740

* improved estimates based on revised analysis (Nagy et al., in prep.).13
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where,1

log y = log 10 FMR (in units of kilojoules per day),2

log a = intercept of the line,3

a = untransformed value of FMR (kj/d) for a 1-g animal,4

b = slope of the line,5

x = body mass (g).6

Metabolizable energy (ME) can be expressed as:7

                                                                                           (Eq. 3.3-11)8 ( )( )ME GE AE=

where,9

GE = gross Energy content of diet (kJ/g)10

AE = assimilation Efficiency (unitless), the fraction of ingested energy that is11

metabolizable.12

Gross energy content (GE) varies between food types: average values for major categories of13

foods are presented by EPA (1993). Assimilation efficiency (AE) is more specifically defined for14

birds as a metabolizable energy coefficient (MEC) to account for nitrogen recycling (Karasov15

1990). AE and MEC may be influenced by diet type (seed, invertebrate, meat), amount of food16

ingested (decreasing efficiency with increased intake), physiological conditions.  Frequency 17

distributions of MECs in birds reveal variability related to food type and are presented by Karasov18

(1990).  19

Combining Equations 3.3-9 and 3.6-11, 20

                                                   (Eq. 3.3-12)21 ( )( )TFIR FMR GE AE= /

One option is therefore to substitute FMR/(GE x AE) for TFIR in the dose equations 3.3-5 and22

3.3-7.  This complicates the calculations but has several advantages, enabling the user to:23
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• Enter data for FMR, GE and AE which are specifically relevant to scenario under1

consideration, 2

• Incorporate uncertainties in the estimation of FMR, GE and AE into the overall3

assessment, and 4

• Take account of mixed diets, using the methods outlined by EPA (1993). 5

An alternative option is to use equations that predict dry food intake directly from body weight, provided6

by Nagy (1987). These were developed by combining the allometric equations for FMR (Equation 3.3-7

10) with generic assumptions on diet composition and standard values of ME for each food type. Some8

of the resulting equations are listed in Table 3.3-1. For example, for passerine birds Nagy (1987) gives9

the following equation:10

                                                                      (Eq. 3.3-13)11 ( )log log . . log  TFIR W= +0 4 0 85

where TFIR is total daily food intake in dry weight, and W is body weight (both in grams). Using this12

equation, a 30g passerine bird would be estimated to ingest 7.2g dry weight per day.13

Using Nagy’s (1987) equations for food intake has the advantage of simplicity, as they do not require the14

user to consider FMR, ME, GE and AE. However, they are based on generic assumptions about diet15

composition, GE and AE which may not be appropriate for particular exposure scenarios. 16

In screening assessments, TFIR could be estimated with existing information on actual intake, if available. 17

Otherwise, Nagy’s (1987) equations could be used to obtain a point estimate of TFIR for generic species. 18

A case using a  conservative assumption might be 2 to 3 times the daily TFIR.  For short-term exposures,19

it would be assumed that this amount was ingested in a few minutes, equivalent to the timescale of20

exposure in the acute oral LD50 test. For medium/long-term exposures, TFIR would be assumed to21

distributed evenly over the whole feeding day.22
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In refined assessments, TFIR might be estimated from its separate components FMR, GE and AE, rather1

than from the Nagy (1987) equations. Also, information on the distribution of TFIR might be used.2

Suitable distributions from the literature would be used, if available. Otherwise, distributions could be3

estimated using the confidence intervals for Nagy’s (1987) estimates of food intake, or for the separate4

components of TFIR, depending which method was being used. For short-term exposures, it would again5

be assumed that TFIR was ingested in a few minutes, as in the screening assessment. For medium/long-6

term exposures, diurnal variations in intake rate could be considered, if suitable effects data were7

available for comparison.  In addition, the relative importance of the short- and medium/long-term8

exposure scenarios could be assessed by obtaining information on the relative frequency of gorging and9

non-gorging behavior in the wild. 10

If sensitivity analysis indicated that variation in TFIR was critical to the assessment outcome, then11

consideration would be given to obtaining improved estimates. In the first place it might be worth12

developing more refined distributions using existing data, for example by examining the original data on13

which the allometric equations are based. Alternatively, it might be decided to generate new data specific14

to the needs of the risk assessment, e.g. distributions of TFIR which are specific to the species, crops and15

regions being considered. These might be generated by field energetics studies of focal species to quantify16

distributions of FMR, and the assimilation efficiencies and energy contents of relevant food types. 17

Alternatively it might be possible to measure TFIR directly in field studies, for example using radio-18

telemetry and/or video recording at feeding sites or nests, though this would be very difficult.  If short-19

term exposures were critical, then it would likely be desirable to obtain specific field data on the20

frequency of gorge-feeding.  TFIR for medium/long-term scenarios might take increasing account of21

diurnal and day-to-day variations, and how these differ between species and with environmental22

conditions (e.g. season). Other sources of variation such as age or sex could also be evaluated.23

Further research is required to refine methods for estimating TFIR and its variability.  Limitations exist in24

the use of currently available predictive equations for metabolizable energy demand and assimilation25

efficiencies of homeotherms for the following reasons:26

$ Only a limited range of species have been examined.  The mammal database used by Nagy (1987)27

contains many marine mammals and breeding sea birds, but few nonrodent small mammals (e.g., no28
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shrews or voles) and few nonbreeding nonpasserines.  Later work with mammals (Nagy 1994)1

expands the database to 61 species from 46 species, and includes additional small nonrodent mammals2

(e.g., bats), and3

• There are limitations in sample size for certain body weights of animals, thus biasing regressions4

slightly.5

Methods for combining the components of TFIR (FMR, metabolic efficiency and dietary energy content)6

need reviewing and refining, to take more account of the variability contributed by each component, and7

to take account of mixed diets. A literature review should be conducted to collate all existing data on8

TFIR in birds and mammals, such as the database being developed by the California EPA (Donohoe et al.9

1997). TFIR distributions for focal species should be developed as a research effort. Finally, there is a10

need for better information on short-term exposure in the wild (e.g., meal size, gorging behavior) to11

match to effects testing with short intervals (e.g., LD50 studies with single bolus oral gavage dosing).12

3.3.5   PD – Proportions of Different Food Types in the Diet13

The proportion of diet from each food type k , PDik, is used in Equation 3.3-7 to denote that animals can14

consume a varied diet, such as a combination of insects, fruits, seeds and vegetation.  The parameter PDik15

may vary from 0 to 1 with the sum of all PDs equal to 1.  The purpose of including this parameter is to16

evaluate the potential impact of shifting diets on estimates of TFIR and exposure. 17

Dietary data may be found in the scientific literature in studies of animal food habits or foraging patterns,18

which are broadly available in journals of ecology, conservation and wildlife management or summary19

references such as Life Histories of Birds (Philadelphia Academy of Sciences, various authors).  The20

USDA Biological Survey database on avian feeding habits contains >250,000 stomach sample records21

from >400 native North American bird species collected from 1885 to 1950.  These data are summarized22

in USDA documents (e.g. Beal 1915) and by Martin et al. (1951).  Diet or food habits may be reported as23

fresh or wet food, dry matter, or volumes, so attention to standardizing the units is important.24

In screening assessments, point estimates may be used in the exposure assessment and may be based on25

existing information on animal diets.  A conservative assumption might be to assume the diet consists26
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entirely of one realistic food type with the highest residue.  For example, based on seasonal summaries of1

food habits in Martin et al. (1951), a breeding Canada goose would be assumed to consume 100%2

vegetation (with residues of 240 ppm per lb/acre applied), but no seeds or insects (with residues of 15 or3

135 ppm per lb/acre applied).  A breeding American robin would be modeled as consuming 100% small4

insects (135 ppm per lb/acre applied), but no fruits (15 ppm per lb/acre applied).  The assumed5

concentrations are based upon the Fletcher et al. (1994) modifications to the Kenega nomogram..6

In more refined assessments, hypothetical distributions of PDi could be developed in the exposure7

assessment by selecting means and standard deviations from data from the literature.  A sensitivity8

analysis could be performed at this level to examine possible extremes due to individual differences and9

temporal/spatial variation.  For example, breeding American robins are characterized as consuming 210

diets in spring: approximately 79% animal matter and 21% plant matter, both with an approximate11

variation of 5% (Martin et al. 1951).  A hypothetical distribution of proportion of animal matter in the12

diet can be generated based on several assumptions: normal distribution, mean of 0.79 and SD equal to13

the square root of 5% (0.22).14

Empirical or fitted distributions of PDi could be developed with data from individual birds or from species15

studies, if available.  Access to original data would be needed.  Wheelwright (1986) summarized the U.S.16

Biological Survey stomach samples for >1,900 American robins and found that diet was influenced by17

several factors: month, region, time of day, decade of collection, age, but not gender.  Wheelwright18

(1986) reports that a wide range of plant and animal species were consumed, but identified no more than19

6 distinct food types in robin stomachs.  This database could be used to develop distributions of diet20

proportions for specific geographic or temporal scenarios (e.g., pesticide application timing in eastern21

fruit orchards).22

To further refine the assessment, field research would be needed to quantify distributions of PD for23

particular species and conditions relevant to the scenario under consideration. Also, PD might be refined24

to take account of differences in the mix of food types available in different fields, and changes over time.25

Such variation occurs naturally. It can also occur as a result of pesticide application; for example an26

insecticide application may reduce the availability of insect prey but not that of seed or herbage.  It is to27

allow for such differences that PD is allowed to vary between fields and over time in the full exposure28
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model (Equation 3.3-5).  Estimating PD separately for each field or habitat type would provide a more1

precise risk assessment, but in practice such detailed information will be very difficult to obtain. It would2

therefore only be sought where it appeared critical to the assessment outcome.3

It is important to note that the classification of food types needs to take account of their potential content4

of pesticide residues. For example, as small seeds typically contain higher levels of residues than large5

seeds (Fletcher et al.1994), separate estimates of PD are needed for small and large seeds. There may be6

a need to differentiate different sources of the same food type within the field.  For example, in a dense7

growing crop, small insects from the crop canopy are likely to contain much higher residues than small8

insects from the soil surface. Also, dead invertebrates may contain more pesticide than live ones, and may9

be more (or less) likely to be eaten. These complications could be increasingly taken into account at in10

refined assessments.11

Some predatory animals feed on vertebrate prey, which may themselves have been exposed and contain12

pesticide residues. Exposure of predators in this way is sometimes referred to as secondary exposure. 13

Given the high intrinsic toxicity of many insecticides and rodenticides, it is feasible that there may be a14

secondary risk to predatory birds and mammals (Luttik et al. in press).  There also may be a risk to15

scavengers feeding on dead rodents or other animals.  Estimates of the proportional composition of16

specific prey items may be developed with the same approach as given above, with the initial assumption17

of feeding specialization (PD = 1) in screening assessments.18

Finally, it is recommended that existing data on diets or food habits of focal species should be compiled in19

a single database, to facilitate future use of standard distributions by species and other significant sources20

of variation. 21

3.3.6 FDR – Fresh to dry weight ratio.22

FDR is used to convert dry weight food intake (TFIR) to wet or ‘fresh’ weight. This is necessary to make23

the estimates of food intake consistent with estimates of their pesticide content (C, see below), which is24
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generally reported as mg pesticide per kg fresh food material (leaves, stems, fruits, vegetables,1

invertebrates, etc.). For example, the water content of fresh leafy and grassy vegetation is approximately2

60% to 85%, such that dry matter would be 15% to 40% (Tiebout and Brugger, 1995).  Thus 1 kg of3

fresh vegetation might have a dry content of 0.15 kg, in which case FDR would be 1:0.15, i.e. 6.7.  A4

summary of typical FDRs is given in Table 3.3-2, on a per unit weight basis (per kg or per lb diet).5

Additional data on FDR for small insects is available from data of Fischer and Bowers (1997) and Brewer6

et al. (1997). 7

 Table 3.3-2.  Summary of fresh to dry weight ratios (FDRs) for common wildlife food items.8
Food type9 Dry matter (%) Fresh to dry ratio FDR

Leafy, grassy10
vegetation11

15 – 40 1:0.15 -- 1:0.4 6.7 to 2.5

Small Seeds, grain12 85 1:0.85 1.17

Small Fruits13 8 – 46 1:0.08 – 1:0.46 12.5 – 2.2

Insects14 15 – 25 1:0.15 – 1:0.25 6.7 – 4

Meat15 20 1:0.2 5

In screening assessments, point estimates may be used in an exposure assessment and may be based on16

existing information in the literature for relevant food types.  A conservative assumption would be17

assume the diet consists of one food type with the highest fresh to dry weight ratio.  In the case of18

breeding American robins, a conservative assumption would be to focus on consumption of small fleshy19

fruits with an FDR of 12.5.20

In refined assessments, one could develop hypothetical distributions based on means and standard21

deviations from the literature, with selection of distributions based on best judgement.  A sensitivity22

analysis could be performed to identify and assess significant sources of variation. Alternatively, empirical23

or fitted distributions could be developed from data in the literature, if available.  One might need access24

to original data to account for sources of significant variation (e.g. individual or seasonal).25
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To further refine the assessment, empirical distributions could be developed from field measurements1

taken under relevant conditions.  These field studies could be conducted in such a way that the other2

major foraging parameters are also obtained (PT, TFIR, PD, and FDR).3

3.3.7  AV  - Avoidance4

There are many examples of animals responding to the presence of noxious chemicals in their food by5

reducing consumption.  Chemicals which induce this response include a wide range of plant secondary6

compounds which provide plants with a defense against herbivores (e.g. Buchsbaum et al. 1984). 7

Similarly, some insects contain chemicals which are repellent to birds (e.g. Brower and Fink 1985). 8

Many pesticides also induce reductions in consumption, as can be seen in the results of standard avian9

dietary toxicity tests (see data in Hill and Camardese 1986) as well as research studies (e.g. Grue 1982).  10

These avoidance responses clearly have the potential to reduce the exposure of birds and mammals to11

pesticides in their food.  A key question is whether these responses are effective in the wild as well as in12

laboratory tests: this has been confirmed for two pesticides.  First, a large number of field studies have13

demonstrated that, when used as an avian repellent, methiocarb can reduce the losses of fruit crops to14

predation by birds (Dolbeer et al. 1994), which implies that the ingestion of methiocarb by individual15

birds must be reduced to some extent.  Second, surveys of fields sown with winter wheat in the UK have16

demonstrated significantly lower numbers of feeding woodpigeons on fields where the seed is treated17

with fonofos, compared to untreated fields (McKay et al., in press).  Furthermore, it can be presumed18

that plants and insects would not have evolved defensive chemicals unless they were effective.  It is19

concluded that avoidance can be important in reducing exposure, and hence should be given20

consideration in avian risk assessment (OECD 1996).21

Methods for assessing avian avoidance have been developed over a long period, both for the purposes of22

pesticide risk assessment (BBA 1993, INRA 1990) and to assess the efficacy of avian repellents (Mason23

et al. 1989).  Work to develop an OECD guideline for avoidance testing began at a SETAC/OECD24

workshop in December 1994 (OECD 1996), and has since been continued through a series of informal25

meetings at SETAC conferences.  Industry associations have recently taken responsibility for producing a26

draft guideline.27
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The effect of avoidance is represented as AV in the model for dietary exposure (Equation 3.3-7).  1

However, it is essential to remember that AV is a function of C, because the extent of the avoidance2

response generally increases with increasing concentration of pesticide in the food.  AV takes values3

between 0 (no avoidance) and 1 (complete avoidance of contaminated food).  It is reiterated that AV is a4

simplistic way of incorporating avoidance: a more sophisticated approach would be to make PDijk, TFIRI5

and PDijk all functions of Cijk, as mentioned in Section 3.3.1.6

The principal difficulty in assessing the effect of avoidance on exposure is that the avoidance response is7

highly variable, and is influenced by many factors (OECD, 1996).  Quantifying this variation is a difficult8

task which is likely to be reserved for the later stages of risk assessment.  In earlier stages of assessment,9

attention will focus on determining whether there is sufficient evidence of avoidance to be worth detailed10

investigation. A more detailed discussion of AV is included in Appendix C2.11

In a basic screening assessment and in cases where no information on avoidance is available, it should be12

assumed that no avoidance occurs (conservative assumption).  AV should therefore be set to 0.  13

A detailed assessment of avoidance requires non-standard data (Appendix C2), which may be costly to14

obtain.  It is therefore desirable to have a simple method of screening pesticides, to determine whether15

they show sufficient signs of avoidance to make detailed assessment worthwhile.16

For birds, the avian dietary test provides a convenient means of screening for avoidance. AV can be17

estimated for each test concentration by dividing the food consumption of the test group by that of the18

control group.   Figure 3.3-3 illustrates this for fonofos using data from Hill and Camardese (1986).  The19

concentrations used in the test are unlikely to correspond to those predicted in the wild.  However, for20

the purposes of a screening assessment it will be sufficient to use simple linear interpolation to estimate21

AV for the relevant concentrations, provided it is remembered that the results are approximate.  Note that22

in Figure 3.3-3 the calculation is made using consumption on the first day of exposure: this may be23

considered as representing the response of a bird on the first day it encounters a treated field.  This is24

more conservative than taking data from later days, when the avoidance response is often stronger.  In25

some studies consumption may only have been measured over longer periods, in which case the first such26
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period should be used.  Caution is required to ensure that the consumption data are not biased by the1

effects of food spillage, which can be substantial (especially with mallards). 2

Some test protocols measure the consumption of animals given access to untreated food as well as the3

test diet (e.g. INRA 1990, Mason et al. 1989).  If such studies are available they can be used to provide4

an alternative estimate of AV, dividing the consumption of treated food by total consumption on the first5

day of testing.  This estimate is likely to represent a ‘best case’ situation (maximum avoidance), especially6

if the animals can readily detect which food is treated (e.g. if the foods differ in appearance 7

8
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Figure 3.3-3.  Preliminary estimation of AV for screening purposes, using data from the avian
dietary toxicity test.  AV is estimated as the reduction in consumption on the first day with treated
diet, compared to consumption by control groups fed untreated diet.  Data is for fonofos, from
Hill and Camardese (1986).  In this example, values of AV for intermediate concentrations are
approximated by linear interpolation.  Ci = concentration in test diet, ppm.
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and/or  presented in separate containers).  1

Estimates of AV obtained from tests with and without alternative food may therefore be used for2

screening purposes, to assess the potential contribution of avoidance to reducing risk.  If they indicate3

that avoidance may be important in reducing risk below the level of concern, then further studies are4

likely to be needed to confirm whether the response will be effective in the wild.  The types of studies5

which are appropriate differ for short-term and long-term exposures.  For short-term exposures, no-6

choice feeding studies are appropriate and attention is centered on the rate at which animals feed.  For7

longer term exposures, attention centers on the availability of alternative foods and the ease with which8

the animal can distinguish contaminated and uncontaminated foods, so feeding studies with an element of9

choice may be appropriate.  10

No standard test method yet exists to obtain refined estimates of AV, and the design of such studies is11

still the subject of research and discussion. In the meantime, studies will have to be designed case-by-case12

to meet the needs of the individual risk assessment. Factors which need to be considered are discussed in13

detail in OECD (1996), and possible approaches based on more recent research are discussed in14

Appendix C2. 15

An alternative to tests with captive birds might be to investigate the influence of avoidance on exposure16

and effects in the field.  However, this is unlikely to be realistic for regulatory purposes.  Bird foraging17

behavior is so variable that it is difficult to detect avoidance of treated areas, even when it is contributing18

significantly to reducing exposure (McKay et al. in press).  Furthermore, the conditions under which19

avoidance breaks down and causes mortality may be relatively rare, and would be unlikely to appear in20

field studies unless they were repeated on a large number of sites.  Thus field studies are unlikely to be21

effective either in demonstrating avoidance, or in determining how reliable it is. 22

In summary, the considerations above suggest the following approach:23

• Basic screening assessments should assume no avoidance (set AV equal to 0).24

• If the assessment indicates the potential for significant exposure, then data on food consumption25
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in dietary toxicity tests may be used to provide screening estimates of AV.  These can be used for1

both short-term and longer-term exposures.  However, they should be used solely to indicate2

whether there is potential for avoidance to reduce exposure, and should not be relied upon in a3

definitive assessment of risk.4

• If the screening assessment indicates potential for avoidance to significantly reduce exposure, then5

a detailed assessment is required.  (See Appendix C2 for further details.)  Ideally this should aim6

to quantify the distribution of AV in the wild.  For short-term exposures (minutes to hours), it7

may be possible to do this by combining data on the distribution of feeding rates in the wild with8

laboratory tests of the degree of avoidance at different feeding rates.  For longer-term exposures,9

it may not be practical to obtain a distribution for AV as it depends on the ability of animals to10

discriminate between contaminated and uncontaminated foods.  Instead, the best solution may be11

to obtain point estimates for AV under realistic conditions but tending towards the conservative12

side. 13

• Further research is required to refine and validate approaches to assessing avoidance.14

3.3.8 C – Residues in Food15

The pesticide concentration on/in foliage and insects will depend on numerous factors including the16

numbers and rates of application, the intervals between applications, spray drift, rates of foliar growth,17

foliar and insect surface area, and the rates of degradation, volatilization, depuration, uptake and washoff. 18

Currently, immediate post-application pesticide concentrations on/in foliage are generally estimated from19

the Fletcher et al. (1994) recommended modifications to the Kenaga nomograph.  Further data for seeds20

have been produced experimentally by Edwards et al. (1999). In addition, the Kenaga/Fletcher data have21

been used to estimate residues on insects, by assuming that these will be similar to residues on seeds of22

similar size (on the expectation that residue load will be governed by surface area to volume ratio). 23
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Immediate post-application concentrations as well as dissipation rates for various pesticides on insects1

can be obtained more accurately from the literature review of Fischer and Bower (1997), and from2

studies conducted by Brewer (1997). Dissipation rates for various pesticides on foliage can be obtained3

from the Willis and McDowell (1986) paper. 4

Estimates of initial foliar residue levels and foliar dissipation rates can be used as inputs to computer5

models to estimate foliar residue levels as a function of post-application time.  (See Section 3.10 and6

Appendix C4.)  Alternatively or for purposes of model validation and calibration, foliar residue levels at7

various times post-application can also sometimes be obtained from lab and/or field studies.8

For vertebrates, models that estimate body burden as a consequence of uptake (dietary exposure) and9

depuration (from poultry or rat metabolism studies) will be needed.10

Residues in foods ingested by animals may therefore be estimated at different levels of refinement, with11

increasing attention to reduce uncertainty. For screening assessments, estimates of initial residues and12

dissipation rates may be generated for categories of food types based on existing residue data, using the13

sources cited above. Usually, conservative estimates of residues (e.g. ‘maximum’ values) and dissipation14

(minimum) will be used as the first step. ‘Typical’ or average values could be used as a second step, to15

assess whether the influence of C on the risk assessment outcome is large enough for it to be worth16

assessing in more detail.17

In refined assessments, distributions should be used in place of point estimates, if possible, for both initial18

values and dissipation. It may be possible to simulate these using confidence intervals from published19

sources or by obtaining access to the original data on which ‘typical’ and ‘maximum’ estimates were20

based. Alternatively, estimates of distributions may be available from new models of initial residues and21

dissipation over time.  Examples of generating hypothetical PDFs for initial foliar residues, foliar and soil22

dissipation rate constants and soil/water partition coefficients are provided in Section 3.11.  Examples of23

generating experimental CDFs for initial invertebrate residues are also provided in Section 3.11.24
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To further refine the assessment, field data could be used to validate and / or calibrate models and to1

obtain distributions of C at different points in time under conditions relevant to the scenario under2

consideration. 3

3.3.9 W - BODY WEIGHT4

Body weights in mammals and birds may vary by time of day, seasonally, geographically, and by age or5

sex class (Clark 1979).  Estimates of body masses for mammal and bird species, subspecies, and regional6

populations may be found in several sources.  Two handbooks summarize global databases of body7

masses of mammals (Silva and Downing 1995) and birds (Dunning 1993) by species, sex and collection8

location.  Sample size, arithmetic mean, range and standard deviation are provided when available. 9

Taxonomic references, such as Walker’s Mammals of the World (Nowak 1991) and Life Histories of10

Birds (individual species reports published by Philadelphia Academy of Sciences) provide complementary11

data. Species specific publications on topics such as physiology, nutrition or energetics may include12

arithmetic means and SDs of body mass.  It is possible to contact authors to request primary data that can13

be used to develop distributions for use in probabilistic models.14

Note that W is often used in estimating TFIR as well as being present in the denominator of the dose15

equation. This has two consequences. First, it will tend to cancel out to an extent (but not completely,16

due to its non-linear relationship with TFIR), so that W will have less influence on exposure than other17

variables. Second, in a Monte Carlo simulation, values of W should be sampled only once per iteration,18

and the same value should then used both for estimating TFIR and as the denominator of the dose19

equation.20

In screening assessments, point estimates of arithmetic mean, range and standard deviation may be21

obtained from the major references.  It can be assumed that body mass is distributed normally. If ranges22

are available, one could assume that the low and high values are the ends of the distribution, thus it is23

truncated. An example is given for American robins (Turdus migratorius).  Dunning (1993) reports no24

sexual dimorphism in body mass.  Mean body mass of 401 adult males and females from Pennsylvania is25

77.3 g " 0.36, ranging from 63.5  to 103.0 g.26
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In refined assessments, distributions may be derived from descriptive statistics and assumptions about1

distributions (truncated, normal). This could be expanded to include variability associated with2

geography, season, age or sex if these data are available and are considered significant sources of3

uncertainty in the models.  For example, the distribution of body masses of American robins collected in4

February 1991 in Florida differed between age classes (Brugger, 1993).  On average, third-year birds5

(n=15, mean = 83.9 g " 8.9, range 64.5 – 95 g) were heavier than second-year birds (n=44, mean = 78.36

g " 7.8, range 63.5 – 96 g), although the ranges of weights were similar. Where the raw data are7

available, empirical or fitted distributions can be used. To refine the assessment still further, site- or8

condition- specific distributions could be obtained in field studies.9

3.4 DOSE RESULTING FROM INGESTION OF CONTAMINATED WATER10

The Terrestrial Workgroup devoted only a small amount of time to development of probabilistic tools for11

estimating wildlife exposure via ingestion of water.  This route of exposure is rarely considered in current12

pesticide risk assessments and is generally not considered a major route for most pesticides.  The13

methodology proposed is an extension of that presented for food, in which Water Ingestion Rate (WIR)14

replaces Food Ingestion Rate (FIR) and the concentration in water replaces the concentration in food in15

the dose equations. 16

3.4.1 Dose Equations for Ingestion of Contaminated Water17

The one day drinking water dose for any day i, the cumulative drinking water dose over Ni days and the18

average daily drinking water dose over Ni days a bird or mammal receives through ingestion of pesticide19

contaminated drinking water in one or more fields j per day are given respectively by:20

21 One Day Dose (day ) in mg / kg BW * daywater i WIR C Wijp ijp
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p N
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=
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=
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(Eq. 3.4-2)1

Average Daily Dosewater in mg/kg BW*day = Cumulative Dosewater/Ni          (Eq. 3.4-3)2

where,3

p = index for different water sources (e.g., dew, puddles, pond) 4

Np = maximum number of different water sources consumed by the bird or mammal (generally dew,5

puddles, pond = 3)6

j = index for different foraging fields7

Nj = maximum number of fields foraged by the bird or mammal over the foraging time interval of8

interest for which a dose is to be computed9

i = index for different foraging days 10

Ni = number of days during the foraging interval of interest for which a dose is to be computed 11

WIRijp = water intake rate (L/day) of water source type p consumed by the bird or mammal in field j on12

day i (WIRijp = 0 if the bird or mammal is not in field j on day i or is = 0 for puddles and/or the13

pond if the field does not have puddles on day i and/or does not have a pond) 14

Cijp = initial or average pesticide concentration in water source type p in field j on day i (mg15

pesticide/L of water).  If the field j has not been treated or received spray drift by day i,16

Cijp = 0.17

W = body weight of the bird or mammal (kg)18

By analogy to equation *** for the food intake rate, the water intake rate of water source type k by a bird19

or mammal in field j on day i is given: 20

                   (Eq. 3.4-4)21 WIR f TWIR PW WAVijp ip i ijp ijp= ( )( )( )

where,22

fik = fraction of total water obtained from field k on day i (dimensionless)23

TWIRi = total water ingestion rate = total drinking water consumed on day i (L/day)24

PWijp = proportion of water obtained from field j on day i that was derived from water source type p 25
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WAVijp = avoidance factor for water source type j in field k on day i = fraction of water from source1

type p that would normally be consumed in field j on day i if the water was not contaminted at2

a contaminant level of Cijp (dimensionless); The avoidance factor is a function of the3

contaminant level. 4

Methods for estimating TWIR, PW in water are discussed in the following sections.  Methods for5

estimating f and WAV have not been developed, however, the analogous values for food presented in6

Section 3.3 are reasonable first tier estimates for these variables.  Factors that influence pesticide7

concentrations in water are discussed here also, but see Section 3.10 and Appendix C4 for greater detail.8

3.4.2 Estimation of Total Water Ingestion Rate9

The EPA Wildlife Exposure Factors Handbook contains estimates of the water ingestion rates for10

representative species of birds and mammals.  Drinking water is but one way animals meet their water11

requirements.  Some water is produced as a product of metabolism.  Water is also contained in food. 12

Species differ in their need to take in additional water by drinking.  In the absence of species-specific13

estimates of drinking water intake, the EPA Wildlife Exposures Handbook recommends the use of14

allometric equations derived by Calder and Braun (1983), as follows.  15

For birds,16

(Eq. 3.4-5)17 Total Water Ingestion Rate (L / day) =  0 059 0 67. .W

For mammals,18

(Eq.3.4-6)19 Total Water Ingestion Rate (L / day) = 0 099 0 90. .W

In the above equations W is body weight in kg.  If necessary, values derived from the above equations20

may be normalized  by dividing by body weight.  The units of the resulting estimate become L water/kg21

BW*day, which is equivalent to g water/g BW*day.22

    23
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3.4.3 Proportional Intake from Different Sources of Water (PW)1

Three general categories of sources of water are dew, puddles and ponds.  The Terrestrial Workgroup2

did not identify any studies that estimated proportional use of these sources of water by wildlife.  The3

proportion of drinking water obtained from these sources is likely highly variable among species,4

individuals and field locations.  It is likely that each of these routes predominates for at least some species5

under some field scenarios.  One might conduct three independent assessments assuming in turn that all6

drinking water comes from dew, then puddles, then ponds, and determining the range of exposure values7

obtained and whether any of these values could contribute to a significant proportion of total oral8

exposure.  If the range in variation or the contribution of water to the total dose received by the animal9

was small, further work to clarify PW would not be justified.  However, if one source could potentially10

contribute a significant dose (e.g., drinking of dew drops on spayed vegetation) than the frequency of use11

of this source by the species of concern may warrant further investigation.  12

3.4.4 Pesticide Concentrations in Water13

Pesticide concentrations in water will depend on numerous factors including application rates, spray drift14

and runoff/erosion loadings to the water, concentrations in soil and on foliage coupled with the15

magnitudes of soil/water and foliage/water partition coefficients, rates of water evaporation and16

infiltration, rates of degradation in water and volatilization rates from water (which depend in part upon17

the magnitude of Henry's Law constant).18

Values of soil/water partition coefficients, Henry's Law constants, abiotic hydrolysis rates, direct19

photolysis rates, and sometimes combined abiotic/microbiologically mediated degradation rates in water20

can be obtained from fate studies commonly conducted by Registrants and submitted to OPP.  Many such21

values are listed in the ARS/USDA and the OPP fate and chemical property databases.  22

More detailed discussions of methods to estimate pesticide concentrations in water are presented in23

Section 3.10 and Appendix C4.24
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3.5 DOSE RESULTING FROM INGESTION OF GRANULES1

3.5.1  Overview of Granular Pesticide Exposure to Wildlife2

In addition to direct ingestion of granules, wildlife may be exposed to granular pesticides through nearly all of3

the routes presented earlier in Figure 3.1-1.  For example, oral exposure can occur via (1) ingestion of residues4

transported from intact granules to food, water or soil, (2) ingestion of residues on feathers or pellage during5

preening/grooming activity, (3) dermal contact with residues in/on soil, vegetation, water and the granules6

themselves, and (4) inhalation of volatilized molecules.  Exposure to granular pesticides via these routes can be7

assessed using the same methods as discussed for flowable formulations.  However, exposure levels via these8

routes will typically be much lower than for a flowable formulation because in the case of a granular9

formulation, the vast majority of the chemical that is applied remains adhered to the granules.  The10

bioavailability of the chemical is therefore relatively low unless the granules themselves are ingested. 11

Consequently, the direct ingestion of granules has been considered the primary route of exposure of wildlife to12

granular pesticides (U.S. EPA 1992, Best and Fischer 1992).13

Granules may be ingested accidentally in the course of birds probing for or pecking at food in or on treated soil,14

or they may be ingested intentionally by animals that mistake them for grit or food.  Of the commonly used15

granular carriers, only corncob granules seem likely to be mistakenly ingested as food (Best 1992, Best and16

Fischer 1992, Stafford and Best 1997).  Exposure assessment for granular products formulated on corncob17

carrier should follow the methodology presented earlier for contaminated food (Section 3.3).  In performing18

such an assessment, a key parameter that must be estimated is the proportion of the diet composed of corncob19

granules (PDgranule).  This may be assumed to be some fraction of the total fraction of the diet composed of20

seeds.  A method for estimating PDgranule is discussed in Section 3.5.3.  21

For all other granular formulations (i.e., formulated on carriers such as clay, silica and gypsum), which includes22

the vast majority of granular pesticide products currently in use, the primary route of exposure is thought to be23

ingestion of granules accidentally or intentionally as grit.  The workgroup devoted considerable time to the24

development of a probabilistic model of this exposure route.  The steps taken in developing a working model25

are described in the following sections.  The model focuses on birds because birds ingest more grit than26

mammals and are therefore more likely to ingest granules.  Birds use more grit because they lack teeth and27

therefore must ingest grit to aid in the grinding of hard foods in their gizzard.  A more detailed description of28

the new model, GEM (Granule Exposure Model), is in Appendix C3. 29
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3.5.2  Review of Existing Assessment Methods  1

OPP currently uses a hazard index approach (LD50s/ft2) to characterize risk of granular products.  The2

exposure component (pesticide load available per square foot) is an estimate of residues present in the3

animal’s environment.  This residue load may be an index to wildlife exposure (i.e., as the index increases, so4

may exposure), but it is not an estimate of chemical intake per se and it cannot readily be used5

probabilistically.   6

Recently, attempts have been made to estimate ingestion rates of pesticide granules using individual-based7

probabilistic modeling.  Abt Associates Inc. (1996) used such a model (Abt model).  The Abt model  assumed8

that (1) birds seek out and ingest on a daily basis a certain number of grit particles and that (2)  granules9

present within the birds’ foraging space have the same chance of being selected as natural grit particles if they10

are within the size range of the grit used by the species under consideration.  The studies of Best and11

Gionfriddo (1991), Best (1992) and Gionfriddo and Best (1996) were used to determine the amount and size12

range of grit that species of birds ingest daily, and the overlap in the size of grit used versus that of applied13

pesticide granules.  The availability of granules was estimated from the application rate and assumptions14

regarding soil incorporation by application machinery.  The availability of natural grit particles of various size15

classes was estimated from soil texture data available from the USDA Soil Conservation Service.  The Abt16

model also included a granule preference factor whereby the probability that a bird selects a granule vs. a17

natural grit particle could be increased or decreased if data were available regarding the relative attractiveness18

of the granule type in question.  Because such data were lacking, this factor was set equal to 1 (meaning birds19

exhibited no preference or avoidance of granules).  A Monte Carlo simulation approach was used to estimate20

the range of exposure levels for different individuals of the species under consideration.  For each individual21

bird in the simulation, the model determined the number of granules ingested in one day.  By taking into22

account the pesticide load of each granule (i.e., the % active ingredient multiplied by the average granule23

mass), the number of granules ingested was converted into an estimated pesticide dose (mg AI/  kg BW/ day). 24

The Abt model assessed exposure levels over a single day immediately after application.25

Dixon et al. (1997) recently developed an individual-based, probabilistic model (Dixon model) that also used a26

Monte Carlo approach to estimate pesticide exposure levels and resulting effects from the27
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 ingestion of granules as well as from other routes.  Instead of modeling granule ingestion as a1

probabilistic function of availability of granules vs. other grit particles, granule ingestion rate was2

estimated by fitting a probability density function to actual field measurements of granule ingestion rates3

by birds (Fischer and Best 1995).  A granule preference factor component allows for adjustment of the4

ingestion rate if there is evidence to show that the granule type being considered is selected by birds at a5

different rate than the granule type that was used in the field study.  The model used a daily time step to6

assess exposure levels over multiple days and so included components that account for loss of pesticide7

from the granule with time, and pesticide metabolism and excretion after ingestion.  The model calculated8

pesticide body burden through time and resulting fate (i.e., survival vs. mortality) for each individual of a9

theoretical population.  The Dixon Model is discussed in greater detail in Appendix A3.10

3.5.3   Conceptual Model for Granule Exposure Assessment11

The Abt and Dixon models were developed independently and each contain useful features.  To construct12

a more definitive modeling tool, a conceptual model of factors that potentially influence avian ingestion of13

pesticide granules was developed (Fig 3.5-1).  The Abt model’s approach of modeling granule14

consumption as probabilistic function of availability of granules vs. other grit particles was chosen over15

the Dixon model’s approach of fitting a probabilistic density function to observations obtained in an16

actual field study in order to make the model applicable to a wider range of field conditions (e.g., soil17

types)  than those evaluated in the Fischer and Best (1995) field study.  If the conceptual approach to18

modeling granule ingestion behavior adequately represents this process as it occurs in the real world, it19

should be possible to model the field conditions studied by Fischer and Best (1995) and derive predictions20

of granule ingestion rates for birds that are reasonably close to those actually observed.  Thus, the actual21

field study results can provide a “reality check” for modeling tools developed from this conceptual model. 22

The conceptual model may be subdivided into four sections.  Section 1 includes factors that affect the23

relative availability of granules and natural grit particles in a bird’s environment.  From these factors, the24

availability ratio of granules to natural grit particles is estimated.  In Section 2, the ratio of granule25

availability is considered with other factors (such as preference/avoidance of certain granule types) to26

estimate the expected probabilities that a particle selected by an individual bird will be a granule vs. a27

natural grit particle.  In Section 3, the number of grit particles ingested per unit time is estimated.  This 28
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Fig 3.5-1.  Conceptual Model of Bird
Exposure via Ingestion of Granules

Granule 
integrity

Application rate 
and efficiency

of soil incorporation
Rain

Granule : Grit
availability ratio
by particle size
and field zone

Gizzard grit counts
by grit size class

(interspecific & 
intraspecific 
variability)

Conversion of
gizzard counts

to ingestion rate
(no. per day)

Total particle
(natural grit + granules)

ingestion rate by 
particle size and zone

Granule : Grit
preference ratio

Proportion of grit
intentionally ingested

Relative bird use
of field zones:
untreated vs.
treated areas 

(including band
vs. spill areas)

Binomial probabilities
of ingesting granules

vs. natural grit particles
by particle size and zone

Applied 
concentration

Degradation
loss

Washoff
loss

Granule ingestion rate 
(no. per unit time)

by particle size and zone

Pesticide
concentration
of granules

Pesticide ingestion rate
from granules (mg/kg bw/t)

summed for particle size and zones

Learned
 avoidance
of granules

IntoxicationReduced foraging
for grit and food

Shape,
color,
matrix

Sec 1

Sec 2

Sec 3

Sec 4

Spills

Granule size
by soil texture
size classes

Natural grit
availability
by size class

Soil
texture
data



3-47

determines the number of times a bird selects a grit particle from its environment.  From the outputs of1

Sections 2 and 3 the model derives an estimate of the granule ingestion rate.  Section 4 includes factors2

that may modify the pesticide content of granules over time.  Combining the output of Section 4 with the3

granule ingestion rate yields the pesticide ingestion rate, which is of course the desired output of the4

model.  There are also feedback loops (dashed arrow lines) in which pesticide exposure produces5

sublethal intoxication which may lead to a reduction in grit use and/or a change in the probability for birds6

to ingest granules through a learned avoidance mechanism.  7

The underlying assumptions and theoretical basis for the model become more apparent as one considers8

the key parameters being estimated in more detail.  Key parameters are discussed beginning with the9

“bottom line” output and working back through the various inputs.   10

   11

Pesticide ingestion rate from granules  (PIRG):   This is the overall output of the model, expressed in mg12

pesticide ingested per kg body weight per unit time.  PIRG is a function of the Granule Ingestion Rate13

(GIR) and the pesticide concentration in granules (AI) at the time period of interest.  PIRG may then be14

added to exposure via other ingestion routes (e.g., via food or water) to calculate a total estimated15

ingestion exposure, which in turn may be integrated with toxicity information to predict risk.    16

Granule Ingestion Rate (GIR):   This is the number of granules a given individual bird ingests over the17

period of time of interest.  GIR is estimated from the estimate of the number of particles the bird ingests18

as grit during the time period of interest that are in the same size range as granules, and the estimated19

probability that a particle in this size range that is being ingested will be a granule as opposed to a natural20

grit particle.  Grit ingestion is modeled as a series of binomial trials.  Each particle being ingested21

represents one trial.  In each trial, the bird may ingest either a granule or a natural grit particle.  The total22

number of granules ingested by an individual bird during a given time period becomes a function of the23

probability of ingesting a granule (p), the probability of ingesting a natural grit particle (q), and the24

number of trials occurring in that time period (N).  The parameters p, q and N define a binomial25

distribution from which a random sample is drawn to estimate GIR for an individual bird (iteration), and26

the process may be repeated over many iterations to obtain a distribution for GIR.    27
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Pesticide concentration of granules (AI):   The pesticide concentration of granules will initially be the1

concentration formulated into the product, but may change over time as the result of degradation (e.g.,2

photolysis, hydrolysis, biodegradation) or transport loss (e.g., volatilization, diffusion, washoff by rain).   3

Equations for estimating pesticide concentrations in granules over time are discussed in Appendix C34

along with other components of the GEM Model.5

    6

Total particle ingestion rate (TPIR) and N:  Total particle ingestion rate (TPIR) is simply the number of7

particles, including both naturally occurring grit and pesticide granules, ingested as grit per unit time. 8

This may be estimated probabilistically for a number of avian species from the gizzard grit count data9

compiled by researchers at Iowa State University (Best and Gionfriddo, 1991, and Best unpublished)10

after applying a conversion factor to convert gizzard counts to a daily consumption estimate (see Fischer11

and Best, 1995).  A randomly drawn observation from this data set may be used to establish the number12

of particles an individual bird is “programmed” to ingest in a given day.  However, only some of the grit13

used by birds is of the same size range as pesticide granules.  If one assumes that birds only may select a14

granule when they are seeking a particle within the size range of granules, then the number of occasions15

in a given day in which a bird could ingest a granule is TPIR multiplied by the fraction of particles in the16

same size range as granules.  The resulting value is equivalent to N, the number of binomial trials in which17

a granule could be selected.18

Many applications of granular pesticide are not uniformly made to the entire field, but rather are put19

down in narrow bands.  In such cases, separate estimates of N are desirable for each zone of the field with20

a different probability of selecting a granule (p).  For example, the probability of selecting a granule may21

be very high (99%) for a bird foraging in a spill area, small (1%) for a bird elsewhere within the “normal”22

pesticide band, and nill (0%) for a bird foraging between the bands.  The number of particles a bird23

obtains from each of these zones may be assumed to be a function of their relative size and attractiveness24

as foraging habitat.  (See Appendix C3 for example calculation.)  The degree of attractiveness or25

preference of birds for specific field zones may in some cases be estimated from actual field data (e.g.,26

Best et al., 1990).  However, these estimates may have to be made in many cases on the bases of expert27

opinion. 28
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Probability of ingesting granules (p) and alternative particles (q):   These are binomial probabilities that1

are based on (1) the relative availability of granules and natural grit of similar size, (2) the preferences2

birds may have for granules or natural grit when they select particles, and (3) the proportion of all grit3

consumed that is intentionally selected as opposed to ingested accidentally/incidentally during feeding. 4

The estimation of p and q is simplified if the assumption is made that birds have no preference for5

selecting granules vs. natural grit particles.  In this case, p, and q are calculated directly from estimates of6

relative availability of these two particle types, as follows:7

(Eq. 3.5-1)8 p
Availability of Granules

Availability of Granules Availability of Natural Grit
=

+

(Eq. 3.5-2)9 q
Availability of Natural Grit

Availability of Granules Availability of Natural Grit
p=

+
= −1

where it is understood that Availability of Natural Grit refers here only to particles in the same size range10

as granules.11

Several studies have demonstrated that birds may use some granule types as grit more readily than others12

(Best and Gionfriddo 1994, Best et al. 1996).  This may have a large influence on exposure levels13

(Stafford et al. 1996, Stafford and Best 1997).  Preference/avoidance of various granule types may be14

accounted for by introducing the Granule Grit Preference factor (GGP) into the following equation,15

relating the probability of ingesting a granule to the probability of ingesting a natural grit particle (Abt16

Associates 1996). 17

(Eq. 3.5-3)18
p

p
GGP

Availability of Granules

Availability of Natural Grit1 −
=

GGP  is a dimensionless number that relates the frequency that birds given equal access to granules and19

natural grit select granules.  If a bird had no preference or aversion to pesticide granules compared to20

natural grit, GGP = 1, because 1 granule is ingested for every 1 natural grit particle ingested.  If a bird21

preferred granules to natural grit, then GGP would be >1, and if a bird preferred natural grit to granules,22
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then GGP would be <1.  For example, if birds were shown through empiracle tests to prefer natural grit1

over granules by a 3:1 margin, then GGP would be defined as 0.33.  (0.33 granules selected for every 12

natural grit particle selected).3

By solving for p, equation 3.5-3 may rewritten as:4

(Eq. 3.5-4)5 p
GGP Availability of Granules

Availability of Grit GGP Availability of Granules
=

+
*

( * )

The probability of selecting a natural grit particle (q) is then obtained by subtraction:6

(Eq. 3.5-5)7 q p= −1

The above equations may be used to define the probabilities that bird will select a granule or natural grit8

particle.  These probabilities vary depending upon where the bird is foraging, since availability of granules9

vs. grit changes in different zones of a field and between fields with different soil types.  P and q also vary10

depending upon whether a particle is being ingested intentionally as opposed to accidentally.  Note that11

for a particle ingested accidentally, by definition no preference/avoidance occurs, GGP therefore equals 1,12

and equation 3.5-4 reduces to equation 3.5-1.  13

A slight modification of Equation 3.5-4 may be used to estimate the probability that a bird will mistakenly14

ingest a corncob granule instead of a seed.  As previously discussed, pesticides formulated on corncob15

granules may be consumed mistakenly as seeds and exposure via this route can be estimated using16

methodology presented in Section 3.3 for contaminated food if one can estimate the proportion of the17

bird’s diet that corncob granules comprise (PDgranule).  This will be a fraction of a larger fraction of the18

diet which is made up of seeds.  The probability that a bird foraging on a field where granules have been19

applied will mistakenly ingest a corncob granule instead of a seed is:20

21

             22



3-51

                  (Eq. 3.5-6)1 ( )p
GSP Availability of Granules

Availability of Grit GSP Availability of
=

•

+ •

   

    Granules

where GSP (Granule:Seed Preference factor) is a preference factor relating the probability a bird will2

select a granule over a seed if access was equal.  PDgranule, the corncob granule fraction of the diet may3

then be estimated as:   4

(Eq. 3.5-7)5 PD PD pgranule seeds= •

Once PDgranule is estimated, assessment of dietary exposure to pesticides formulated on corncob granules6

may proceed using the methodology presented in Section 3.3.  7

Granule to Grit ratio (GGR):   The availability of granules in relation to natural grit particles is assumed8

to be a key factor in determining granule ingestion rate.  Factors that affect this ratio include the number9

of granules applied per unit area, the efficiency of the application equipment in incorporating granules10

beneath the soil surface, the spatial zone being considered (e.g., spill area vs. “normal” pesticide band11

area vs. outside the pesticide band), the integrity of the granule carrier under field conditions (some12

granular carriers disintegrate upon contacting moist soils), and the soil texture profile (i.e., amount of13

sand in the size classes used by birds as grit).  Two additional factors that influence granule and grit14

availability are rainfall and crop residue cover.  Rainfall has been shown to reduce availability of granule-15

sized particles on the soil surface (Fischer and Best 1995).  The presence of crop residues obscures and16

limits birds’ access to part of the soil surface of a field, and therefore may also in effect reduce grit17

availability.  These two factors were left out of the model because we assume these factors affect the18

availability of both granules and natural grit equally, and thus do not influence GGR. 19

3.5.4 Implementation of the Conceptual Model: Development of GEM20

A new modeling tool called GEM (Granule Exposure Model) was developed from the conceptual model21

presented above.  GEM was developed using the Abt model as a starting point.  However, significantly22

expanded and refined databases concerning grit use of birds and availability of natural grit particles in23

different soils have been collated and incorporated.  GEM simulates grit consumption behavior of24
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replicate individual birds of a given species living in the vicinity of an agricultural field where a granular1

pesticide has been applied.  The number of pesticide granules and resulting quantity of pesticide ingested2

each day over a 10-day period immediately post-application is calculated for each individual in the3

simulation.  This is performed probabilistically through the use of Monte Carlo software programs Crystal4

Ball or @Risk which operate as add-ins to spreadsheet programs such as Microsoft Excel and Lotus 1-2-5

3.  Assumed or actual distributions of data are used as inputs for the following model parameters: number6

of grit particles ingested by birds on a daily basis, field use factor by birds (analogous to PT in the dietary7

dose equation), soil texture type, fraction of soil particles at a field with a given soil type that are in the8

size range of granules, and fraction of granules remaining on the soil surface immediately after9

application.  Separate analysis may be performed for 29 bird species and 10 different geographic regions10

of the U.S.  The model output is a probabilistic distribution of peak-day pesticide exposure levels (dose11

from granules) expressed in mg pesticide per kg BW per day for birds of a particular species within a12

particular region.  Such a probabilistic distribution of exposure could be integrated with dose-response13

information to predict the percentage of individuals of a theoretical population expected to be negatively14

impacted, or estimate the percentage of individuals receiving exposure above a benchmark level of15

concern.  (See Chapter 5.)         16

A more detailed discussion of GEM, including an example simulation, are included in Appendix C3. 17

Although a significant achievement by the Terrestrial Workgroup, this new tool should be considered at18

this point in time a prototype or “beta Model” subject to validation and further refinements.  Appendix19

C3 also includes a compilation of data from the literature on the number of granules remaining on the soil20

surface on the day of application and at later times, and a kinetic model describing the release of pesticide21

from granules is also included.22

3.5.5 Granule Ingestion Dose23

The prototype model discussed above (GEM) evaluates a scenario in which a bird’s home range contains24

two habitat categories: (1) an agricultural field that has been treated with a granular pesticide and (2)25

other untreated habitat.  It does not address the situation in which a bird ranges among multiple26

agricultural fields which have been treated with a granular pesticide on the same or different days.  For27

the latter, more general scenario, the one-day dose for any foraging day i, the cumulative dose over Ni28
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foraging days and the average daily granule dose over Ni foraging days a bird or mammal receives1

through ingestion of pesticide contaminated granules from foraging over one or more fields j per day are2

given respectively by:3

One Day Dosegranule (any day i) in mg/kg BW*day =  4 GIR GnlWt AI Wij ij

j

j Nj

• •
=

=

∑ /
1

(Eq. 3.5-8)5

Cumulative Dosegranule(over Ni days) in mg/kg BW  =  6 GIR GnlWt AI Wij

j

j N

i

i N

ij

ji

=

=

=

=

∑∑ • •
11

/

(Eq. 3.5-9)7

Average Daily Dosegranule in mg/kg BW*day = Cumulative Dosegranule/Ni (Eq. 3.5-10) 8

where,9

j = index for different foraging fields10

Nj = maximum number of fields foraged by the bird or mammal over the foraging period of interest11

i = index for different foraging days 12

Ni = number of days during the foraging period of interest for which a dose is to be computed 13

GIRij = granule intake rate (number granules ingested/day) by the bird in field j on day i (GIRij = 0 if14

the bird is not in field j on day i)  15

GnlWt =  average weight of single granule (kg)16

AIijk = initial or average pesticide concentration on/in granules in field j on day i (mg pesticide/kg17

granule). If the field j has not been treated by day i, AIijk = 0.18

W = body weight of the bird or mammal (kg)19

The dose calculations made within GEM are slightly more complicated than those presented above in that20

particle ingestion rates (including granules) and resulting dose are estimated separately for different size21
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categories for soil particles and then summed.  For five pesticide products considered during development1

of the model, >96% of granules fell within two USDA soil particle size categories: medium sand and2

coarse sand.  Medium sand particles are defined as having a diameter of 0.25 to 0.50 mm.  Coarse sand3

particles have a diameter ranging from 0.50 to 1.0 mm.  GEM estimates granule ingestion rate for4

medium and coarse particles (including granules) separately and uses separate estimates for average5

weight of medium and coarse granules in its calculation of the pesticide dose received.     6

3.6 DOSE RESULTING FROM INGESTION OF CONTAMINATED SOIL7

The Terrestrial Workgroup devoted only a small amount of time to development of probabilistic tools for8

estimating exposure via ingestion of soil.  This route of exposure is rarely considered in current pesticide9

risk assessments and is generally not considered a major route.  The methodology proposed is an10

extension of that presented for food, in which Soil Ingestion Rate (SIR) replaces Food Ingestion Rate11

(FIR) and the concentration in soil (C) replaces the concentration in food in the dose equations.  12

3.6.1 Dose Equations for Ingestion of Contaminated Soil13

The one day soil dose for any foraging day i, the soil dose over Ni foraging days and the average daily soil14

dose over Ni foraging days a bird or mammal receives through ingestion of pesticide contaminated soil15

from foraging over one or more fields j per day are given respectively by:16

One Day Dosesoil on day i in mg/kg BW*day            (Eq. 3.6-1)17 =
=

=

∑ ( ) /SIR C Wij ij

j

j Nj

1

Cumulative Dosesoil over Ni days in mg/kg BW*day  (Eq. 3.6-2)18 =
=

=

=

=

∑∑ ( ) /SIR C Wij ij

j

j N

i

i N ji

11

Average Daily Dosesoil in mg/kg BW*day = Cumulative Dosesoil / Ni (Eq. 3.6-3)19

where,20
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j = index for different foraging fields1

Nj = maximum number of fields foraged by the bird or mammal over the period of interest2

i = index for different foraging days 3

Ni = number of days during the foraging period of interest for which a dose is to be computed4

SIRij = soil ingestion rate (kg dry weight/day) by the bird in field j on day i (SIRij = 0 if the bird 5

is not in field j on day i)  6

Cijk = initial or average pesticide concentration on/in top soil in field j on day i (mg pesticide/kg dry7

weight). If the field j has not been treated or received spray drift by day i, Cijk = 0.8

W = body weight of the bird or mammal (kg)9

Methods for estimating key parameters SIR and C are discussed briefly in the following sections, as well10

as in Appendix C3.11

3.6.2 Estimation of Soil Ingestion Rate (SIR)12

Soil ingestion rates of some wildlife species have been estimated from the acid-insoluble ash content of13

wildlife scats or digestive tract contents.  Estimates of the fraction of the diet on a dry weight basis14

consisting of soil or sediment are listed in Table 4-4 of the EPA Wildlife Exposure Factors Handbook.  15

SIR may be estimated straightforwardly by multiplying FIR by this fraction.  This approach yields an16

estimate of the total amount of soil ingested per day.  However, the above dose equations require an17

estimate of soil ingestion rate for individual agricultural fields.  In the real world, birds and mammals may18

visit several different agricultural fields in a day and may spend a considerable amount of the day in other19

types of habitats.  Therefore, SIRij, the amount of soil ingested at field j on day i, will be only a fraction of20

total SIR.  To estimate SIRij, one must first estimate the proportion of the soil ingestion that occurs at21

each field j on day i (Pij).  The field and day specific soil ingestion rate (SIRij) may then be estimated as22

follows.23

                                                        (Eq. 3.6-4)24 SIR SIR Pij ij= ∗

The problem of estimating Pij is similar to that of the parameter PT in the food equation (Section 3.3.3),25

and the same estimation procedures can be used.  26
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3.6.3 Pesticide Concentrations in Soil1

Immediate post-application concentrations in soil can be estimated from application rates, foliar cover,2

and spray drift estimates.  Values of soil/water partition coefficients, combined abiotic/microbiologically3

mediated degradation rates in soil, volatilization rates from soil and photodegradation rates in soil can be4

obtained from fate studies commonly conducted by Registrants and submitted to OPP.  (See Appendix5

C7.)  Many such values are listed in the ARS/USDA and OPP fate and chemical property databases. (See6

Appendix C8.) 7

Estimates of initial soil residue levels, soil dissipation rates and soil/water partition coefficients can be8

used as inputs to computer models to estimate bulk soil and pore water residue levels as a function of9

post-application time. Alternatively, or for purposes of model validation and calibration, bulk soil and/or10

pore water residue levels at various times post-application can also sometimes be obtained from lab11

and/or field studies.12

3.7 OVERALL INGESTION DOSE13

Doses due to ingestion of contaminated food, contaminated water, granules, and contaminated soil were14

discussed in Sections 3.3, 3.4. 3.5, and 3.6, respectively. In Section 3.3, it was shown that the overall15

dose due to the ingestion of contaminated food could be obtained by summing over the doses due to the16

ingestion of different food types (eg., long grass, short grass, pods/seeds, fruits, insects, earthworms,17

etc.). In Section 3.4, it was shown that the overall dose due to the ingestion of contaminated water could18

be obtained by summing over the doses due to the ingestion of water from different sources (eg. ponds,19

puddles, dew).  By analogy, it can be seen that the overall ingestion dose can be obtained by summing20

over the overall food ingestion dose, the overall water ingestion dose, the granule ingestion dose, and the21

soil ingestion dose. However, as is discussed below, it is generally not possible to obtain a total dose by22

summing over the overall ingestion dose, the inhalation dose, and the overall dermal dose23

3.7.1 Combining Ingestion Doses to Give an Overall Ingestion Dose24

The overall ingestion dose a bird or mammal receives in field j on day i in mg/kg BW is given by:25
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Dosetotal ingestion(ij) = Dosefood ingestion(ij) + Dosewater ingestion(ij) + Dosegranule ingestion(ij) + Dosesoil  ingestion(ij) 1

(Eq. 3.7-1)      2

where,3

Dosefood ingestion(ij) = dose a bird or mammal receives in field j on day i from food ingestion4

Dosewater ingestion(ij) = dose a bird or mammal receives in field j on day i from water ingestion5

Dosesoil ingestion(ij) = dose a bird or mammal receives in field j on day i from soil ingestion6

Dosegranule ingestion(ij) = dose a bird or mammal receives in field j on day i from granule ingestion7

The one day overall ingestion dose for any day i, the cumulative overall ingestion dose over Ni days and8

the average daily overall ingestion dose over Ni days a bird or mammal receives through ingestion of9

contaminated food, water, granules, and soil are given, respectively, by:10

11 One Day Dose  (in mg / kg body wt day)overall ingestion • = −
=

=

∑ Doseoverall ingestion ij
j

j N j

( )
1

(Eq. 3.7-2)12

(Note that Doseoverall ingestion(ij) = 0 if the organism is not in field j on day i)13

 14

15 Cumulative Dose (in mg / kg body wt)overall ingestion = −
=

=

=

=

∑∑ Doseoverall ingestion ij
j

j N

i

i N ji

( )
11

(Eq. 3.7-3)16

Average Daily Doseoverall ingestion (in mg/kg body wt.*day) = Cumulative Doseoverall ingestion/Ni 17

(Eq. 3.7-4)18
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where,1

j = index for different foraging fields2

Nj = maximum number of fields foraged by the bird or 3

mammal over the foraging time interval of interest for which a dose is to be computed4

i = index for different foraging days 5

Ni = number of days during the foraging interval of interest for which a dose is to be computed 6

3.7.2 Problems With Combining Overall Ingestion, Inhalation, and Overall Dermal Doses7

 In Section 3.7.1, doses from ingesting different types of media (food, water, granules, soil) were8

combined to give an overall ingestion dose. In Section 3.9.2, dermal doses from different types of media9

(pond, puddle, foliage, air, soil/sediment) are combined to give an overall dermal dose. Therefore, a10

logical question would be can the overall ingestion dose, the inhalation dose, and the overall dermal dose11

be combined to give a total dose?12

Inhalation and dermal doses cannot generally be combined with ingestion doses to give a total dose. A13

primary reason is that the fraction of the external dose that actually becomes available at a site or sites of14

toxic action within the organisms differs substantially between ingestion, inhalation and dermal exposure15

pathways. Another reason is that the site or sites of toxic action within the organism are often different16

for the different exposure pathways. The preceding two reasons combined indicate that the dose response17

curves generated with oral dosing would differ substantially from those generated with inhalation or18

dermal dosing. Therefore, even if ingestion, inhalation, and dermal doses were combined to give a total19

dose, it could not be compared to dose response data to generate a risk assessment.  20

3.8 DOSE RESULTING FROM INHALATION OF CONTAMINATED AIR21

The Terrestrial Workgroup devoted only a small amount of time to development of probabilistic tools for22

estimating exposure via inhalation of contaminated air.  This route of exposure is rarely considered in23

current pesticide risk assessments and is generally not thought to be a major route except within the24

canopy for several hours immediately post-application.  25
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3.8.1 Dose Equations for Inhalation of Contaminated Air1

Assuming the inhalation rate I is constant with respect to time, the inhalation dose (ID) a bird or mammal2

receives in field j on day i in mg/kg BW is given by:3

                  (Eq. 3.8-1)4 ( )Inhalation dose in field j on day i = = − • •ID t t I C Wij ij ij ij2 1 /

where,5

I = inhalation (respiration) rate (L/hr or m3/hr)6

W=  body weight (kg)7

tij1 =  beginning of the exposure period in field j on day i (hr) 8

tij2 = end of the exposure period in field j on day i (hr)(assigning ij subscripts to the beginning and end of9

exposure  periods is necessary because a bird can be in more than one field on a given day and may10

revisit the same field on one or more additional days)11

Cij = initial or average pesticide concentration in air over the field j on day i (mg/L or mg/m3)12

Note that IDij = 0 if the organism is not in field j on day i.13

The one day inhalation dose for any day i, the cumulative inhalation dose over Ni days and the average14

daily inhalation dose over Ni days a bird or mammal receives through inhalation of pesticide contaminated15

air are given respectively by:16

One Day Inhalation Dose (IDi) in mg/kg BW*day  (Eq. 3.8-2)17 =
=

=

∑ IDij

j

j Ni

/ ( )1
1

day

Cumulative Inhalation Dose in mg/kg BW (Eq. 3.8-3)18 =
=

=

=

=

∑∑ IDij

j

j N

i

i N ii

11
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Average Daily Inhalation Dose (mg/kg BW*day) = Cumulative Inhalation Dose / Ni  1

(Eq. 3.8-4)2

where,3

j =  index for different foraging fields4

Nj =  maximum number of fields foraged by the bird or mammal over the foraging time interval of5

interest for which a dose is to be computed6

i =  index for different foraging days 7

Ni =  number of days during the foraging interval of interest for which a dose is to be computed 8

Key parameters in the above equations that must be estimated are inhalation rate (I) and concentration in9

air (Cij).  10

3.8.2  Estimation of Inhalation Rate11

The EPA Wildlife Exposure Factors Handbook contains estimates of the inhalation rates for12

representative species of birds and mammals.  Inhalation rates vary with species, body size, body13

temperature, ambient conditions and activity levels.  14

Allometric equations for inhalation rates associated with standard metabolic rates (i.e., for an animal at15

rest) are available for non-passerine birds and mammals. For example, Lasiewki and Calder (1971) in the16

EPA Wildlife Exposure Factors recommended the following equations for  17

for estimating the inhalation rates of non-passerine birds and mammals associated with standard18

metabolism rates:19

                                          (Eqs 3.8-4 and 3.8-5)20

Non - Passerine 

Mammal 

IR WT

IR Wt

= •

= •

0 4089

0 5458

0 77

0 80

.

.

.

.
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where,1

IR = inhalation rate in m3/day2

Wt = body weight in kg3

The above equations are applicable to post digestive, at rest metabolic rates. Inhalation rates for non-4

passerines and mammals during times when metabolic rates are higher may be several fold greater (EPA5

Exposure Factors Handbook). Also, inhalation rates in general are expected to be higher for passerines6

which have higher metabolic rates than for non-passerines.7

3.8.3  Estimation of Pesticide Concentrations in Air8

Pesticide concentrations in air will depend on numerous factors including degradation rates in air, air flow9

and mixing volume, deposition rates from the air, and volatilization rates from soil, foliage, and water. 10

Volatilization rates depend in part upon the magnitudes of soil/water partition coefficients, water/foliar11

partition coefficients and Henry's Law constant.12

Values of the various parameters listed in the previous paragraph are used as inputs to models such as13

PRZM to estimate pesticide concentrations in air within the canopy.  14

Values of soil/water partition coefficients, Henry's Law constants, abiotic hydrolysis rates,15

photodegradation in air rates, and sometimes volatilization flux rates can be obtained from fate studies16

conducted by Registrants and submitted to OPP.  Some values are listed in the ARS/USDA and/or the17

OPP fate and chemical property databases.  However, it is often difficult to separate volatilization rates18

from soil, foliage and water from overall dissipation rates in those media. 19

3.9 DOSE RESULTING FROM DERMAL CONTACT WITH CONTAMINATED20

ENVIRONMENTAL MEDIA21

Dermal exposure and associated dose to birds and mammals has not been well characterized.  Simple22

models for passive rates of chemical mass flux transfer across dermal membranes are based on Fick's law23
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of diffusion (Marzulli and Maibach (1991) - Dermato-toxicology. Hemisphere Publishing Company. 4th1

Edition P.17).  2

3.9.1 Dose Equations for Dermal Contact With Contaminated Environmental Media3

Using Fick's law of diffusion, the passive rates of mass transfer are assumed to be proportional to the4

product of the contact time times the contact area times the diffusivity across the membrane times the5

pesticide concentration gradient across the dermal membrane and inversely proportional to the width of6

the membrane.  7

Assuming only passive transport across the membrane, the dermal doses from pond water, puddle water,8

foliage, air, and soil/sediment, a bird or mammal receives in field j on day i in mg/kg body weight could be9

approximately given respectively by:10

 11

  (Eq. 3.9-1)12 ( )( )( )( )Dose t t f D A C C zWdermal pond ij ij ij pond m cpond pond ij blood i( ) ( ) ( ) /= − −2 1

  (Eq. 3.9-2)13 ( )( )( )( )Dose t t f D A C C zWdermal pudd ij ij ij pudd m cpudd pudd ij blood i( ) ( ) ( ) /= − −2 1

14 ( )( )( )( )Dose t t f D A C C zW
dermal foliage ij ij ij foliage m cfoliage foliage porewater ij blood i( ) ( ) ( ) /= − −2 1

(Eq. 3.9-3)15

16
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(3.9-4)1

( )( )( )( )( )
( )( )( )( )( )
( )( )( )( )
( )( )( )( )

Dose t t f D A A C C zW

t t f D A A C C zW

t t f A A C C zW

t t f f f D A C C zW

dermal air ij ij ij pond m c cpond air ij blood i

ij ij pudd m c cpudd air ij blood i

ij ij foliage c cfoliage air ij blood i

ij ij pond pudd foliage m c air ij blood i

( ) ( ) ( )

) ( ) ( )

( ) ( )

( ) ( )

/

/

/

/

= − − − +

− − − +

− − − +

− − − − −

2 1

2 1

2 1

2 1 1

    (3.9-5)2 ( )( )( )Dose t t D A C C zWdermal soil sed ij ij ij m feet soil sed pore water ij blood ij( / ) / ( ( ) ( ) /= − −−2 1

where,3

Dm = diffusivity of the chemical across the membrane in cm2/hr4

z = width of the membrane in cm5

W = body weight in kg6

Cpond(ij) =  initial or average pesticide concentration in the pond in field j on day i (mg/L) 7

Cpuddle(ij) = initial or average pesticide concentration in the puddles in field j on day i (mg/L)8

Cfoliage(pore water)ij = initial or average pesticide concentration in foliar pore water in field j on day i (mg/L)9

Cair(ij) = initial or average pesticide concentration in air over field j on day i (mg/L)10

Csoil/sed pore water(ij) = initial or average pesticide concentration in soil/sediment pore water in field j on day11

i (mg/L)12

Cblood(i) = initial or average pesticide concentration in the blood of the organism on day i (mg/L)13

tij1 = beginning of the exposure period in field j on day i (hr) 14

tij2 = end of the exposure period in field j on day i (hr)(assigning ij subscripts to the beginning and15

end of exposure  periods is necessary because a bird can be in more than one field on a given16

day and may revisit the same field on one or more additional days)17

fpond = fraction of the exposure period the organism is in the pond18

Ac = total dermal area available for contact except for bottom of feet (cm2)19

Acpond = dermal area in contact with pond water (cm2)20
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fpudd = fraction of the exposure period the organism is wading in puddles1

Acpudd = dermal area in contact with puddle water (cm2)2

ffoliage = fraction of the exposure period the organism is in dermal contact with foliage3

Acfoliage = dermal area in contact with foliage (cm2)4

Afeet = dermal area of the bottom of the feet5

3.9.2 Combining Dermal Doses6

The overall dermal dose a bird or mammal receives in field j on day i in mg/kg BW is given by summing7

over the dermal doses from dermal contact with different environmental media:8

(3.9-6)9
Dose Dose Dose Dose

Dose Dose
dermal overall ij dermal pond ij dermal puddle ij dermal foliage ij

dermal air ij dermal soil sed ij

( ) ( ) ( ) ( )

( ) ( / )

= + + +

+

where,10

Dosedermal(pond)ij = dermal dose a bird or mammal receives in field j on day i from pond water11

Dosedermal(puddle)ij = dermal dose a bird or mammal receives in field j on day i from puddles12

Dosedermal(foliage)ij = dermal dose a bird or mammal receives in field j on day i from foliage13

Dosedermal(air)ij = dermal dose a bird or mammal receives in field j on day i from air14

Dosedermal(soil/sed)ij = dermal dose a bird or mammal receives in field j on day i from soil/sediment15

The one day overall dermal dose for any day i, the cumulative overall dermal dose over Ni days and the16

average daily overall dermal dose over Ni days a bird or mammal receives through contact with pesticide17

contaminated pond water, puddles, and air in one or more fields j per day i are given respectively by:18

19 ( )OneDayDose Dosedermal overall dermal overall ij

j N j

( ) ( ) /(in mg / kg * day) 1 day
j=1

=












=

∑

(Eq. 3.9-7)20
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(Note that Dose dermal(overall)ij = 0 if the organism is not in field j on day i)1

  (3.9-8)2 CumulativeDose Dosedermal overall dermal overall ij
j

j N

i

i N j

( ) ( )(in mg / kg body wt.) =
=

=

=

=

∑∑
11

Average Daily Dosedermal(overall) (in mg/kg body wt.*day) = Cumulative Dosedermal(overall)/Ni   (3.9-9)  3

where,4

j = index for different foraging fields5

Nj = maximum number of fields foraged by the bird or 6

mammal over the foraging time interval of interest for which a dose is to be computed7

i = index for different foraging days 8

Ni = number of days during the foraging interval of interest for which a dose is to be computed 9

Estimating pesticide concentrations in the various environmental media with which birds and mammals10

have dermal contact is discussed in Section 3.10 and Appendix C4. Estimates of concentrations in the11

blood or specific tissues just below dermal membranes requires the use of multi-compartment12

pharmacokinetics models that are beyond the scope of this report. 13

3.9.3 Bird and Mammal Skin Surface Areas14

The following equations are provided in the EPA Wildlfe Exposure Factors Handbook for estimating the15

skin surface area of birds and mammals:16

                                                       (Eqs. 3.9-10 and 3.9-11)17

Bird 

Mammal 

SA Wt

SA Wt

skin

skin

= •

= •

10

12 3

0 667

0 65

.

..

where,18
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SAskin = surface area of the skin in cm21

Wt = body weight in g2

 3

3.10 ESTIMATING PESTICIDE CONCENTRATIONS IN ENVIRONMENTAL MEDIA4

The monitoring, experimental determination or model estimation of pesticide concentrations in various5

environmental media as a function of time and location is a necessary prerequisite to estimating the6

pesticide doses birds and other terrestrial wildlife receive.  The pesticide doses they receive result from7

the ingestion of, inhalation of, and dermal exposure to various types of pesticide contaminated8

environmental media (plants, insects, water, air, soil).  The magnitude of the ingested or inhaled dose9

received will be directly proportional to the product of the mass of media ingested or inhaled and the10

pesticide concentrations within the media. The magnitude of the dermal dose received should be11

approximately proportional to the product of the contact surface area times the duration of contact times12

the diffusivity across the membrane times the concentration gradient across the dermal membrane.  13

The relationship between pesticide concentrations in environmental media and the pesticide doses14

received by birds and mammals are demonstrated by the dose equations provided in Sections 3.3 - 3.9. 15

The concentrations of pesticides and their major degradates in various types of environmental media can16

be estimated with the use of computer models or experimentally determined or monitored in various field17

and monitoring studies. Inputs to computer models involve many types of parameters including18

meteorological, hydrological, pesticide application, agricultural practices, soil properties, plant properties,19

water properties, initial concentrations on foliage, and the environmental fate properties of the pesticide20

and its major degradates. Values for most of those types of parameters can be obtained from databases.21

Values of the environmental fate parameters for the pesticide and major degradates are determined22

primarily from laboratory (and occasionally field) environmental fate studies, and are often placed in23

databases.24

In this section, brief overviews are provided of various topics related to the estimation and/or25

determination of the concentrations of pesticides and their major degradates in various types of26

environmental media. The overviews and topics correspond to ones discussed in greater detail in  27
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Appendix C. 1

3.10.1 Pesticide Mass Balance Equations and Their Solutions 2

Computer models used to estimate pesticide concentrations in environmental media (plants, soil, water,3

air) are based in part upon analytical or numerical solutions to chemical mass balance ordinary or partial4

differential equations. The solutions to the mass balance equations give the pesticide concentration as a5

function of time (if they are ordinary differential equations) or as a function of both time and location (if6

they are partial differential equations). The solutions to the mass balance equations depend upon the7

initial conditions specified (if they are ordinary differential equations) or on both initial and boundary8

conditions specified (if they are partial differential equations).9

Depending upon the complexity of a computer model, mass balance differential equations may be10

generated and solved for each environmental medium (e.g., plants, soil, water, air), each compartment11

within each medium (e.g., for plants: roots, stems, leaves, fruits/pods) and each phase within each12

medium or compartment (e.g., for soil: pore water, soil solids, pore air) simulated.  If the model allows13

for reversible mass transfer between different environmental media, compartments, or phases, the mass14

balance differential equations must be solved simultaneously (see Appendix C4). If the model has15

hydrology components and is tied to weather, additional differential equations accounting for water16

balance and movement are also solved along with the chemical mass balance equations (see Appendix17

C4).18

A simple example of a mass balance ordinary differential equation and its solution based upon a specified19

initial condition is as follows. The generic form of a mass balance equation for an environmental medium20

or a compartment within an environmental medium is:21

Rate of mass change within the medium or compartment = 22

rate of mass input - rate of internal degradation - rate of mass output                          (Eq. 3.10-1)23

For a daily time step, simple one compartment plant model, equation 3.10-1 becomes:24
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(Eq. 3.10-2)2

where,3

dmp(i)/dt = rate of change in pesticide mass in/on plant on day i4

Bag(i) = above ground plant biomass as a function of time on day i (kg dry weight)5

Cp(i) = concentration of chemical in/on plants as a function of time on day i (mg chem/kg dry wt.)6

TSCF = transpiration stream concentration factor7

Qtrans(ij) = transpiration flow on day I from soil compartment (layer) j (cm3/day)8

Cpw(ij) = soil pore water concentration at the start of day i at t=ti  in soil layer j (g/cm3 )9

j = soil layer index10

jmax(trans) = the deepest soil layer from which transpiration is extracted 11

kdegr = degradation rate constant (1/day)12

kv = volatilization rate constant (1/day)13

Equation 3.10-2 is based upon Carsel et al. 1997; Trapp and Matthies 1995; and Trapp 1995.14

The three terms on the right side of equation 3.10-2 representing (in order) the rate of uptake by plants,15

degradation within/on the plants, and volatilization from the plants correspond to the “rate of mass16

input”, “rate of internal degradation”, and “rate of mass output”, respectively in generic equation 3.10-1.17

Note that in this example, the “rate of mass input” includes the rate of uptake by the plants from the soil,18

but does not include the application rate. That is because the time required for application is generally19

only a small fraction of the assumed daily time step upon which the differential equation is based.20

Consequently in this example, any application is considered to be more of an instantaneous event21

contributing to the initial concentration, rather than a continuous process that needs to be included as a22

term in the mass balance differential equation. As an alternative, we could have assumed that application23

was a continuous process extending throughout the day and included it as a term in the differential24

equation.. However, in addition to not representing reality as well as an assumption of instantaneous25
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application,  a continuous application assumption would make using Fletcher time zero foliar values more1

difficult and much less direct (see below) .  2

The total transpiration on day i (Qtrans(i)) as well as well as the transpiration extracted from each soil layer j3

on day i (Qtrans(ij)) will increase with increasing biomass and leaf area index.  However, in a daily time step4

model, increases in transpiration can be reflected at the beginning of each day while still assuming that the5

transpiration remains constant during any given day i. Likewise, changes in the soil pore water6

concentration can be reflected at the beginning of each day while still assuming that the soil pore water7

concentration remains constant during any given day i.  Consequently, during any given day i, the uptake8

term in Equation 3.10-2 can be considered constant such that:9

                                           (Eq. 3.10-3)10
( )dm

dt

d B C

dt
k k B C

p i ag i p i

up p ag i p i

( ) ( ) ( )

( ) ( )= = −

where,11

 12

            (Eq. 3.10-4)13 ( )k TSCF Q Cup trans ij pw ij
j

j j trans

= =
=

=

∑ ( ) ( )

max( )

 rate of pesticide uptake
1

                                                                                                 (Eq. 3.10-5)14 k k kp r v= +deg

Separating variables, integrating equation 3.10-3 from mp(i) =  Bag(i)Cp(i) = Bag(t=ti)Cp(t=ti) to Bag(i)Cp(i) =15

Bag(t=ti+1)Cp(t=ti+1) and from t=ti from t=ti+1, allowing for a possible instantaneous addition at the16

beginning of day i+1 at t=ti+1 due to direct application or spray drift, and rearranging generates the17

following daily time step algorithm.  The algorithm gives the concentration of chemical on/in plants at the18

beginning of day i+1 at t=ti+1 in terms of the concentration at the beginning of the previous day i at t=ti:19

 20
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      (Eq. 3.10-6)2

where, the initial condition is3

                                                                         (Eq. 3.10-7)4 C C t tp i p i( ) = =(t = t )  at  i

The plant biomass at the beginning of each day can be calculated separately from one of several plant5

growth models including an exponential growth model and several more complex alternatives that6

generate characteristic sigmoidal shape plant growth curves (Jorgensen 1995).7

For direct foliar application at t=ti+1, mp(add)(t=ti+1) in equation 3.10-6 is given by: 8

                     (Eq. 3.10-8)9 [ ]( )[ ]m t t f t t f App t tp add i i sd i( ) int( ) ( ) ( )= = = − =+ + +1 1 11

where,10

fint(t=ti+1)  = fraction intercepted by plant when chemical is applied at t=ti+1 11

fsd =  fraction loss by spray drift before hitting the targeted field12

App(t=ti+1)  = nominal application rate at the beginning of day i+1 at t = ti+1in mg chemical/m2(convert13

from lb/acre or kg/ha)14

As an alternative to computing the added mass of chemical on/in plants per unit field area mp(add)(t=ti+1)15

for direct application from equation 3.10-8 and then dividing by the biomass per unit field area Bag(t=ti+1), 16

mp(add)(t=ti+1)/Bag(t=ti+1) can be computed from the product of the Fletcher et al. (1994) time zero foliar17
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residues (normalized to an application rate of 1 lb ai/acre) times the application rate.  1

For spray drift to foliage at t=ti+1, mp(add)(t=ti+1) in equation 3.10-6 is given by: 2

                       (Eq. 3.10-9)3 [ ]( )[ ]m t t f t t SD App t tp add i i avg i( ) int( ) ( ) ( )= = = =+ + +1 1 1

where,4

SDavg = average spray drift deposition  5

As an alternative to computing the added mass of chemical on/in plants per unit field area mp(add)(t=ti+1)6

for spray drift from equation 3.4-9 and then dividing by the biomass per unit field area Bag(t=ti+1), 7

mp(add)(t=ti+1)/Bag(t=ti+1) can be computed from the product of the Fletcher et al. (1994) time zero foliar8

residues (normalized to an application rate of 1 lb ai/acre) times the application rate times the average9

spray drift deposition fraction for the field receiving the spray drift.10

Caution should be observed in using the Fletcher et al. (1994) time zero foliar values because of the large11

uncertainties associated with  basing concentrations on a variable wet weight rather than a constant dry12

weight. Also, if residues on a wet weight basis are used to estimate ingestion dose, food intake must also13

be on a wet weight basis which may require the use of dry to wet factors (DWFs) to convert dry weight14

food ingestion to wet weight food ingestion.15

3.10.2 Computer Models for Estimating Pesticide Concentrations in Environmental Media16

Based upon the literature reviews by Golder Associates (1997) and Jorgensen (1995), there do not17

appear to be any residue computer models currently available that could be used to adequately generate18

distributions of pesticide concentrations in all relevant environmental media for use in probabilistic19

terrestrial exposure assessments.  However, there are several existing residue models which could20

possibly serve together as a good foundation for such a model.  These include the spray drift model21

AgDRIFT (Bird et al. 1995), the leaching/runoff model PRZM 3 (Carsel et al. 1997), the surface water22

model EXAMS (Burns 1990), the Uptake, Translocation, Accumulation, and Biodegradation (UTAB)23
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plant contamination model (Boersma et al. 1988, Lindstrom et al. 1991), the SNAPS/PLANTX plant1

contamination model (Matthies and Behrendt 1995; Trapp, McFarlane, and Matthies 1993; Trapp 1995),2

and the Soil-Plant-Air Fugacity plant contamination model (Paterson, Mackay, and McFarlane 1994;3

Paterson and Mackay 1995).. In addition, several correlations between the uptake of chemicals by plants4

and their physical chemical properties which may be useful in model development have been reported in5

the literature. All of these will be discussed in this section .6

Other models which may also be helpful in developing a comprehensive terrestrial exposure model are7

ones that include animal behavior as well as residue algorithms to estimate dose such as the Terrestrial8

Exposure Assessment (TEEAM) model (Bird et al. 1991), the bird spray exposure model PARET9

(Appendix A2), the bird granule exposure model developed by Dixon et al. 1998(Appendix A3), the bird10

granule exposure model developed by Dow/Elanco, Fischer, and Best (GEM, Appendix C3), and the11

Terrestrial Risk Integrated Methodolgy (TRIM) model (U.S. EPA 1998). 12

The Paret Model is discussed in greater detail in Chapter 5 and in Appendix A2. The Dixon Model is13

discussed in greater detail in Section 3.6 and in Appendix A3. The GEM Model is discussed in greater14

detail in Section 3.6 and in Appendix C3.15

OPP recently began using the spray drift model AgDRIFT to estimate spray drift pesticide loadings to16

ponds adjacent to treated fields as part of aquatic exposure assessments.  Estimates of spray drift to off-17

site soil and water and to off-site vegetation are also important components of terrestrial exposure18

assessments.  OPP plans to use AgDRIFT for terrestrial as well as aquatic exposure assessments. 19

AgDRIFT was developed by modifying the USDA AGDISP model as part of a CRADA cooperative20

agreement between the SDTF and the U.S. EPA's Office of Research and Development (ORD). 21

OPP currently uses the leaching/runoff model PRZM 3 to estimate runoff pesticide loadings to ponds22

adjacent to treated fields as part of aquatic exposure assessments.  Although not completely adequate for23

pesticide terrestrial exposure assessments, a number of outputs of PRZM3 are useful for interim24

terrestrial exposure assessments.  As an option, PRZM3 can be run stochastically to give distributional25

outputs.  However, the plant growth and plant fate algorithms of PRZM3 need to be strengthened for use26

in terrestrial exposure assessments and it lacks insect, granule, and puddle algorithms.   27
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PRZM3 outputs of interest with respect to terrestrial exposure assessments include daily estimates of1

pesticide concentrations in soil pore water and of bulk soil concentrations for each of several hundred2

vertical computational compartments.  PRZM3 uses its estimates of concentrations in soil to estimate3

runoff/erosion losses of pesticide which in turn are used as input to EXAMS to estimate pesticide4

concentrations in adjacent ponds (also important for terrestrial exposure assessments).  Estimates of5

concentrations in soil can also be used by algorithms outside of PRZM3 to help estimate uptake by6

insects and other soil invertebrates.7

 8

For aquatic exposure assessments, estimates by PRZM3 of pesticide losses due to runoff water and soil9

erosion from a 10 ha treated field and by AgDRIFT of spray drift deposition are used as pesticide loading10

inputs to the surface water EXAMS.  EXAMS than estimates dissolved and adsorbed concentrations in11

an adjacent 1 ha by 2 m deep pond.  Comparable computations would also be useful in a terrestrial12

exposure assessments since birds and mammals utilize farm and/or natural ponds for drinking, food, and13

swimming. 14

EXAMS generates mass balance differential equations for each segment within a simulated water body15

and generates steady state solutions to the equations for each computational time step (Burns 1990). 16

EXAMS outputs of interest with respect to terrestrial exposure assessments include daily estimates of17

dissolved and sediment bound concentrations of pesticide in each segment.18

EXAMS cannot currently be run stochastically.  Temporal and site distributions of estimated pesticide19

concentrations for aquatic exposure assessments are currently generated by running the model20

deterministically over multiple years and sites.    21

The original and subsequent versions of PRZM were developed as  leaching/runoff models, not as22

terrestrial exposure models. PRZM3 does not estimate factors necessary for the conversion of pesticide23

mass/area of the field to pesticide mass/mass of plant such as the plant biomass.  Furthermore, the linear24

and exponential canopy cover algorithms PRZM3 uses may be inadequate for estimating foliar25

interception.  Other weaknesses of PRZM3 with respect to terrestrial exposure assessments are that it26

does not simulate the fate of granules, and does not estimate pesticide concentrations in the highly27

transient puddles formed on fields during rainfall events.  Although PRZM includes a plant uptake term in28
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the mass balance equation for soil, it does not appear to include it in the mass balance equation for1

vegetation.2

TEEAM  was derived from PRZM in the late 1980s by the USEPA laboratory in Athens GA and its3

contractors for use in terrestrial exposure assessments (Bird, Cheplick, and Brown 1991).  Although4

TEEAM was not supported beyond the testing phase, many of the algorithms developed for it could5

possibly be used or modified for use in a new model.  TEEAM was a close derivative of the6

leaching/runoff model PRZM and used many of the same algorithms.  However, it did contain improved7

plant growth algorithms, improved plant fate algorithms from EPIC (which included uptake), fate8

algorithms for granules, and algorithms for estimating pesticide concentrations in transient small puddles.9

In addition, algorithms for animal movement (based upon a Markov model), animal feeding, and animal10

uptake (including soil invertebrates as well as vertebrates) were included. 11

Most of the plant models described below are simple compartment models which divide the plant medium12

into compartments, assume first order mass transfer between compartments and assume first order13

degradation within each compartment. Mass balance ordinary differential equations and initial conditions14

are developed for each compartment and solved simultaneously to estimate pesticide concentrations as a15

function of time in each compartment.  For this report, Moorhead (Appendix C4) has extended that16

concept to different media as well based on exposure pathway models. The matrix formulation of17

compartment and multimedia models is discussed in greater detail in Appendix C4.18

The Uptake, Translocation, Accumulation, and Biodegradation (UTAB) plant contamination model19

divides the plant into one root, three stem, and three leaf compartments (Boersma et al. 1988; Lindstrom20

et al. 1991).  Each compartment is further subdivided into xylem, phloem, and storage subcompartments. 21

The compartments are represented as a series of continuous stirred flow reactors separated by22

membranes.  Transport and accumulation within each compartment are represented by mass balance23

equations that account for diffusive transport into and out of each compartment, convective mass24

transport within each compartment and first order degradation and adsorption to solid matrices within25

each compartment.  The series of differential equations are solved numerically to estimate chemical26

masses in each compartment. 27
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SNAPS (Simulation Model Network Atmosphere-Plant-Soil) is actually a coupled series of 3 models1

used to simulate soil water content, and chemical transport and fate within the soil profile and in plants2

(Matthies and Behrendt 1995).  The chemical transport and fate model for plants in SNAPS is called3

PLANTX (Trapp, McFarlane, and Matthies 1993; Trapp 1995).4

The plant model consists of root, stem, leaf, and fruit compartments.  The PLANTX model numerically5

solves simultaneously mass balance equations for the roots, stems, leaves, and fruits.  The model6

simulates passive diffusive and transpiration uptake by roots from soil water and advective mass transport7

with transpiration and/or assimilation streams to and from the stems, leaves and fruits. It simulates first8

order degradation and partitioning between the aqueous phase and plant tissue in all of the compartments. 9

PLANTX also simulates volatilization from leaves to the atmosphere. 10

The PLANT model is a simplified version of the PLANTX model in which the 4 compartments within the11

PLANTX model (roots, stems, leaves, and fruits) are replaced by a single overall aerial plant12

compartment (Trapp and Matthies 1995; Trapp 1995).  Uptake is represented by the product of the13

transpiration flow times the Transpiration Stream Concentration Factor (TSCF) times the concentration14

in the soil pore water.  For neutral organics, the TSCF can be estimated from the octanol/water partition15

coefficient as described below.  The single mass balance equation for the plant compartment is solved16

analytically to give the bulk chemical concentration in the plant.17

The TRIM Model is currently being developed by the USEPA Office of Air Quality Planning and18

Standards and its contractors.  Like the other plant models previously discussed, the environmental fate19

module is a simple compartment model that allows for first order mass transfers between compartments20

and first order degradation within each compartment.  A mass balance ordinary differential equation and21

initial condition is developed for each compartment.  The system of ordinary differential equations are22

then numerically solved simultaneously to give the chemical mass in each compartment as a function of23

time.  24

A root-stem-foliage compartment model was developed to predict residue uptake from soil and fate and25

transport within plants (Paterson, Mackay, and McFarlane 1994; Paterson and Mackay 1995).  The26

model involves solving simple mass balance equations for each compartment simultaneously. It is similar27
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in many aspects to the various other plant fate models discussed above, but it differs from most in using1

the concept of fugacity and the ratio of fugacity capacities of different phases to estimate equilibrium2

partition coefficients.  3

Plant uptake of pesticide residues can occur by uptake from the soil solution or by absorption of residue4

volatilized from the soil.  Uptake of the residue from soil solution may be a passive process whereby the5

residue is transported by the transpiration stream to the foliage.  Such a process would allow the6

prediction of foliage residue levels based upon such chemical properties as Kow.  Pesticide solubility and7

soil adsorption properties would also influence bioavailability of the chemical to the plant.  Root growth8

and diffusion may also contribute to plant uptake.9

Plant root uptake of six herbicides and a systemic fungicide was described by Shone and Wood (1974)10

using the Root Concentration Factor (RCF), where:11

RCF = (Concentration in roots-wet weight)/(Concentration in external solution).12

                                        13

Translocation of the chemical from the roots to the shoots was described by the Transpiration Stream14

Concentration Factor (TSCF), where:15

TSCF = (Conc. in transpiration stream or xylem sap)/(Conc. in external solution)                                       16

Using linear regression, Briggs et al. (1982) developed equations for estimating the RCF and TSCF for17

lipophillic compounds from the logarithm of their octanol/water partition coefficient. 18

Greater details on computer models for estimating pesticide concentrations in environmental media are19

provided in Appendix C4.20

  21

3.10.3 Computational Methods for Volatilization and Residues in Air22

Pesticide doses to birds and mammals through direct inhalation of pesticide contaminated air is generally23

thought to be relatively small compared to pesticide doses from ingestion of food and water.24
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Nevertheless, air inhalation could occasionally be an important exposure pathway, particularly for1

inhalation of volatile chemicals by terrestrial birds and mammals who spend a considerable amount of2

time within a plant canopy.3

Pesticide residues in air are determined directly in lab and field studies and can also be estimated with the4

use of computer models. 5

Computational methods for residues in air generally focus on volatilization fluxes from soil, water, and6

plants.  The PRZM3/TEEAM models assume that pesticide concentrations in the air above bare soil,7

open water, and plant canopies are approximately equal to zero due to wind advection and turbulent8

dispersivity.  However, the models use estimated volatilization fluxes to estimate pesticide concentrations9

in air within the plant canopy.10

The PLANTX/PLANT models developed by Trapp and Matthies (1995, 1997) for estimating chemical11

residues in plant also contain an algorithm for estimating pesticide volatilization fluxes from leaves. 12

Methods for estimating foliar volatilization rate constants are discussed by Riederer (1995).13

Volatilization rates from water typically increase with increasing Henry's Law constant, water flow, wind14

speed, and temperature and with decreasing molecular weight and water depth [Schwarzenbach,15

Gschwend, and Imboden (1993) and Thomas (1990)]. The cited literature also contain discussions on16

how to estimate volatilization rates from water.17

Greater details on estimating volatilization rates and pesticide concentrations in air are provided in18

Appendix C5.19

  20

3.10.4 Pesticide Dissipation Kinetics in Environmental Media21

This overview of dissipation kinetics is applicable to various types of environmental media, but the22

concepts covered are most frequently used for soil.  The concentrations referred to are generally23

experimental concentrations for a given bulk environmental medium, not individual phases.  For example, 24

soil concentration refers to the bulk soil, not to the individual pore water, soil solids and pore air25
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concentrations. 1

Dissipation kinetics data in environmental media are often fit to a single rate constant pseudo first order2

kinetics model. The reasons are because of the simplicity involved and because most computer models3

used to estimate pesticide concentrations in environmental media require as input, pseudo first order rate4

constants. Data can be fit to a single rate constant pseudo first order kinetics model using linear or non-5

linear regression.6

If linear regression is used to fit data to a single rate constant pseudo first order kinetics model, the7

concentration data must first be ln transformed before it is regressed against time. In cases where the8

dissipation of a chemical fits a single rate constant pseudo first order kinetics model over the entire study9

duration, a plot of the natural logarithm of the concentration (ln C) versus time will be approximately10

linear. 11

Unfortunately, the dissipation of a chemical often does not fit a single rate constant pseudo first kinetics12

model very well over the entire duration of the study. In such cases, a plot of the natural logarithm of the13

concentration (ln C) versus time will not be linear.  It will often appear temporally "biphasic" with the14

first phase having a substantially steeper slope than the second phase.  The reasons for observed15

"biphasic" behavior may vary and have not been firmly established.  Some reasons may include some of16

the chemical being gradually and irreversibly imbedded into the environmental media to a sufficient extent17

to inhibit dissipation processes,  declines in microbiological activity over time, and the complexity of18

some dissipation processes such as volatilization.19

Biphasic data can be fit to a number of different regression models. The most commonly used one is the20

biphasic linear regression model in which ln C is plotted against time. The plot is essentially divided by21

eye into an initial and subsequent phase representing different slopes. Linear regression of ln C versus22

time is then performed on both phases separately to estimate a rate constant and corresponding half-life23

for each phase. 24

The resulting estimates of pseudo first order rate constants for each phase can in some cases also be used25

as input to some computer models. However, the biphasic regression model itself is not very realistic26
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because it assumes the shift from one slope to another is essentially instantaneous whereas a more gradual1

shift in the slope is generally observed.  Consequently, it is sometimes difficult and somewhat arbitrary to2

determine when the first phase ends and the second phase begins.  3

 4

Whenever the data do not fit a single rate constant pseudo first order kinetics model very well over the5

entire duration of a study using linear regression on ln transformed data, there are a large number of6

alternate non-linear regression models which can also be fit to kinetics data.  Fortunately, the widespread7

availability of relatively low cost spreadsheets and statistical software has made performing non-linear8

regression more routine than in the past.  9

Non-linear regression models which can be used to fit observed chemical dissipation data include10

applying non-linear regression to the untransformed form of the single rate constant pseudo first order11

kinetics model, an empirical n order model, a reversible equilibrium 2 compartment model, a reversible12

non-equilibrium 2 compartment model, and a non-reversible non-equilibrium 2 compartment model. All13

of those models except the empirical n order model are also pseudo first order kinetics models.  They are14

discussed in greater detail in Appendix C6.15

Estimates of rate constants for the formation and decline of major degradates can be input into computer16

models to simulate the formation and decline of the degradates.  Assuming pseudo first order kinetics,17

estimates of rate constants for the formation and decline of major degradates can sometimes be obtained18

by using nonlinear regression to fit time series data to the exponential solutions to the mass balance19

differential equation for each degradate.  20

To develop mass balance equations and their solutions for major degradates, it is first necessary to21

assume a degradation pathway such as the one provide below. This pathway represents a combination of22

series and parallel degradation pathways in which the parent chemical P simultaneously degrades to23

primary degradates D1 and D2 which in turn each simultaneously degrade to secondary degradates S1A24

and S1B, and S2A and S2B, respectively. Note that other pathways are also possible such as one primary25

degradate being formed from another primary degradate as well as the parent.26

Note that concentrations should be in units of moles/volume rather than mass/volume to maintain the27
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correct stoichiometric relationship between the parent, primary degradates, and secondary degradates. If1

numerical methods of solution are used, equations for non-first order processes can also be developed. 2

                                           kD1SA         kS1A             3

                                         +--------> S1A ------->4

               kPD1         kD1 *    5

             -------> D1 ------>1   6

            *                           * kD1SB         kS1B7

    kP    |                           .--------> S1B ------->8

P ----->1                                kD2SA         kS2A9

            *                             +--------> S2A ------->10

            * kPD2         kD2   *   11

            .-------> D2 ------> 1  12

                                          * kD2SB         kS2B13

                                          .--------> S2B ------->14

Greater details on analyzing pesticide dissipation kinetics data in environmental media are provided in15

Appendix C6.                                                                  16

3.10.5 OPP-Required Pesticide Fate and/or Residue Studies 17

The Environmental Fate and Effects Division (EFED) and the Health Effects Division (HED) in OPP18

require pesticide registrants to submit numerous pesticide studies.  The results of the studies help OPP19

evaluate the potential exposure and risks to non-target organisms and humans associated with pesticide20

use.  Studies of interest with respect to terrestrial exposure assessments include laboratory fate studies,21

field fate and residue studies, and ecological residue/effects studies.   22

EFED required laboratory transformation studies (study requirements vary depending upon the pesticide's23

use and/or characteristics) include abiotic hydrolysis, direct photolysis in water, photodegradation on soil,24

photodegradation in air, aerobic soil metabolism, anaerobic soil metabolism, aerobic aquatic metabolism,25

and anaerobic aquatic metabolism. Laboratory transformation studies determine the transformation26
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pathways of the parent and major degradates, the decline rates of the parent and the formation and1

decline rates of major degradates.  Parental decline rates are reported as half-lives and/or DT50s.  A2

major degradate is defined as one accounting for > 10% of applied or present at > 0.01mg/kg (whichever3

is lower) at any time during any laboratory study.  The results are generally provided tabularly and4

graphically in concentration versus time series.5

EFED required laboratory mobility studies (study requirements also vary depending upon the pesticide's6

use and/or characteristics) include adsorption/desorption batch equilibrium, soil column leaching, and7

volatilization from soil.  The laboratory fish BCF study determines the accumulation and depuration of8

pesticides and their major degradates in whole fish, edible tissues, and non-edible tissues. 9

The results of the EFED laboratory fate studies are used for developing input to environmental fate and10

transport models.  The results of laboratory fate studies are also used to develop protocols for conducting11

field studies.12

EFED required field fate studies (study requirements vary depending upon the pesticide's use and/or13

characteristics) include terrestrial field dissipation, aquatic field dissipation, forestry dissipation 14

Field fate studies are conducted under actual use conditions using one or more formulated pesticide15

products.  In all of the different fate field studies, the dissipation of the parent and formation and decline16

of major degradates are generally presented tabularly and graphically as concentration versus time series17

for any environmental compartments for which the number of detects is sufficient to do so.  The18

dissipation of the parent in the various environmental compartments monitored is also characterized by19

computed half-lives and or DT50s.20

 21

The results of field fate studies are typically not used for inputs to models because they reflect the overall22

dissipation of the chemical from potentially multiple dissipation pathways whereas models generally23

require separate inputs for different dissipation pathways.  However, the results of the EFED field studies24

are compared to modeling outputs and are used to assess the overall environmental fate of a pesticide and25

its major degradates resulting from multiple dissipation pathways. 26



3-82

Estimates of spray drift deposition as a function of distance downwind from the application site are1

necessary to predict residues on/in vegetation as well as on/in soil and in water.  The Spray Drift Task2

Force (SDTF) is a consortium of approximately 40 registrants that was formed in 1990 to conduct3

research on droplet size distributions and spray drift depositions and to develop a computer model to4

estimate spray drift.  The results of the SDTF research and the AGDRIFT model developed by the SDTF5

for estimating spray drift are currently being assessed by OPP and external peer review.6

Over a number of years, EFED has required and/or received approximately 45 terrestrial ecological7

residue/effects studies covering 15 pesticides.  The studies involve treating fields with maximum allowed8

numbers of applications and application rates. Various environmental media (including soil, water,9

vegetation, birds, mammals, and occasionally amphibians) were sampled at various sampling intervals. 10

The samples were analyzed for the parent and occasionally for major degradates as well.  Observed11

effects on non-target organisms were also reported. 12

Inhalation exposure studies are imposed by HED to determine the inhalation exposure of pesticide13

applicator workers (applicators and flaggers) during application and of farm workers post-application. 14

The results of the studies can sometimes be used to estimate total pesticide concentrations in air 15

reflecting pesticide adsorbed to particulate matter as well as pesticide in the vapor phase.16

The HED requires foliar dislodgeable residue studies for foliarly applied pesticides of concern for17

potential risks to humans.  Although of potential use in terrestrial exposure assessments, dislodgeable18

residues reflect only a part of the total foliar residues ingested by a bird or mammal ingesting19

contaminated foliage.  Furthermore, the percentage of registered pesticides for which the foliar20

dislodgeable residue study has been required is relatively small.21

The HED requires crop residue studies for pesticides foliarly applied to food crops.  Crop residue studies22

involve the determination of total rather than dislodgeable residues and are required for a much higher23

percentage of registered pesticides than the foliar dislodgeable study.  However, such studies rarely24

include more than two sampling times (immediately post-application and at the end of the proposed post-25

harvest interval).  Indeed, many of the studies only include a sampling time at the end of the proposed26

post-harvest interval.27
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Greater details on OPP- required environmental fate and residue studies are provided in Appendix C7.1

3.10.6 Environmental Databases 2

Types of environmental data/databases relevant to computer estimates of pesticide residues for terrestrial3

exposure assessments include fate, spray drift, pesticide use, crop distribution, land use, soil property,4

crop property and weather. Types of pesticide residue data/databases include foliar, insect, mixed media,5

and surface water.6

3.10.6.1 Fate, Spray Drift, Pesticide Use, Crop, Soil, and Weather Databases7

 The ARS/NRCS/USDA maintains a chemical/fate pesticide properties database (which lists one or more8

values for up to 18 chemical/fate properties for 335 pesticides) at www.arsusda.gov/ppdb.html. OPP9

maintains a chemical/fate pesticide properties database that is comparable to that of the10

ARS/NRCS/USDA database. Properties for which data are listed include hydrolysis, direct photolysis in11

water, photodegradation on soil, aerobic soil, anaerobic soil, and terrestrial field dissipation half-lives12

and/or rate constants. Other properties of interest for which data are listed include soil/water partition13

coefficients (Kd values), air/water partition coefficients (Henry's Law Constant values), and the14

octanol/water partition coefficient.  15

Based upon studies conducted by the SDTF, the SDTF has developed a generic database containing data16

on the physical properties (dynamic surface tension, shear viscosity, extensional viscosity) of various17

spray tank mixtures, wind tunnel determined droplet size distributions for numerous combinations of18

experimental conditions, and spray drift deposition as a function of distance for aerial spray, orchard19

airblast, ground spray, and chemigation (Jones et al. 1997; Bird at al. 1995).  Spray drift trials were20

conducted for numerous combinations of application equipment and conditions.21

Non-proprietary estimated pesticide use data are maintained by the private company Resources for the22

Future. Other estimates are maintained by USDA's National Agricultural Statistical Service (NASS) at23

www.usda.gov/nass/pubs/pubs.htm.  Estimated pesticide use on a county scale is available through the24

Census of Agriculture (conducted at 5 year intervals) at www.usda.gov/census/.  To help interpret the25
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results of analyses for pesticides in water samples collected as part of the on-going National Water1

Quality Assessment Program (NAWQA), the USGS has used the 1992 Census of Agriculture data to2

generate nationwide pesticide use maps for numerous pesticides at the following internet address:3

http://water.wr.usgs.gov/pnsp/use92/.   4

Estimated crop distribution on a county scale is available through the Census of Agriculture which is5

conducted at 5 year intervals. Down loadable maps showing 1997 nationwide distributions of major row6

crops, and 1992 nationwide distributions of additional row crops as well as numerous vegetables, fruits7

and nuts can be obtained from www.usda.gov/census/.                                              8

Nationwide information distributed separately by state on numerous factors including land use, land9

cover, major crops, soil properties, geographic distribution of soils, wetlands, wildlife habitats, erosion,10

and conservation practices/needs is available in the National Resource Inventory (NRI) which is11

conducted by the NRCS every 5 years.  Summary tables and graphs can be downloaded at the following12

USDA/NRCS address: www.nhq.nrcs.usda.gov/NRI/maps.html.                 13

              14

The NRCS has published thousands of soil surveys conducted throughout the United States.  To house15

the soil survey data, the NRCS maintains a soil attribute database (MUIR) and several related soil16

geographic databases.  MUIR lists for > 30,000 soil series phases within the U.S., various site descriptive17

characteristics and up to 28 physical and chemical properties for up to 6 vertical horizons (layers).  The18

soil attribute database MUIR is linked to several different soil geographic databases that differ in scale19

(SSURGO, STATSGO, and NATSGO). The base map of the NATSGO soil geographic database is the20

USDA classified Major Land Resource Area (MLRA) which are described in SCS Agricultural21

Handbook 296 entitled "Land Resource Regions and Major Land Resource Areas of the United States."22

The National Resource Conservation Service (NCRS) internet addresses is www.nrcs.usda.gov/.  23

Historical daily weather data collected for many years from approximately 300 hundred of the NOAA24

first order weather stations are maintained by the National Climatic Data Center (NCDC) at25

www.ncdc.noaa.gov/ol/climate/climatedata.html.  For use in the PRZM model, the USEPA's Center for26

Exposure Assessment Modeling (CEAM) maintains a weather database specifically designed for input27

into the PRZM model. Information on how to obtain the MRLA based weather database can be obtained28
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from  www.epa.gov/epa_ceam/wwwhtml/ceamhome.htm. 1

3.10.6.2 Foliar Residue Databases2

OPP has developed a method for estimating initial pesticide residues on various types of foliage that3

involves multiplying maximum or typical initial residue values normalized to an application rate of 1 lb4

ai/acre by the application rate. Maximum and typical normalized fresh weight values are: for short grass5

(240 and 125 ppm), for long grass (110 and 92 ppm), for leaves/forage (125 and 35 ppm), and for6

pods/fruit (12 and 3 ppm). The normalized values were derived from data compiled from the literature by7

Hoerger and Kenega (1972) and from recommendations from Fletcher et al. (1994) based on the far8

greater and more recent foliar residue data contained in the University of Oklahoma UTAB database. In9

evaluating the EPA methodology, Pfleeger et al. (1996) generated additional foliar residue data for 610

pesticides applied to 15 plant species.11

OPP does not currently have access to the UTAB database or the raw data generated by Pfleeger et al.12

(1995), but is currently evaluating options for gaining access to it.  13

Willis and McDowell (1986) performed a literature review on the interception of pesticides by crops, and14

on the persistence of pesticides on foliage.  In cases where a reviewed article did not contain an estimated15

half-life, Willis and McDowell calculated one based on tabular or graphical data and an assumption of16

pseudo first order kinetics.  For purposes of tabular presentation and discussion, Willis and McDowell17

divided the pesticides for which data were reported into the following chemical family categories:18

organochlorines, organophosphates, carbamates, pyrethroids, and other (which consist of miscellaneous19

fungicides, insecticides, and herbicides). 20

  21

The Beril foliar residue database is a compilation of mostly day 0-1 foliar residue data from over 50022

international references primarily from the 1970s and 1980s.  Data for numerous crops, pesticide active23

ingredients, and formulations are included. Data are generally expressed as mg/kg fresh weight, but are24

occasionally also expressed as ug/cm2 leaf surface area. 25

As previously indicated, EFED has required and/or received approximately 45 terrestrial ecological26
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residue/effects studies covering 15 pesticides.  The studies involve treating fields with maximum allowed1

numbers of applications and application rates. Various environmental media (including soil, water,2

vegetation, birds, mammals, and occasionally amphibians) were sampled at various sampling intervals. 3

The samples were analyzed for the parent and occasionally for major degradates as well. Observed effects4

on non-target organisms were also reported. OPP is currently developing a database to house the data5

from the ecological field studies. 6

3.10.6.3 Insect and Other Terrestrial Invertebrate Residue Databases 7

A large number of bird and mammal species eat primarily terrestrial invertebrates (insects, spiders,8

earthworms, etc.) and consequently, estimation of residue levels on/in invertebrates is crucial to an9

assessment of dietary exposure of wildlife.  Even among bird species in which the adults eat mainly plant10

material, young are usually fed mainly invertebrates in order to satisfy their high demands for protein (Gill11

1989).  12

Terrestrial invertebrates may come into contact with pesticide residues in a variety of ways, including via13

ingestion of contaminated food and/or soil, walking on or crawling through contaminated vegetation or14

soil, and by being directly sprayed.  Because routes of exposure are varied and chemical uptake rates are15

dependent upon life history and behavior factors that are either highly variable or poorly understood, it is16

difficult to model the processes that result in residues in/on invertebrates.  The most straightforward17

approach to the problem is to obtain and use actual field measurements.  However, measurement of18

residues in/on invertebrates is not part of the standard data development requirements for pesticides, and19

as a consequence, such data have traditionally not been available to risk assessors.  20

Because of the lack of direct measurements, current EPA assessments use residue data for plants as a21

surrogate for invertebrates.  Kenaga (1973) suggested that residue levels deposited on invertebrates22

subjected to a direct spray application should be similar to that of plant parts with a similar surface area to23

volume ratio. On that basis, he further suggested that small insects should have residue levels immediately24

after application similar to forage crops (legumes) such as alfalfa, and large insects should have residue25

levels similar to fruits and seeds.  Following this suggestion, EPA has established nomogram values26

(predicted residue per 1.0 lb/acre applied) of 135 ppm for small insects and 15 ppm for large insects,27
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based on the nomogram values recommended by Fletcher et al. (1994) for forage (legumes) and fruit,1

respectively.  2

Recently, a substantial data base of field measurements of residue levels in invertebrates has become3

available.  Fischer and Bowers (1997) compiled measurements made in terrestrial field studies conducted4

by industry in the late 1980's and early 1990's.  This data base included measurements made within 24 h5

of 175 foliar applications and 56 soil applications to actual field study sites.  Descriptive statistics (mean,6

standard deviation, etc.) of these data sets are given in Table 3.10-1.  Measurements at foliar sites were7

close to the Fletcher nomogram model estimates for fruits which EPA has assumed are a surrogate for8

large insects, but much less than the corresponding nomogram values for forage crops which EPA has9

assumed are a surrogate for small insects.  For example, Fletcher et al. (1994) reported a mean and10

standard deviation residue level per 1 lb/acre applied in/on fruits of 5.4 and 9.8 ppm respectively.  The11

comparative values measured by Fischer and Bowers for invertebrates were 5.7 and 9.2 ppm,12

respectively.  Measured residues in invertebrates at sites where applications to the soil were made were13

much lower with the mean in these cases being <1 ppm.  It is not surprising that these levels were lower14

since incorporation of the chemical into the soil mechanically, or via watering, “dilutes” the amount of15

residue that is likely to contact invertebrates crawling on or in the soil at these sites.    16

The invertebrates in these studies were mostly collected in pitfall traps set immediately after application17

and retrieved the next morning, or by sweep netting the top of the treated vegetation a few hours after18

application.  These collection methods have potential biases that should be considered prior to using these19

data sets as a basis for setting probabilistic distributions of potential residue levels in invertebrates. For20

example, a net swept against the surface of treated vegetation is likely to remove dislodgeable residues21

and these residues may in turn adsorb to the surface of insects caught in the net.  Thus, these insect22

samples might have artificially inflated pesticide concentrations.  On the other hand, an opposite bias may23

be associated with pitfall trap samples.  This is because although some individuals falling into the traps24

“rain down” from the vegetation upon death after an insecticide application, most probably fall in while25

walking across the ground.  In the case of insecticide applications, which represent the vast majority of26

samples in Fischer and Bower’s data set, the most highly exposed individuals are expected to 27



Table 3.10-1.  Pesticide residue levels measured in terrestrial invertebrates (mostly arthropods)
sampled within 24 h of 231 field applications.  (Derived from data sets of Fischer and Bowers,
1997).

Application
Type

Distribution N
Residue level (ppm) per 1.0 lb/acre applied

Mean Stan
Dev

Geometric
Mean

Minimum Maximum

Foliar Lognormal 175   5.7  9.2   2.1     0.04   54.0   

Soil-
incorporated

Lognormal 56 0.60 3.4   0.04   0.00   25.2   

Table 3.10-2.  Pesticide residue levels measured in adult and larval insects confined to the spray
swath during foliar applications to experimental field plots.  (Derived from data sets of Brewer et
al., 1997).

Insect Type N
Residue level (ppm) per 1.0 lb/acre applied

Mean Stan
Dev

Geometric
Mean

Minimum Maximum

Adult crickets and beetles 5 3.7  2.1   2.7     0.38   5.4    

Larval armyworms and
beetles

5 2.3  2.8   1.4     0.33   7.2    
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become immobilized and therefore have a lower chance of encountering and falling into a pitfall trap.  If1

this was true, the residue levels in pitfall trap samples might by biased on the low side.  2

An independent study has been conducted that controls for these sources of bias and allows one to judge3

their likely significance in the Fischer and Bowers data set.  Brewer et al. (1997) conducted small plot4

residue trials with several compounds specifically to obtain measurements of residues in invertebrates5

(Table 3.10-2).  In these trials, adult insects (crickets and/or beetles) and “wormy” larvae (beet6

armyworms and/or beetle larvae) were placed just prior to application on the ground or on vegetation7

within a spray swath and confined there until they were collected several hours later.  Mobile individuals8

(i.e., adults) were confined to the spray path by pinning them to vegetation or placing them in enclosures. 9

Residue levels in these samples fell well within the range of observations in the Fischer and Bowers data10

set.  The average values for both adult insects (3.7 ppm) and larvae (2.3 ppm) were below the average of11

the Fischer and Bowers data set (5.7 ppm).  This finding is inconsistent with the potential concern that12

Fischer and Bowers’ data are biased on the low side due to the use of pitfall traps as a collection method. 13

The Fischer and Bowers data set therefore appears to be suitable for use in defining probabilistic14

distributions of potential residue levels in invertebrates.    15

3.10.6.4 Water Residue Databases16

 The STORET database is maintained by the U.S. EPA/OW and contains a vast amount of general water17

quality and pollutant monitoring data (including for various pesticides) for many sampling sites for up to18

> 30 years.  STORET information can be obtained at www.epa.gov/OWOW/STORET/. 19

The USGS National Water Quality Assessment Program (NAWQA) is an ongoing program to monitor20

the surface water and groundwater within 60 study units (representing 60 river basins and/or aquifers)21

widely spread throughout the U.S.  Summaries and raw data for the first 3 years of sampling of the 2022

study units in the first group are available on the internet at water.wr.usgs.gov/pnsp/.  Although the23

NAWQA Program is providing a vast amount of data on pesticides in surface water, the utility of the data24

for terrestrial exposure assessments is somewhat limited by the data all being for flowing water instead of25

for ponds and lakes.26
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The ongoing USGS Toxic Substances Hydrology Program is also a substantial source of data on1

pesticides in the surface water of the Midwest, Mississippi Delta, and the Mid-Atlantic Coastal Plain. 2

Data summaries and publication lists can be obtained at toxics.usgs.gov/toxics/regional/agchem-3

midwest.shtml and at toxics.usgs.gov/toxics/regional/cotton.shtml.  Although the much of the pesticide4

data from the Toxic Substances Hydrology Program has also focused on flowing surface water, some5

data have also been collected on reservoirs and lakes.6

Greater details on pesticide fate and residue databases are provided in Appendix C8.7

3.10.7 Recommendations for Improving Estimates and Determinations of Pesticide Concentrations8

in Environmental Media9

Listed below are a number of problems associated with estimating and/or determining pesticide10

concentrations in environmental media and recommendations for alleviating them.11

3.10.7.1 Deficiencies in Existing Models12

Based upon the literature reviews by Golder Associates (1997), Jorgensen (1995), and our analysis of13

existing models, there do not appear to be any terrestrial exposure computer models currently available14

that could be used to adequately generate distributions of pesticide residues in, and doses from, all15

relevant environmental media for use in probabilistic terrestrial exposure and risk assessments.  16

Long Term Recommendations - Deficiencies in Existing Models:  A terrestrial exposure computer model17

needs to be developed that could be used to adequately generate distributions of pesticide residues in and18

doses from all relevant environmental media for use in probabilistic terrestrial exposure and risk19

assessments. The model should have the capability of estimating plant growth and distributions of20

pesticide residues in bulk soil, soil pore water, bulk plants, dew, puddles, ponds, air within the canopy,21

vertebrates, foliar and soil surface insects, worms, other soil invertebrates, and subterranean insects from22

both spray and granule applications. It should also have the capability of simulating bird and other23

terrestrial wildlife behavior/movement and of generating distributions of pesticide doses for those24

organisms from plant, insect, and invertebrate ingestion; dew, puddle, and pond water ingestion; air25
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inhalation, and dermal contact with various contaminate environmental media.    1

As previously discussed, there are several existing models which could possibly serve together as a good2

foundation for the residue component of such a model.  Other existing models could possibly serve3

together as a good foundation for the dose and animal movement/behavior component of a terrestrial4

exposure model.   5

Interim Recommendations - Deficiencies in Existing Models:  For interim spray residue estimates, PRZM6

3, AgDRIFT, and EXAMS can probably be provided with adequate Monte Carlo simulation capabilities7

long before a new terrestrial exposure model can be developed.  Although they cannot currently be8

coupled to Monte Carlo software such as @RISK or CRYSTAL BALL, the cost of developing software9

to do so is probably relatively low.  The FIFRA Model Validation Task Force has funded the10

development of an interface between PRZM 3 and CRYSTAL BALL. If the existing models are provided11

with adequate Monte Carlo simulation capabilities, they can be used to generate interim level 1 single12

value estimates and level 2 distributional estimates of residues on/in soil, on/in plants, in water, and in air13

within the canopy until a new terrestrial exposure model is developed. 14

Until PRZM 3, AgDRIFT, and EXAMS are provided with adequate Monte Carlo simulation capabilities,15

at least two options should be considered for generating interim level 1 single value estimates and level 216

distributional estimates of residues on/in soil, on/in plants, in water, and in air within the canopy.  One17

option is to use the current versions of PRZM 3, AgDRIFT, and EXAMS (despite their limited to no18

Monte Carlo simulation capabilities) to generate level 2 distributional estimates by running them19

deterministically over multiple years and sites.  The distribution of outputs generated by running the20

models deterministically over multiple years and sites should adequately reflect natural year to year21

variations in weather at a given site and natural variability in average values across sites..  Furthermore,22

nonsensical combinations of inputs that are sometimes present in Monte Carlo simulations due to23

inadequate and/or inaccurate accounting for correlation can be avoided.  However, unlike with Monte24

Carlo simulations, the distributional outputs will not reflect natural variability and/or measurement25

uncertainty in sensitive input variables within sites.  26

The other option is to use simpler mass balance based equations (discussed in Appendix C9) in27
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conjunction with deterministic outputs from AgDRIFT to generate interim level 1 single value estimates1

and level 2 distributional estimates of residues on/in soil, on/in plants, and in water, until PRZM 3,2

AgDRIFT, and EXAMS are provided with adequate Monte Carlo simulation capabilities.  Such equations3

can be easily entered into spreadsheets and readily undergo Monte Carlo simulations with the use of4

Monte Carlo software such as @Risk, Crystal Ball, or DistGEN.  The problems with such equations are5

that they are not coupled to weather, do not account for the effects of weather and hydrology on residue6

levels, and do not consider as many factors affecting residue levels as do PRZM 3 and EXAMS. Simple7

mass balance differential equations and their solutions for various environmental media are provided for8

possible interim Level 1 and Level 2 assessments in Appendix C9. 9

For interim granule residue and dose estimates, it may be possible to use the Dow/Elanco, Fischer, and10

Best  model.  For interim dose estimates, it may be possible to use the bird spray exposure model PARET11

and the bird granule exposure model developed by Dixon et al. (1998). 12

3.10.7.2  Fate and Residue Data Gaps for Vegetation, Insects and Soil Invertebrates13

There is a general lack of data on uptake by plants, volatilization rates from vegetation, dissipation rates14

on/in vegetation, washoff from vegetation, and fate in insects and soil invertebrates.  In addition,15

databases of time zero and time series pesticide residue data for vegetation and insects/soil invertebrates16

need to be expanded and based upon dry rather than wet weight.  Such major foliar and invertebrate fate17

and residue data gaps make it difficult to accurately estimate pesticide concentrations on/in vegetation ,18

insects and soil invertebrates using computer modeling. 19

Recommendations - Fate and Residue Data Gaps for Vegetation, Insects, and Soil Invertebrates:20

Development of a laboratory or greenhouse terrestrial microcosm fate study that focuses on foliar and21

insect/invertebrate processes, expansion of the scope of terrestrial field dissipation studies to include a22

greater emphasis on foliar and insect/soil invertebrate processes and interim procedures for estimating23

foliar fate parameters from other data need to be considered.24

(1) The Environmental Fate and Technology Team within the EFED should be asked to develop draft25

guidance on conducting laboratory, greenhouse, or small scale outside terrestrial microcosm fate studies26
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that focuses on foliar and insect/invertebrate as well as soil fate processes.  Such studies should include1

the use of radiolabeled material and the generation of mass balance. EFED should then be asked to2

submit the draft guidance to OECD as a candidate for an OECD fate guideline.3

(2) EFED is currently working with Canada on draft guidance for conducting terrestrial field dissipation4

studies that will include a greater focus on foliar processes.  Expanding the scope to also include the5

sampling and analysis of insects and soil invertebrates is being considered. The draft guidance will be6

submitted to OECD as a candidate for an OECD guideline.   7

(3) In the interim, attempts should be made to correlate foliar fate parameters such as the overall foliar8

dissipation rate constant, the volatilization from foliage rate constant, and the washoff extraction9

coefficient with other fate properties.  Fate parameters which should be considered for correlation with10

foliar fate parameters include dissipation rate constants in soil, photodegradation rate constants,11

hydrolysis rate constants, Henry's Law constant, and the octanol/water partition coefficients. Correlations12

with properties of the formulation and/or additives such as surfactants may also be necessary.  Although13

developing a regression model for estimating foliar dissipation rates appears to be a difficult task, it is14

needed because the default assumption that the foliar dissipation rate is equal to the dissipation rate in soil15

appears to be overly conservative in most cases.16

A number of correlations relating uptake by plants to fate parameters such as the octanol/water partition17

coefficient are already in the literature.  (See Section 3.10.2 and Appendix C4). 18

3.10.7.3 Fate and Residue Data Gaps for Soil and Water 19

Fate and residue data gaps for soil and water include:20

(1) Frequently inadequate fate data to extrapolate transformation rates in one soil or water/sediment21

system under a narrow range of experimental conditions (such as those for temperature and soil moisture)22

to other soils or water/sediment systems.23

(2) A general lack of data on adsorption/desorption kinetics. The assumption by most models of chemical24
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equilibrium between soil and water may be a major source of error in some cases. 1

(3) The number of sampling intervals is generally too low to estimate rate constants for their formation2

and decline of degradates.  (See Section 3.10.4 and Appendix C6.)  In addition, separate metabolism3

studies on the degradates are seldom performed.  Consequently, it is generally not possible to use4

modeling to estimate the concentrations of major degradates in the soil. 5

(4) Field data on concentrations of pesticides in soil are fairly extensive due to terrestrial field dissipation6

studies which are required by OPP for many terrestrial uses.  However, due presumably to non-uniform7

applications and/or to inadequate numbers and size of samples and/or inadequate numbers and timing of8

sampling intervals, the data are frequently too variable or inadequate to adequately characterize the9

dissipation of the parent and the formation and decline of degradates.   10

(5) Most of the available data on pesticide residues in surface water are for flowing water.  Data on11

pesticide residues in ponds, puddles, and dew on foliage are more appropriate for use in terrestrial12

exposure assessments. 13

Recommendations - Fate and Residue Data Gaps for Soil and Water:  The recommendation numbers14

below correspond to the problem numbers above:15

(1) The September 1997 draft OECD guideline for conducting laboratory transformation in soil studies16

does recommend conducting studies on 4 different soils which represents a vast improvement on current17

OPP guidance requiring only one soil.  However, OPP is also recommending to OECD that at least as an18

option, studies also be conducted at various moistures and temperatures. 19

The July 1997 draft OECD guideline for conducting laboratory transformation in water/sediment studies20

does recommend conducting studies on 2 different water/sediment which represents an improvement on21

current OPP guidance requiring only one water/sediment system.  However, OPP is also recommending22

to OECD that 2 additional water/sediment systems (to give a total of 4) also be included.23

(2) OPP has recommended to OECD that the determination of adsorption/desorption rate constants be24
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included in the final OECD Guideline 106 for Adsorption/Desorption.  PRZM3 and EXAMS do not1

currently simulate adsorption/desorption kinetics primarily because such data are rarely available.  If2

adsorption/desorption data became routinely available, the models could be readily modified to simulate3

at least first order adsorption and desorption kinetics.4

(3) OPP has recommended to OECD that the additional sampling intervals necessary to better quantify5

the formation and decline of major degradates be included in OECD guidance for conducting laboratory6

transformation in soil and water/sediment studies.7

(4) EFED is currently working with Canada on draft guidance for conducting terrestrial field dissipation8

studies that will strengthen guidance on ensuring more uniform applications, adequate numbers and sizes9

of samples, and adequate numbers and timings of sampling intervals.  10

(5) Guidance for sampling ponds (when available), puddles and dew should be considered for inclusion in11

the guideline being currently developed for conducting terrestrial field dissipation studies.12

3.10.7.4 Fate and Residue Data Gaps for Air13

As previously mentioned, literature data on pesticide concentrations in air are somewhat limited and are14

generally on high use herbicides in the mid-west, in California, and around the Great Lakes (Majewski15

and Capel 1995).  Data on pesticide concentrations in air derived from OPP- required studies are also16

limited. Volatility from Soil studies have only been infrequently required.  Worker Inhalation Exposure17

studies are called for more frequently, but only for pesticides thought to be of potential risk to humans. 18

Data collected from worker inhalation studies may be of use in estimating average pesticide19

concentrations in air during application (though at a sampling height generally higher than the air inhaled20

by mammals and birds on the ground).  However, such studies generally provide post-application data for21

only one or two days corresponding to proposed re-entry intervals.  Consequently, such studies will22

generally be of little value for estimating post-application declines in pesticide concentrations in air.  As23

previously mentioned, there is very little information on foliar volatilization rate constants and they are24

difficult to separate out from overall foliar dissipation rate constants.25
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Recommendations - Fate and Residue Data Gaps for Air:  The guidance for conducting terrestrial1

microcosm and field dissipation studies should include conditional provisions for the collection of air2

samples at a number of sampling intervals and heights, and analysis of the samples for parent and major3

degradates.  The emphasis on air sample collection should be on sampling within canopies.  Based upon4

the data, fluxes and foliar volatilization rate constants should be estimated when possible. 5

3.10.7.5 Selection and Fitting of PDFs for Modeling Input and Residue Data6

The generation of distributions of estimated pesticide concentration versus time series in environmental7

media from Monte Carlo computer simulations requires the selection and fitting of PDFs to sensitive8

input variables such as initial residue values, dissipation rate constants, and equilibrium partition9

coefficients.  In many cases, the available data are inadequate to accurately select and fit PDFs to it. 10

Recommendations - Selection and Fitting of PDFs for Modeling Input and Residue Data: Existing11

databases containing time zero and time series or rate constant data on pesticide residues on/in12

environmental media such as vegetation and insects/soil invertebrates need to be analyzed and expanded. 13

Databases containing information on modeling inputs also need to be analyzed and expanded.  Existing14

data needs to be properly divided into categories such as the plant categories recommended by Hoerger15

and Kenega (1972) and chemical families as was done by Willis and McDowell (1986).  Goodness of fit16

software that can be run iteratively need to be used to help select and fit (parameterize) PDFs to17

distributions of modeling input and to properly categorized distributions of initial pesticide residues in18

environmental media.19

3.10.7.6 Establishing Correlations Between the Input Variables for Monte Carlo Simulations 20

To avoid the random formation of nonsensical combinations of input values during Monte Carlo21

simulations, any correlations between sensitive input variables need to be accurately determined and22

preserved during the random sampling.  The data and/or resources necessary to do so is often lacking. 23

Recommendations - Establishing Correlations Between the Input Variable  for Monte Carlo Simulations:24

Sensitivity analysis need to be performed to focus resources and analysis on sensitive input variables.  An25
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effort should be made to obtain the necessary data and resources to adequately characterize (and preserve1

during random sampling) correlations between sensitive input parameters. 2

3.11 OUTPUTS FROM AND INPUTS TO AN EXPOSURE ASSESSMENT3

The primary output of a probabilistic exposure assessment for a given pesticide is a dose PDF for each4

pesticide use area and non-target species/population of concern.  This section will describe how a dose5

PDF can be estimated with a Monte Carlo simulation using as input, distributions of animal characteristics6

affecting dose and distributions of parameters that affect pesticide concentration versus time series in7

environmental media. 8

3.11.1 Monte Carlo Based Generation of a Dose PDF9

A dose PDF is generally obtained by performing a Monte Carlo simulation. In a Monte Carlo simulation,10

statistical distributions in the form of PDFs and/or empirical non-parametric distributions are assigned to11

one or more of the input variables affecting dose (the output variable). The computer algorithm used to12

estimate values of dose from a dose equation is then run numerous (generally thousands of ) times.  For13

each of the runs, the values of the input variables for which statistical distributions have been assigned are14

randomly selected from their distributions. The random selection of input values for each run gives15

different combinations of input values and therefore a different resulting dose estimate for each run.  The16

thousands of runs results in a dose PDF.  17

As can be seen from the dose equations in Sections 3.4 - 3.9 as well as the pesticide concentration18

equations in Section 3.10 and Appendix C4, input variables for which a PDF or empirical non-parametric19

distribution can be assigned include: 20

• One or more animal characteristics affecting dose (such as food ingestion, water ingestion and21

body weight), and/or 22

• One or more parameters affecting pesticide concentration versus time series in environmental23

media (such as initial concentrations, plant biomass, dissipation rate constants and equilibrium24

partition coefficients).25
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To generate dose PDFs using Monte Carlo simulations, it is obviously necessary to use a fate model with1

the ability to run Monte Carlo simulations. In addition, any substantial correlations between input2

variables must be taken into account to avoid nonsensical input combinations.3

3.11.2 Statistical Distributions of Pesticide Residue and Fate Data4

In cases where the available pesticide residue and/or fate data are adequate to do so, the frequency5

predictions for various intervals by various PDFs and the same PDF with iterative changes in the initial6

estimates of distribution parameter values can be compared to actual frequency of data within the7

intervals to determine the PDF and the parameter values of the PDF that best fit the observed data.  One8

of the most frequently used goodness of fit tests is the chi-square test.  The chi-square statistic upon9

which the test is based is given by (Ott 1995):10

         j=m11

O2 = ' (Oj - Ej)
2/Ej                                                                                                         (3.11-1)12

         j=113

where,14

O2 = chi-square statistic15

j = index for different intervals16

Oj = observed cumulative fraction of data in interval j17

Ej = PDF estimate cumulative fraction of data within interval j18

m = number of intervals19

The chi-square test is used to determine the probability that a PDF does not fit the data.  Because the chi-20

square statistic increases with increasingly poor fit (Ott 1995), it can be also be used to rank PDFs as21

indicated by the magnitude of the chi-square statistic.22

Software designed specifically for Monte Carlo simulations such as @RISK and CRYSTAL BALL23
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include as standard or as optional modulars, algorithms for fitting PDFs to observed data. 1

The lognormal distribution is the one most commonly used to describe environmental data (Ott 1995). 2

However the normal, uniform, and triangular distributions are also frequently used.  Although caution3

should be observed in selecting a distribution in cases where the available data are inadequate to4

adequately test it, there is some justification in selecting the lognormal and in some cases the normal5

distribution to describe limited sets of environmental data (Seiler and Alvarez 1995).  However, Seiler6

and Alvarez (1995) are highly critical of the frequent use of the uniform and triangular distributions as7

default distributions to describe limited or no environmental data. That is due in part to discontinuities in8

those distributions.9

For some input variables, the available data may be adequate enough to statistically fit it to a PDF for use10

in Monte Carlo simulations. For other input variables, the data may not be adequate enough to fit it to a11

PDF, but is adequate enough to accurately compute a mean and variance. In such cases it may sometimes12

be possible to assume a PDF type such as the lognormal distribution based upon any literature that13

indicates that the data for that variable generally fits well to a specific type of PDF. The mean and14

variance can then be transformed to estimate the values of the PDF parameters. For any input variables15

for which the data and literature are too limited to generate either a best fit or hypothetical PDF, an16

empirical non-parametric distribution or a single value will have to be used in the Monte Carlo simulation.17

3.11.3 Hypothetical Lognormal PDFs for UTAB Time Zero Foliar Residues18

Although the raw time zero foliar residue data in the UTAB database is not currently available to19

determine a best fit distribution for the data, Fletcher et al. (1995) did provide the arithmetic means and20

standard deviations of UTAB data for the Hoerger and Kenega 1972 crop categories (Table 3.11-1).  For21

illustrative purposes, we have computed the ln transformed means and standard deviations from22

Equations 1.6-3 and 1.6-4 (Table 3.11-1) and used them to generate hypothetical lognormal distributions23

of time zero foliar residue data for each of the categories as shown in Figures 3.11-1 and 3.11-2. 24

As can be seen from Figure 3.11-1, the theoretical lognormal distributions for the long grass, leafy, and25

forage categories are somewhat comparable whereas the one for short grass is26



Table 3.11-1) Arithmetic (mx and sx) and lognormal transformed (my and sy) means and standard
deviations for time zero foliar residues for the plant categories recommended by Hoerger and
Kenega (1972). Arithmetic values are taken from Fletcher etal 1995.  Transformed values are
computed from equations 193 and 194.  Values are for applications of 1 lb ai/acre and are in ppm
(mg/kg) wet weight.

Category    mx     sx    my      sy  Max  Min

Short Grass  84.8   60.3   4.24  0.640  194  15.3

Long Grass  36.0   40.6   3.17  0.906  197  0.12

Leaves  35.0   45.0   3.07  0.988  296  0.23

Forage  45.0   56.7   3.33  0.975  350  0.05

Pods /Seeds   5.4    5.9  0.809   1.07  24.0  0.05

Fruits   5.4    9.8  0.958   1.21  40.7  < DL
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 substantially different.  It is substantially shifted to the right thereby indicating substantially higher time1

zero values for short grass than for the other categories.  As can be seen from Figure 3.11-2, the2

theoretical lognormal distributions for fruit and for pods/seeds are also somewhat comparable with time3

zero residue values being much smaller than for the other plant categories. 4

Figures 3.11-1 and 3.11-2 support the  Fletcher et al. (1995) recommendations that the forage and leaf5

categories be combined into a single broadleaf category and that fruits and pods/seeds be combined into a6

single category. However, the long grass distribution actually appears to be more comparable to the one7

for the leaf category than the one for the forage category that Fletcher et al. recommended be combined8

with the leafy category. 9

3.11.4 Hypothetical Lognormal PDFs for Foliar Dissipation Half-lives10

Willis and McDowell (1986) reported arithmetic means and standard deviations of dislodgeable and total11

foliar dissipation half-lives for 4 different chemical families (Table 3.11-2).  For illustrative purposes, we12

have computed the ln transformed means and standard deviations from equations 1.6-3 and 1.6-4 (Table13

3.11-2) and used them to generate hypothetical lognormal distributions of dislodgeable and total foliar14

dissipation half-lives for 4 chemical classes as shown in Figures 3.11-3 and 3.11-4. 15

As can be seen from Figure 3.11-3, the theoretical lognormal distributions of dislodgeable foliar half-lives16

are similar for carbamates and organophosphates but are substantially different for organochlorines and17

for pyrethroids.  As can be seen from the arithmetic means in Table 3.11-2 as well as by the shift in Figure18

3.11-3, pyrethroids are the most persistent chemical family with respect to dislodgeable residues followed19

by the organochlorines. 20

As can be seen from Figure 3.11-4, the theoretical lognormal distributions of total residue foliar21

dissipation half-lives differ substantially for the 4 chemical classes.  As can be seen from the arithmetic22

means in Table 3.11-2 as well as the shifts in Figure 3.11-4 compared to Figure 3.11-3, half-lives are23

somewhat longer for total residues than for dislodgeable residues.  Also, the pyrethroids followed by the24

organochlorines again are generally more persistent than the25



Table 3.11-2) Arithmetic (mx and sx) and lognormal transformed (my and sy) means and standard
deviations for dislodgeable and total foliar dissipation half-lives for the plant categories
recommended by Hoerger and Kenega (1972).  Arithmetic values are taken from Willis and
McDowell 1986.  Transformed values are computed from equations 193 and 194.  Half-lives are
in days.

Carbamates Organochlor Organophos Pyrethroid

Dislodge

   mx        2.3     3.4     2.5     4.9 

   sx    2.3     2.7     2.8     2.3

   my    0.486     0.979     0.510     1.49

   sy    0.833     0.699     0.902     0.446

Total

   mx    2.7     5.8     3.3     5.9

   sx    1.2     6.0     2.6     5.0

   my    0.903     1.39     0.952     1.504 

   sy    0.425     0.853     0.649     0.736
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 organophosphates and carbamates. 1

Variations of reported foliar half-lives for the same chemical are often comparable to variations within the2

same chemical families and sometimes even across chemical families.  Also, most foliar half-lives are less3

than two weeks even for chemicals with much higher half-lives in soil and for chemicals with wide4

variations in other fate properties as well.  That makes trying to develop regression equations to predict5

foliar dissipation half-lives from fate properties such as half-lives in soil, photodegradation half-lives,6

Henry's Law constant and the octanol water partition coefficient difficult.  However, attempts will7

continue.  In any event, assuming that the foliar half-life is identical to the soil half-life as is frequently8

done appears to be overly conservative in most cases.9

3.11.5 Hypothetical Lognormal PDFs for Chlorpyrifos Half-lives in Soil and Soil/Water Partition10

Coefficients11

Based upon chlorpyrifos data provided by Laskowski (1998), arithmetic means and standard deviations12

were computed as follows for chlorpyrifos:13

• Half-lives in laboratory aerobic soil metabolism studies and terrestrial field dissipation studies,14

• Soil/water partition coefficients (Kds) in  laboratory adsorption/desorption studies, and 15

• Organic carbon normalized soil/water partition coefficients (Kocs) in laboratory16

adsorption/desorption studies (Table 3.11-3).  17

For illustrative purposes, we have computed the ln transformed means and standard deviations from18

equations 1.6-3 and 1.6-4 (Table 3.11-3) and used them to generate hypothetical lognormal distributions19

of those chlorpyrifos variables as shown in Figures 3.11-5 and 3.11-6.  For the final report, we hope to20

have determined the actual distribution types that best fit the chlorpyrifos fate data and present them as21

examples instead of the hypothetical lognormal distributions (unless the lognormal distributions are the22

best fit distributions).23



Table 3.11-3) Chlorpyrifos arithmetic (mx and sx) and lognormal transformed (my and sy) means
and standard deviations for laboratory aerobic soil metabolism half-lives, terrestrial field
dissipation half-lives, soil/water partition coefficients (Kds), and organic carbon normalized
soil/water partition coefficients (Kocs).  Data are from Laskowski (1998).  Transformed values are
computed from equations 193 and 194.  Half-lives are in days.  Kd and Koc values are in L/kg.

  m(x)   s(x)   m(y)   s(y)   Max   Min

Aer t1/2   28.7   31.8   2.96  0.895   120   1.6

Terrt1/2    27   24.2   3.00  0.768    91    4

  Kd   106   87.4   4.40  0.720   400   13

0.01*Koc   79.5   72.1   4.07  0.775   310   9.7
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3.11.6 Lognormal CDFs for Invertebrate Residue Data1

Although it is customary to express the statistical distributions of input variables as PDFs, they can also2

be readily transformed to and expressed as their corresponding CDFs and readily transformed back to3

PDFs. Examples are as follows.4

The measurements contained in the Fischer and Bowers data sets were provided by the authors to the 5

Terrestrial Work Group.  Following the approach taken by Hoerger and Kenaga (1972) and Fletcher et6

al. (1994), the authors normalized invertebrate residues to a 1.0 lb/A application rate.  The combined data7

sets include measurements made within 24 h of 231 applications under a wide variety of environmental8

and agricultural conditions as part of 24 field studies of 10+ active ingredients.  Observations were sorted9

from smallest to largest and cumulative exceedence probability curves (i.e., probability of equaling or10

exceeding a concentration) were plotted (Figs 3.11-7 and 3.11-8).  The exceedence probability curves11

appeared to follow lognormal distributions (r2 = 0.99 for foliar applications, r2 = 0.96 for soil12

applications, p < 0.01 in both cases).  Mean values were 5.7 ppm and 0.6 ppm for foliar and soil-13

incorporated applications respectively.  However, because distributions were lognormal, the geometric14

mean is a better representation of the central tendency of these data.  Geometric mean values were 2.115

and 0.04 ppm, respectively.  For foliar applications, the residue level per 1.0 lb a.i./acre applied in/on16

invertebrates had approximately a 50% chance of exceeding 2 ppm, a 10% chance of exceeding 16 ppm,17

and a 5% chance of exceeding 23 ppm.  For soil applications, the residue per 1.0 lb a.i./acre applied in/on18

invertebrates had approximately a 50% chance of exceeding 0.03 ppm, a 10% chance of exceeding 0.519

ppm, and a 5% chance of exceeding 1.3 ppm.  20

For screening assessments, a 5 or 10% exceedence value (i.e., a residue level expected no more than 5-21

10% of the time) may be selected from these distributions and used as a high-end estimate of residue22

levels in invertebrates.  Such values would be analogous to the Fletcher nomogram values (Fletcher et al.23

1994) currently used by EPA for plant matrices.  For higher tier exposure assessments, lognormal24

distributions with means and standard deviations listed in Table 3.10-2 may be used as an input into a25

simulation model.   26
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Fig.3.11-7.  Exceedence Probability Curve for Residue Levels Measured in Invertebrates Collected within1
24 h of Foliar Applications.  Data (N=175) from Fischer and Bowers (1997).  A log-linear regression2
demonstrated a highly significant relationship (r2 = 0.99,  p < 0.01).  3

Fig. 3.11-8.  Exceedence Probability Curve for Residue Levels Measured in Invertebrates Collected4
within 24 h of Soil Applications.  Data (N=56) from Fischer and Bowers (1997).  A log-linear regression5
demonstrated a highly significant relationship (r2 = 0.96,  p < 0.01).  6
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3.11.7 Distributions of Biological Factors Affecting Dose 1

Information concerning distributions for biological factors affecting dose is limited. However, many of2

those factors such as food ingestion rates, water ingestion rates, inhalation rates, and skin surface areas3

can be estimated by substituting the body weight into equations provided in the EPA Wildlife Exposure4

Handbook and included in Sections 3.4 through 3.9. Therefore, in cases where distributions of the body5

weight can be estimated, distributions of the various biological factors depending on body weight can also6

be estimated.7

3.12 LEVELS OF REFINEMENT FOR EXPOSURE ASSESSMENT8

The preceding sections have shown how each input to the equations for exposure may be estimated in a9

number of ways. These range from simple, generic, deterministic estimates suitable for screening10

assessments, to very refined estimates using information specific to the scenario under consideration and11

taking more account of variation and uncertainty. These methods can therefore be organized into a series12

of ‘Levels of Refinement’, as illustrated in Table 3.12-1 for exposure through contaminated food.13

Methods for estimating exposure by other pathways can be organized in a similar way. 14

It is envisaged that organizing assessment methods into Levels of Refinement may help assessors to15

keep track of the status of the assessment and decide which parts of the exposure estimate to refine at16

different stages. The Terrestrial Workgroup intends that the Levels should be used in a flexible way,17

with different parameters being treated at different Levels according to the needs of the individual18

assessment. The process of refining the assessment is considered in more detail in Chapter 6. 19

Level 1 is intended as a simple Screening Level Assessment. The inputs are point estimates, though some20

represent conservative assumptions rather than average or typical estimates. The output at Level 121

comprises point estimates of dose for each time scale (short, medium and long-term as discussed in22

Chapter 2). The purpose of Level 1 is to assist the assessor in deciding which routes of exposure, if any,23

are significant enough to warrant more detailed analysis at higher levels of refinement.24

Level 2 is intended to introduce simple distributions, either hypothetical (if data are not available 25
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Table 3.12-1.  Summary of levels of refinement for the estimation of exposure via contaminated food. Exposure by other pathways1
may be treated in similar ways.2

Parameter3
                Level 1 Level 2 Level 3 Level 4

PT –4
proportion of5
food from6
treated area7

• Conservative assumption-
PT=1 (100% of food
obtained from treated area)

• Allow PT < 1, i.e. take
account of untreated
area.

• Use existing information
and expert judgment to
estimate distribution of
PT 

• If appropriate, take account
of time spent in drift zone
and residue levels there

• Field data on actual PT
in relevant conditions 

• Landscape models using
GIS to overlay animal
movements on residue
distributions

TFIR – total8
food intake9
rate (dry10
weight)11

• Use existing estimates of
intake, e.g. Nagy’s
equations

• Adjust to conservative
assumption (e.g. 3 x
average daily intake)

• For medium/long-term
exposure, assume feeding
rate constant over time

• Estimate distribution
based on confidence
intervals for Nagy’s
equations

• Allow food intake to
vary over time 

• Estimate distributions of
TFIR from original data on
FMR, GE and AE (Eq. 3.6-
11)

• Take account of mixed diets
• Assess relative frequency of

short-term scenario (e.g.
gorging behavior)

• Field data on actual FIR
in relevant conditions

PD –12
proportion of13
diet from each14
food type 15

• Conservative assumption –
diet consists entirely of the
food type with the highest
residues

• Hypothetical
distributions based on
published data 

• Consider seasonal
variations

• Obtain raw data underlying
published values and use to
estimate distributions for
relevant scenarios

• Field data on actual PD
in relevant conditions 

FDR – Fresh16
to dry weight17
ratio.18

• Use average estimates for
relevant food types, from
the literature

• Use confidence limits for
these estimates to define
hypothetical distributions 

• Obtain raw data underlying
published values and use to
estimate distributions

• Field data on actual FDR
in relevant conditions 

• Consider dessication of
food items (e.g. dead
insects)
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AV  -1
avoidance2

• Conservative assumption-
AV = 0 (animal does not
avoid contaminated food)

• Estimate AV from food consumption in dietary toxicity
tests to decide whether avoidance may be important in
short- and long-term exposures.

• Conduct special studies
with captive animals to
quantify the distribution
of AV under the range of
relevant conditions.
Separate studies required
for short- and long-term
scenarios 

C, residues in3
food.4

• Estimate initial residues
from application rate using
empirical relationship (e.g.
Fletcher et al.)

• Estimate dissipation over
time using data from Willis
& McDowell, or soil
degradation

• For vertebrate prey, model
intake and depuration to
estimate body burden

• Models (under
development)

• Use hypothetical
distributions for initial
residues and
dissipation based on
confidence limits from
literature, if available

• Models (under development)
• Obtain raw data underlying

published values and use to
estimate distributions

• Field studies to validate
and/or calibrate models,
or measure distributions
of C in relevant
conditions

W, body5
weight 6

• Use average estimates for
relevant species, from the
literature

• Use confidence limits
for these estimates to
define hypothetical
distributions 

• Allow for age/sex differences 
• Obtain raw data underlying

published values and use to
estimate distributions

• Field data on actual W in
relevant conditions

OUTPUT OF7
EXPOSURE8
ASSESSME9
NT 10

• Dose estimates are
conservatively high due to
conservative assumptions
for PT, TFIR, PD, AV and
C

• Point estimate of dose for
short-term exposure

• Time series of point
estimates of dose for
medium and long-term
exposures

• More realistic
estimates based on
approximate
distributions for some
parameters

• Distribution of doses
for short-term
exposure

• Distribution of doses
for each time point in
medium and long-term
exposures

• As for Level 2, but taking
account of additional factors
(e.g. drift zone, mixed diets)
and using better information
for input distributions

• Estimate frequency as well as
magnitude of short-term
exposures

• Distributions of doses
over time based on field
data for specific
scenarios.  

• If landscape models
used, output could
include maps of spatial
distributions of exposure
at different points in
time.
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to develop distributions) or based on summary statistics from the literature, such as means and standard1

deviations. The input distributions are generic, i.e. applicable to a wide range of pesticides and scenarios,2

and not specific to the assessment in hand. For medium and long term exposures, the output at Level 23

and above is a distribution of doses at each point in time (e.g. daily). The purpose is to help the assessor4

to begin taking account of variability and uncertainty, and to identify (with the aid of sensitivity analysis)5

which parameters are most important so that they can be targeted in further refinement if necessary. 6

Level 3 provides for further refinements in parameter estimation and the quantification of uncertainty.7

Distributions are still generic and based on existing data, but are based on the original data rather than8

summary statistics. The data may be used directly to provide an empirical distribution or standard9

distributions may be selected (e.g. normal, lognormal etc), based on statistical tests of goodness of fit.10

Again, sensitivity analysis may help to decide which parameters to refine further, if any.11

Level 4 is intended to focus on site- and species-specific conditions relevant to particular risk assessment12

scenarios. It may often require the generation of new data, including field studies focussed on providing13

the specific information which is required. However, it is expected that only a small proportion of14

assessments will proceed to Level 4. Even when this is necessary, only a few critical parameters will15

require estimation at Level 4, with the others continuing to be treated at lower Levels. If an explicit16

spatial model (e.g. GIS) is used, the outputs could include maps of the spatial distribution of exposure at17

different points in time (e.g. daily).18
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4.0 EFFECTS ASSESSMENT1

2

4.1 OBJECTIVE AND SCOPE OF EFFECTS ASSESSMENT3

4

4.1.1 Introduction5

6

An effects assessment quantifies the relationship between the dose administered (e.g.7

dermal, oral) or the concentration of a pesticide in media (e.g. air, food) and the effects8

endpoint. The objective is to evaluate and present measures of effects in a way that they9

can, in conjunction with the exposure assessment, be related to assessment endpoints and10

ultimately to management goals.  This requires the use of dose-response studies conducted11

under controlled laboratory conditions using standard laboratory animals. The results are12

then “extrapolated” to a focal species in a field situation, thus defining the effects profile.13

(See Figure 4.1-1.) This transition from a laboratory-derived dose-response to an effects14

profile has traditionally assumed a one to one relationship with little accounting for the15

variables which will affect the toxicological response.16

17

The purpose of this chapter is to (1) identify and quantify the sources of uncertainty and18

variability involved in defining the effects profile and (2) to identify and propose the data19

requirements, the methods, and the algorithms which provide measures of the nature and20

magnitude of the effects.21

22

The output of the effects assessment is an effects profile that estimates the probability and23

magnitude of a specified effect to a species or taxonomic group at a given level of24

exposure along with the uncertainty of that estimate. The effects profile quantifies the25

relationship between exposure to the pesticide and the assessment endpoint. If the focus of26

the assessment endpoint (i.e. the species of concern) is the same as the species tested in a27

toxicity study, the effects profile may be the same as the dose-response relationship28

derived from the study.  More often, however, the assessment is focused on species that29

are not likely to be tested; therefore the effects profile needs to account for the various30
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Figure 4.1-1. Transition from laboratory-derived dose-response to an effects profile.
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sources of uncertainty known to exist in estimating toxicity (Figure 4.1-1). Consequently, the1

nature of the effects profile varies with the amount of data available, the desired level of certainty2

for the analysis, and the nature of the assessment endpoints.3

4

Although some sources of uncertainty can be incorporated into the effects profile, other sources5

remain that are not quantified and difficult or impossible to address. One of the greatest unknowns6

is the relationship between laboratory results and effects in the field. This is a major problem, not7

only for probabilistic assessments, but also with the current use of the quotient method. Although8

it is possible to apply a known quantity of pesticide and document resulting effects, the exposure9

to individual animals at a field site varies greatly and is not directly quantifiable. Consequently, the10

relationship between laboratory tests and field responses can only be defined crudely. Other11

unquantified sources of uncertainty include the differences in inherent sensitivity between12

laboratory and field populations, the representativeness of the exposure scenario simulated in the13

laboratory, and the variable influence of stress of captivity on toxic responses among species.14

15

4.1.2 Overview16

17

4.1.2.1 Route of Exposure18

19

Although the Terrestrial Workgroup focused on the oral route of exposure for purposes of20

developing probabilistic models, it was recognized that dermal or inhalation exposure may be21

important in the field in some cases.  The role of the route of exposure is discussed in Section22

4.1.3.1.23

24

4.1.2.2 Data Needs25

26

The robustness of the effects assessment is determined by the quantity and quality of the data.27

For many new pesticides only a single toxicity value may be available, or there could be a much28

more extensive data set in the case of many existing pesticides.  Ultimately the data base has a29

controlling influence on the assumptions necessary to generalize from test species to focal species,30
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and the resulting uncertainty associated with such extrapolations.  Further, the assessment is1

dependent on the level of uncertainty considered acceptable (i.e precision of the estimate of2

effects) and the specificity of the assessment endpoint(s).  Laboratory toxicity tests provide the3

most common effects data available. Current test requirements, their design, and suitability for4

probabilistic assessments are examined in Section 4.2.5

6

4.1.2.3 The Dose-Response Relationship7

8

The basic element of an effects assessment for direct short-term direct toxicological effects is the9

dose-response relationship derived from acute oral or dietary tests with laboratory test species.10

The dose-response relationship describes dependence of measures of effects, usually mortality, on11

exposure to a pesticide over time.  Each test provides a quantitative description of this12

relationship for one species under the conditions of the test. For any given dose, the dose-13

response for an acute study gives the probability that an individual will be killed at that dose, so14

that the dose-response is inherently probabilistic.  In addition, the parameters of the dose-response15

(e.g., LC50, LD50, or slope) will be subject to various uncertainties.  Sources of uncertainty16

include the statistical error associated with an individual study (conventionally represented by17

standard errors and confidence intervals) and various extrapolations (e.g., laboratory to field or18

across species).  This variability and uncertainty can be expressed in the form of distributions that19

can be used in probabilistic assessments in place of the point estimates such as an LC50 or LD50.20

21

4.1.2.4 Factors That Influence the Dose-Response Relationship22

23

Several factors limit the ability of laboratory-derived dose-response models to predict the24

magnitude and extent of effects on natural populations. The relationship between laboratory tests25

and field responses can only be defined crudely because of the inability to clearly define the26

relationship between laboratory results (the dose-response relationship) and effects in the field.27

Field investigations can quantify effects on non-target species following the application of a28

known quantity of pesticide.  However, exposure of individual animals at a field site is not29

quantifiable.  Therefore a dose-response relationship can not be directly determined.30
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1

Other sources of uncertainty in laboratory to field extrapolations include the differences in2

inherent sensitivity between laboratory and field populations, the adequacy of the exposure3

scenario simulated in the laboratory, and the influence of the stress of captivity on the toxic4

response of test species. Furthermore, factors such as differences in age sensitivity, nutritional or5

breeding status all can affect the vulnerability of individuals to a stressor. The most important of6

these factors are examined in Section 4.4 for their effect on the variability in sensitivity within7

populations. Unfortunately too little is known to currently propose ways to quantify the8

uncertainty associated with each one.9

10

As noted previously, assessments are most often required for focal species for which toxicity data11

are not available.  Interspecific variability is a factor that introduces uncertainty in the dose-12

response relationship.  Variation among species in sensitivity to pesticides has been demonstrated13

to be substantial and may be the greatest source of uncertainty in providing effects estimates of14

untested species. To interject a level of predictability in the effects assessment, the uncertainty15

associated with extrapolating effects on test species to the focal species must be considered.16

Methods for including this uncertainty in probabilistic assessments are discussed in detail in17

Section 4.5.18

19

4.1.2.5 Higher-tier Dose Response Methods20

21

Currently, the dose-response relationship is usually quantified using the probit model, where that22

model can be fitted to the data.  Sometimes only a LC50 or LD50 is available.  As well as23

discussing how to use probit results in a probabilistic analysis (or results of some other empirical24

model such as the logistic model), this chapter discusses at some level a variety of more refined25

options that may be considered for higher-tier assessments.  In particular, incorporation of26

pharmacokinetic information may be desirable at higher tiers (Section 4.1.3.3).27
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4.1.2.6 Sublethal and Indirect Effects1

2

A full accounting of sublethal effects resulting from sublethal exposure is generally lacking.  These3

effects may result from intoxication related to the mechanism of action of the pesticide, side4

effects unrelated to the toxic mechanism (e.g. egg shell thinning resulting from DDT exposure), or5

second generation effects.  If information is available, it may not be quantifiable and thus may6

have to be dealt with qualitatively.  A discussion of the scope of sub-lethal effects and their impact7

is discussed in Section 4.3.8

9

In this same section the indirect effects of pesticides are also discussed. These occur when the10

direct toxic effects of pesticides on individuals of a species have consequences unrelated to the11

toxic effect of the compound on other individuals of the same species or other species. While12

these effects are well beyond the capacity of existing probabilistic risk assessment methods, they13

should be acknowledged.14

15

4.1.2.7 Completing the Effects Assessment16

17

The estimated dose-response relationship for a species of concern conceptually may be derived as18

follows:19

20

DRRj= DRRtested * IntraF * InterFj * SublF21

where,22

DRRj    = dose-response relationship for species j;23

DRRtested = dose-response relationship for one or more tested species;24

IntraF = intraspecific factor is a unitless index reflecting the range of variation among25

studies, among age groups, etc. (default = 1);26

InterFj =     interspecific factor is a unitless index to account for variation among species;27

the index may be specific for species j based on body size (Baril and Mineau 1996)28

or known relationship to tested species (index = 1 if species j is the tested species);29

SublF =     sublethal factor is a unitless index to account for observations of sublethal30
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effects in laboratory toxicity tests that may have ecological implications in the field,1

(default = 1).2

3

In addition to serving as a conceptualization of sources of uncertainty and variability, this scheme4

has been implemented partially in a quantitative manner.  Multiplicative, stochastic factors can be5

generated corresponding to a subset of the components indicated.  Levels of complexity may be6

added to this formula as the assessment process moves through succeeding levels of refinement.7

Section 4.6 discusses the process of moving through progressively more complex levels of effects8

assessment, where the type and amount of data used changes and the uncertainty accounted9

increases and/or is reduced.10

11

4.1.3  Scope of Effects Assessment12

13

From the time pesticides are applied and the residues settle on the landscape to the time when a14

toxic response is induced in wildlife, a complicated chain of events takes place. This sequence,15

illustrated in Figure 4.1-2, involves16

17

• A route of exposure (oral, dermal, inhalation), which determines how and when the18

individuals are exposed and the rate and amount of uptake occurring;19

20

• The  pharmacokinetic properties of the chemical within the test organism, which determines21

the rate of accumulation and elimination of the internal dose; and22

23

• The interaction of accumulated dose with the target site, which causes the toxic response.24

25

This sequence of events has a time scale, ranging from minutes to weeks, and is strongly affected26

by numerous factors, some inherent to the biological characteristics of the species, and others27

which originate from the environmental conditions in the field. As can be deduced from Figure28

4.1-2, there are innumerable combinations of time scale, pharmacokinetic properties and routes29
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Figure 4.1-2   Sequence of events leading to a toxic response in exposed birds1
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 of exposure not to mention the other variables. When products are tested for their toxicological1

effects only three sequences of the numerous possible scenarios are examined:2

3

Test Route Time scale Toxic endpoint

Acute oral LD50 Oral minutes (or less) Mortality

Acute dietary LC50 Oral days (5) Mortality

Avian reproduction Oral weeks (20) Reproductive endpoints

4

Furthermore, the variables that may affect the results are controlled under laboratory conditions.5

Thus, extrapolating study results on test species to the focal species in the field includes not only6

the consideration of the numerous variables not dealt with in the studies, but also the route of7

exposure, time scale of exposure, and uptake as these factors relate to the dose calculations in the8

laboratory and in the field.  The routes of exposure, the units of dose used in the effects9

assessment and how they relate to time scale, and alternate methods to arrive at the dose are10

discussed in the next section.11

12

4.1.3.1 Routes of Exposure13

14

The current testing with birds is conducted through oral dosing. However, the dermal route of15

exposure can be the dominant route for certain compounds and/or particular use circumstances.16

(Driver 1991.) Yet, standard risk assessment practices have not taken into account the other17

potential routes such as dermal and inhalation, and testing of compounds via other routes is18

presently not considered. One can argue that situations where testing through dermal or inhalation19

is likely to be more relevant to the particular assessment have not been identified. Furthermore, it20

could be argued that interpretation of the results would be more difficult because of the added21

difficulty of quantifying the exposure end of the assessment. Finally, more may be22

gained from the modeling efforts described in Section 4.1.1.3 , where dose is calculated as a body23

burden.  At this point, the exact route of exposure of the study becomes of less important and24

determinations of accumulated dose become more important.25

26
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Much could also be learned from examining the results of mammalian studies.  The Terrestrial1

Workgroup decided to focus mainly on the oral route since the studies currently available involve2

oral routes of exposure. The Workgroup also believed that the findings regarding this form of3

exposure should be applicable to other routes for the purpose of demonstrating the feasibility of4

conducting probabilistic assessments.5

6

4.1.3.2 Time Scale and Dose Calculations7

8

The importance of time scale and the options available to consider time scale for assessment9

purposes are discussed earlier in Chapter 2. Three time scales, which correspond to realistic10

exposure scenarios, are proposed in that section. This is very relevant to the calculation of dose11

from studies with the test species and the determinations of the matching exposure regime12

expected with the focal species. The difficulty comes from the studies themselves since, except for13

the acute oral study, the exposure is through the food and the amount of residue consumed by test14

individuals cannot be reliably determined.  (See section 4.2.) This means that only the LD50 study15

provides information relevant to one of the proposed time scales and the associated exposure16

calculations. The single “bolus” exposure of the study is relevant to birds gorging on food, for17

diurnal feeding peaks, baits, granules, seed treatments and scenarios of secondary poisoning. For18

the other exposure scenarios, medium and long term, difficulties arise when trying to match19

dosing regime from the appropriate studies to the exposure predictions. The latter are calculated20

on the basis of mg of chemical per kg body weight per day.  For medium and long term scenarios,21

the best way to express exposure is to determine the cumulative dose consumed over a period of22

time t.  For medium term scenarios, it then remains to match the cumulative dose calculated for23

t=5 days with the equivalent cumulative dose from the LC50 study.  For long term scenarios, the24

cumulative dose calculated for t=20 weeks is matched with the equivalent cumulative dose from25

the reproduction study.  Unfortunately these options are currently limited by the inability to26

determine dose ingested over time for these two latter studies. Given this limitation three options27

are proposed to deal with this issue:28

29
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• Modify existing studies to accommodate individual-based determinations of daily food1

consumption,2

3

• Use group mean estimates of food consumption from existing studies to obtain approximate4

estimate of dose consumed over time and assume 100% assimilation and 0% depuration, and5

6

• Adopt a modeling approach, as described in the next section, with the accompanying required7

research and studies.8

9

4.1.3.3  Distribution and Elimination Rates10

11

Health effects in wildlife exposed to pesticides occur when the chemicals interact with critical12

molecular receptors.  The amount of pesticide reaching those receptors is a function of the level13

of intake, balanced by elimination processes.  Exposures occurring from oral, dermal or inhalation14

sources are the focus of most models.  Elimination processes are generally based on established15

elimination constants that are developed using radioactivity depuration rates from animals dosed16

with radiolabeled pesticide.  (The EPA requirement for metabolism studies of pesticides that17

might occur in livestock feed, OPPTS 860.1300, results in the development of chicken excretion18

data for many pesticides, though these studies are rarely published in the open literature).  Several19

issues should be considered when using elimination rates and developing models that are reflective20

of actual elimination processes.21

22

Once inside the body, the fate of a pesticide, and its eventual absorption and elimination, varies as23

a function of the pesticide's chemical characteristics, the particular species' physiology, and the24

health status of the exposed individual.  Modeling can effectively predict pesticide levels to which25

an organism is exposed.  Modeling of absorption and elimination processes is more complex and26

requires an understanding of the chemical's distribution, storage, metabolism, binding to critical27

and non-critical sites, and elimination (Figure 4.1-3).  The importance of, and necessity for,28

determining these model inputs is dependent on the degree of accuracy that is desired to quantify29

the availability of the absorbed body burden to critical molecular receptors.30
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Figure 4.1-3  Absorption and elimination processes to consider for assessments using body1
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The maximum possible dose accessible to these receptors is that represented by total chemical1

dose entering the body through exposure pathways.  Radiolabeled pesticide studies that document2

fecal excretion of labeled parent and breakdown products provide excretion rates sufficient for3

balancing exposure rates in screening level assessments.  Should the chemical body burden reach4

levels of concern using this screening approach, more detailed analyses of the chemical's status in5

the body may be required.  The following factors reflect the more intricate series of events that6

occurs following pesticide exposure.7

8

Of the dose ingested, inhaled or placed on the skin, only a portion will be absorbed into the9

systemic circulation.  The unabsorbed chemical can be regurgitated, excreted in the feces, exhaled10

or washed from the skin.  Absorbed chemical is moved into the plasma via capillaries at the site of11

contact.  Once in the plasma, a chemical is distributed to any of a variety of peripheral sites where12

it can be stored in tissue depots, metabolized, excreted or where it may react with non-target or13

target binding sites.  The amount of chemical that actually arrives at critical receptors where it14

causes a toxicological response is generally much less than that applied at the site of exposure.15

With cessation of exposure, the presence of available chemical at the target site will generally16

decrease over time, whether the chemical actually is eliminated, degraded or stored in a tissue17

depot.  The field of physiologically-based pharmacokinetic (PBPK) modeling uses detailed18

analyses of the absorption, distribution, metabolism and excretion processes in a variety of tissues19

and "compartments" in the body to predict the levels of pesticides that will actually be present at20

critical receptors (Medinsky and Klaassen 1996, Krishnan and Andersen 1994).  Though the use21

of a "chemical in / chemical out" approach may be sufficient in a preliminary screening assessment22

of pesticide effects, assessment levels above the screening approach may require PBPK tools to23

better assess the kinetics of pesticide exposure to toxicological targets.24

25

The nature of the interactions that occur at the target site must also be considered in a dynamic26

fashion, giving consideration to whether the interaction is reversible or irreversible.  Reversible27

inhibitors, such as organochlorines and pyrethrins, act by inhibiting or altering the action of28

receptors (ion channels, signaling systems, enzyme systems) as a function of their concentration in29
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the vicinity of the receptor.  As pesticide excretion from the organism will decrease the effective1

body burden of the compound, and therefore the concentration at the receptor,an elimination2

constant in the model will adequately reflect the reduced toxicity that occurs with time.  The3

frequency and level of exposure will therefore determine the amount of toxicant at the target site.4

5

Irreversible inhibitors, though they will also diffuse away from target sites with decreased body6

burden, have a residual effect that leads to additive effects with successive doses.  The7

regeneration time of the target must be considered, in addition to dose level and frequency, when8

evaluating effects over time.  Organophosphate inhibition of acetylcholinesterase (AChE) is a9

good example of an irreversible interaction with a target receptor.  Carbamate inhibition of AChE,10

though generally considered an irreversible inhibition at acutely toxic doses, can be considered11

reversible if the interval between exposures is sufficient to allow AChE reactivation, which can12

often occur in a matter of hours.13

14

A final consideration in the assessment of the reversibility of target site interaction is the potential15

for residual effects that might occur due to the target site-pesticide interaction.  Though the16

mechanism of action of pesticides is generally assumed to be interaction with a particular17

molecular target, data show that the recovery from that interaction may not account for all of the18

potential effects that the interaction may induce.  In particular, work with organophosphate19

insecticides indicates that recovery of AChE inhibition precedes recovery from many of the20

neuropsychological manifestations occurring from the exposure.  (See Section 4.3.)21

22

4.1.4 Mechanistic and Empirical Models23

24

Current practice is to represent the results of an acute toxicity test using a median effective dose25

(LC50 or LD50).  Where the data permit, a complete dose-response curve is obtained by fitting a26

curve.  In practice usually a probit curve is fitted, determined by two parameters (the slope and27

the median effective dose).  Other functions such as the logistic are proposed on occasion.28

29
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The resulting curve can be termed an “empirical model” because the parameters are not measured1

directly.  The values are assigned using a statistical procedure that optimizes the agreement2

between observed and predicted response fractions.  A more “mechanistic” approach may involve3

a PBPK model, with parameters that are measurable physiological or chemical variables such as4

fluxes and partition coefficients.5

6

For higher tier assessments, consideration may be given to the use of a PBPK model to estimate7

the body burden or to estimate the concentration at a site of action.  Then the probit model (or8

logistic model, etc.) can be fitted using the “internal” dose generated by the PBPK model in place9

of the “external” dose that would otherwise be used.10

11

Possible advantages of such an approach could be an enhanced ability to extrapolate to field12

exposure scenarios, enhanced extrapolation across species, or better prediction of individual13

variability.  However, such advantages may depend on availability of a database of physiological14

measurements beyond that required to implement a PBPK model for a single test species.  For15

example, a PBPK may result in improved extrapolation from a test species to a focal species, if we16

have physiological measurements for both species.  Similarly, a database of measurements for a17

crucial physiological parameter may help in predicting individual variation in sensitivity.18

19

Other aspects of mechanistic modelling, which the Workgroup did not explore but recognizes as20

of possible interest for ecotoxicology, are21

22

• The movement in pharmacology towards population pharmacokinetics, an attempt to quantify23

the variation in pharmacokinetic parameters in the human population in order to address24

variation in the effects of a given drug , and25

26

• A less data-hungry approach than PBPK model, which would involve statistical fitting of a27

simplified model, e.g., a 2-compartment model.  This type of approach is common in28

pharmacology.29
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1

While it is recognized that a reliable pharmacokinetic model would be a very useful tool in higher2

tier assessments, the remainder of this section focuses primarily on use of results from standard3

toxicity calculations such as the median effective dose and slope, which will be available even in4

first-tier assessments.5

6

4.2 SUITABILITY OF CURRENT TOXICITY TESTS7

8

Three standardized avian toxicity tests (i.e., acute LD50, dietary LC50, and reproduction tests)9

outlined in Subdivision E of Pesticide Assessment Guidelines (US EPA 1982) provide the core10

data for vertebrate species in an ecological risk assessment. A wild mammal toxicity test (Series11

71-3) in Subdivision E is used only for specific assessments where additional mammal data are12

required beyond the lab rat and mouse tests from the Health Effects Division in OPP. The utility13

of these tests in a probabilistic assessment were evaluated for the (1) the suitably of the14

experimental designs to provide data required in a probabilistic assessment, and (2) adequacy of15

current toxicity tests as models for effects potentially experienced by wildlife.16

17

The utility of the tests for use in PRA is dependent, in part, on how exposure is characterized. The18

Workgroup has proposed models to characterize exposure as the dose received through various19

routes of exposure (i.e., mg/kg or mg/kg/day) rather than as a measure of concentrations available20

in the environment (e.g., ppm in food items).  As a result, the suitability of the toxicity tests must21

be evaluated for their potential to provide information on the toxicity of the chemical relative to22

dose, either in mg/kg or mg/kg/day.23

24

4.2.1 Acute Oral Toxicity Test25

26

The avian acute oral test provides a measure of acute toxicity to 50% of the test population (i.e.,27

LD50) in units of dose (mg/g body weight).  This is pertinent to situations where active ingredients28

are ingested rapidly (i.e., simulating a single oral ingestion, such as with granules and baits, or29
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when gorging on certain food types).  To calculate the dose-response curve, the test requires an1

adequate number of dose levels producing death in a portion of the test animals.  Although the2

test is designed to define the dose-response relationship with emphasis on estimating the dose3

lethal to 50% of the test population, the risk assessment objective may be to understand the level4

of exposure, which will result in any mortality (i.e. the threshold dose).  However, uncertainty5

(such as expressed by the 95% confidence interval) is much greater for estimates of the LD5 or6

LD10 compared to the LD50. To reduce the uncertainty of estimates of a threshold dose, the acute7

oral test would have to be designed to concentrate doses in the vicinity of the threshold, which8

may require a large increase in the number of animals.9

10

Additional consideration should be given to non-lethal endpoints. Sublethal effects such as11

behavioral modification or lack of fright response can affect nest attentiveness, which is relevant12

to successful rearing of young and survival.  An improved acute oral toxicity test should13

incorporate relevant sublethal observations, which are quantifiable and amenable to analysis.14

Such endpoints could include paralysis or response to stimuli.15

16

To address questions related to the range of sensitivities among species, the Workgroup17

determined that the “ up-down" tests (also referred to as Approximate Lethal Dose or ALD) on18

additional species maybe adequate to supplement data from one or more definitive acute oral19

tests. This up down test procedure allows additional species to be tested with a minimum of20

animals, because one or two animals are dosed at a time, focusing on the dose producing partial21

mortality.22

23

An important consideration in conducting the ALD test is the ability to determine a slope for the24

dose-response relationship.  The current ALD design does not determine a dose-response, and25

therefore the slope cannot be established.  It is not clear whether the current ALD test can be26

modified to determine the full dose-response and the slope without reverting to the existing design27

of the full LD50 test.  The Terrestrial Workgroup recommends that this issue of changes to the28

design of the ALD test be investigated.29
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1

One approach to creating slope estimates for these smaller data sets is based on distributions of2

natural variability and parameter uncertainty from existing data.  This approach can be particularly3

useful if the test compound belongs to a class of chemicals with existing data and the species is4

one for which data exist for comparison.  Testing of this method for concurrence with existing5

data sets will be necessary, but the approach offers a means by which the small data toxicity tests6

might provide useful data for inclusion in toxicity distributions.7

8

4.2.2 Acute Dietary Test9

10

The avian dietary test (i.e., LC50) provides an estimate of the dietary concentration (ppm) that is11

toxic to birds during a 5-day exposure followed by at least a 3-day post-treatment period. The12

mammalian toxicity test also is a short-term dietary test, but the guidelines are less standardized.13

14

There are several aspects of the avian dietary tests that limit their utility for probabilistic risk15

assessment. First, the endpoint is reported as the concentration mixed with food that produces a16

response rather than as the dose ingested (i.e., mg/kg/day). Although food consumption is17

measured, calculation of the mg/kg/day is confounded by undocumented spillage of feed18

(especially by mallards).  Also, the group housing of birds only allows for a measure of the19

average consumption per day for a group. This measure is also confounded if animals die within20

the treatment group.21

22

Second, the exposure period is fixed at five days, and thus the test is limited to providing a23

measure of effect during this arbitrary exposure period, without allowing for the differences in the24

temporal pattern of effects that may result from different modes of action.  The interpretation of25

this test is also confounded because the response of birds is not only a function of the intrinsic26

toxicity of the pesticide, but also the willingness of the birds to consume treated food.  Therefore27

the LC50 is a measure of vulnerability to the pesticide rather than a measure of inherent toxicity.28

Because, the LC50 value is partially an artifact of the study design, its adequacy as a model of29
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dietary toxicity in the field has been questioned (Mineau and Baril 1994). As Hill (1995) stated,1

"The LC50, per se, has little value as a quantitative descriptor of toxicity because far too many2

factors affect chemical fate and availability to be accommodated by any standard laboratory test".3

4

Third, dietary concentrations are held constant throughout the study. Consequently, the effects5

will be more representative for chemicals that degrade slowly or that are bioaccumulative, while6

effects for chemicals that degrade rapidly may be greatly overestimated.7

8

In the short-term, the current avian dietary test can be used to provide an estimate of the dose-9

response relationship during a five-day exposure period.  This will require an estimate of dose in10

mg/kg per bird per day from estimates of food consumption.  Clearly several other modifications11

in the study design will be required to improve its utility in predicting pesticide effects.  The test12

must be designed to account for the daily dose that produces an effect over time (e.g. a dose-time13

response relationship).  This will provide not only information on a species tolerance to a pesticide14

through a dietary route of exposure, but insights into the temporal development of effects.  The15

length of the study must be modified to accommodate the temporal pattern of potential exposure16

to the pesticide rather than basing the effects endpoint on a fixed exposure duration.  New and17

innovative analytical techniques (such as time to event or dose to event analyses) will be required18

to expand the understanding of  the dose-response relationship beyond the LC50 determination.19

20

The temporal pattern of effects could also be evaluated, as proposed through OECD, by21

calculating an incipient LC50, defined by the point in the study when the LC50 does not decrease22

by more than 10% over two days, based on a test of at least 5 days but not more than 21 days.23

As discussed in Section 4.2.1, the dietary toxicity test should incorporate relevant sublethal24

observations that are quantifiable and amenable to analysis.  Such endpoints could include25

paralysis or response to stimuli or challenges.  Lastly, the experimental design should mandate26

individual housing of test animals to allow for measures of individual food consumption to better27

facilitate a calculation of the dose-response relationship. This will require using older birds and28

de-emphasizing mortality as the only endpoint, since the response of birds may vary greatly29
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depending on the mode of action, and sublethal effects may more accurately define the hazard of1

the test material.  The proposed guideline for a dietary toxicity test being developed by OECD2

addresses many of these issues and provides an appropriate basis for designing a test that is more3

suited for a probabilistic risk assessment.  The proposed revisions are intended to address the4

deficiencies of the current test, primarily the failure of the current design to provide hazard5

information that is relevant to free-ranging birds.6

7

4.2.3 Avian Reproduction Test8

9

The avian reproduction test provides an estimate of the dietary concentration (ppm) at which10

statistically significant effects are detected on a suite of parental and reproductive parameters after11

an exposure period of approximately 20 weeks-approximately 10 weeks prior to egg laying and12

10 weeks during laying. There are several aspects of this test that limit its utility for probabilistic13

risk assessment.  The endpoints are reported as the concentration in food rather than as the dose14

ingested (i.e., mg/kg/day). Like the LC50 test food consumption is measured; but, the calculation15

of the mg/kg/day is confounded by undocumented spillage of feed (especially by mallards) and16

significant increases in food consumption once the photoperiod is extended to induce egg laying.17

The reproduction test is not designed to determine a dose-response relationship.  The study18

endpoints are the no-observable-effect concentration (NOEC) and lowest-observable-effect19

concentration (LOEC), which are a function of the selection of the dietary concentrations to test20

and the power of the test.  The effectiveness of identifying an effects threshold is highly variable21

among tests.  The NOEC could be well below the true effects threshold or represent a22

concentration that produces an effect that is not detectable given the power of the test.  Recently,23

the concept of the NOEC has been criticized by ecotoxicologists for these reasons.  Additionally,24

the test usually does not provide information to predict the magnitude of effect at a specified25

concentration or dose above the effects threshold.  An exposure assessment can calculate the26

probability of exposure exceeding the NOEC, but with current information the effects assessment27

the probability of a specific magnitude of effect cannot be calculated.  Also like the LC50, the28

avian reproduction study uses constant dietary concentrations throughout the treatment period29
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while the concentration of a pesticide in the field usually is reduced over time.  Consequently, the1

observed effects will be more representative for chemicals that degrade slowly or that are applied2

repeatedly, while effects of chemicals that degrade rapidly will be overestimated. The3

reproduction study as it was initially designed was intended for bioaccumulative chemicals and4

recommended that exposure begin well before the onset of egg production.  As such, the results5

provide little insight into the temporal development of effects, such as whether the onset of effects6

occurs rapidly after exposure or is delayed after a long period of accumulation. Mineau et al.7

(1994) in a review of reproduction studies concluded that the study, as it is designed currently, be8

recognized only as a rough screening tool.9

10

The proposed OECD guideline for avian reproduction addresses one of the points above. By11

starting pesticide treatment with birds already in egg production, the temporal onset of effects to12

egg and juvenile production can be determined. It also is designed to have increased statistical13

power over the current design. However, the OECD guideline also remains focused on14

determination of the NOEC (expressed as a dietary concentration) rather than the dose-response15

relationship and uses constant dietary concentrations.16

17

The Terrestrial Workgroup discussed study design changes which would permit a determination18

of a dose-response relationship by increasing the number of dietary concentrations in the range of19

partial effects and using regression analysis to define the dose-response relationships. These20

changes are technically feasible but require additional discussion on the specific questions to21

address, endpoints of primary interest, and statistical procedures appropriate to analyze temporal22

patterns of effects.  However, the committee ultimately concluded that uncertainties inherent in23

extrapolating from a laboratory reproduction study to reproductive effects of free-ranging birds24

with vastly different life history strategies are too great at this point to justify a major redesign of25

the current avian reproduction study to generate a dose-response relationship.  For some higher26

tier assessments it should be possible to specifically design a dose-response reproduction test that27

is predictive of reproductive effects for a specific pesticide use scenario.  For example, in28

situations where guideline reproduction studies fail to consider specific characteristics of the29
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pesticide, such as rapid degradation rate or alternative routes of exposure, an alternative avian1

reproduction study could be designed to simulate the predicted exposure profile of a pesticide for2

a specific species.  The study could be designed to develop a dose-response relationship by using3

starting concentrations that are representative of the distribution of exposure concentrations.4

Modifications to the avian reproduction test for probabilistic assessments should be coordinated5

with harmonization efforts through OECD.6

7

4.2.4 Summary8

9

The acute oral study as currently designed is suitable for use in probabilistic risk assessments, but10

is most relevant for acutely toxic chemicals that can be consumed rapidly, such granular products11

or formulations applied to food types consumed rapidly (e.g., gorge feeding). The dietary test has12

several aspects that limit its use in an effects assessment where exposure is expressed as a dose13

rather than as a dietary concentration. Both the dietary LC50 and avian reproduction studies14

could be modified to calculate dose ingested.  However, additional design changes would be15

required to improve their usefulness in PRA. The proposed OECD guidelines address several of16

these design changes, but other issues remain to be addressed in the further development of17

probabilistic risk assessments.18

19

4.3  INDIRECT AND SUB-LETHAL EFFECTS20

21

These items are discussed briefly here because research results have implicated these effects in22

documented impacts on individuals or populations.  It is necessary to identify these issues which23

currently lack adequate study, models and test data necessary to develop probabilistic assessment24

methods.25

26
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4.3.1 Indirect Effects1

2

Indirect effects of pesticide applications occur when one group of individuals, not necessarily3

exposed to a pesticide, is affected by changes resulting from direct toxicity to another, different4

group exposed and affected individuals.   For instance, if the individuals directly affected by the5

pesticide are adults caring for eggs or young, their death, lack of attention or abandonment will6

result in the death of the offspring, who may have never received any exposure to the toxic7

compounds.  This type of effect has been demonstrated under simulated and actual field8

conditions with organophosphate insecticides (Meyers and Gile 1986, Brewer et al. 1988).9

Alternatively when the individuals affected by the pesticide are another species that represents10

food, cover, competition or a predation threat to the first species, others may suffer from the loss11

of these individuals.12

13

All pesticides are intended to kill certain organisms, and those target organisms have ecological14

connections to other non-target organisms (e.g., insects used as food by birds, weed plants used15

as cover by mammals).  The best documented example of indirect effects of pesticides is the16

decline of the grey partridge in Sussex, England.  A series of studies over a 30-year period17

documented the reduction in invertebrates along the border of crop fields due herbicides and18

broad-spectrum insecticides and the subsequent effects on partridge chick survival due reduced19

insect food availability. In a recent review of 40 species of farmland birds in the United Kingdom20

(Campbell et al. 1997) the authors concluded that 50% of these were in decline. There was21

evidence of short and long term declines in the abundance of many of the types of invertebrates22

and plants on which these birds feed, and that these declines were, in part, attributable to the23

effects of pesticides.24

25

Indirect effects may be more important than direct toxicity in many pesticide use scenarios, but26

they are considerably more complex to understand and to quantify experimentally.  This is27

because the ultimate extent of indirect effects is often larger in scope than can be clearly28

determined by short-term localized field studies.  They also may result through a combination of29
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actions, including cultivation, irrigation, and the suite of agricultural chemical practices, rather1

than simply the application of a single pesticide. As a result, the pesticide registration process2

historically has not adequately addressed indirect effects, and as currently constituted, may be3

incapable of addressing them.4

5

4.3.2 Sub-lethal Effects6
7

8

In the development of an ecological risk assessment for a specific chemical, sublethal effects on9

non-target organisms pose an unpredictable scenario.  Current FIFRA registration data provide10

information on mortality and some reproductive effects, but very little data on adverse effects of11

sublethal exposures.12

13

Sublethal effects can be grouped into several categories:14

15

1) Direct effects related to the intended toxic mechanism of action,16

2) Those which are side effects unrelated to the toxic mechanism, and17

3) Unanticipated effects in progeny of exposed breeding adults.18

19

Examples of the first category are mechanism specific, with, for example, neurotoxin effects such20

as morbidity, depression,  and appetite loss in  adults exposed to organophosphates or21

carbamates, or hematocrit loss and internal bleeding of birds exposed to anticoagulants.  The list22

of anticipated sublethal effects is as long as the list of mechanisms of action.  The consequences of23

direct toxic sublethal effects may be temporary or permanent, and result in reduced fitness of24

exposed individuals with likely consequences of decreased food consumption, reduced growth,25

decreased resistance to disease, and/or increased susceptibility to predation.  This group of26

sublethal effects could be included in any risk assessment model, by incorporating a term for the27

anticipated loss of some individuals through decreased fitness.28

29

Side-effects unrelated to the intended toxic action include such consequences as eggshell thinning30
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by DDT or dicofol, an effect not related to the neurotoxic effects of these sodium channel1

disrupters.  Estrogenic effects of o,p’-DDT, methoxychlor, and lindane are also actions not2

related to the intended toxic mechanism.  Such side effects are not predictable, and can only be3

detected by empirical observation, but screening for all unanticipated consequences in adults is4

unrealistic.  FIFRA incorporated eggshell thickness screening only because of historical data5

linking DDT to effects on wildlife, and this test was included because of the importance to non-6

target birds.  Similarly, some other endocrine disruptive effects will be evaluated under the Food7

Quality Protection Act, but no universal screening for other side effects is planned.  The8

incorporation of sublethal side-effects into risk assessment models is complicated, because a9

specific element must be incorporated into the model for each identified side-effect. It is very10

important to include such effects in the risk assessment model, however, because side effects11

unrelated to the direct toxic mechanism lead to a second  universe of risk to the exposed12

population.  The eggshell thinning effects, for example, were more  important than the direct toxic13

effects of DDT as a hazard to birds in the environment.14

15

Behavioral effects of organophosphates, including suppression of incubation and nest defense, and16

alterations in migratory orientation of juvenile birds are additional examples of unanticipated17

direct side-effects.  Each of these must be included in the risk assessment separately, for a18

complete risk assessment to be constructed.19

20

The third major category includes pesticides and other chemicals which have adverse effects on21

the progeny of exposed breeding birds.  These effects are usually mediated by incorporation of22

chemical into the egg, with consequential alteration of embryonic development.  Testicular23

feminization and/or suppression of copulatory behavior in male progeny by estrogenic24

compounds, liver P450 induction by incorporation of PAH-like compounds into yolk, and25

alterations in avoidance behavior through exposure of eggs to organophosphates are examples of26

this class of effect.  These effects can be either organizational effects, which will permanently alter27

the differentiation of an organ, or they can be temporary, activational effects, with the28

physiological state of the embryo or hatchling returning to normal following metabolism or29
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excretion of the compound.  The universe of second generation side-effects is not well1

characterized, and poses a difficult problem for risk assessment.  Current FIFRA registration tests2

do not screen for side effects in birds in a rigorous manner, and completely ignore second3

generation effects.  The choice of test species in current testing is quite limited, with only4

precocial birds being examined, because of the necessity to artificially incubate eggs and rear5

young birds independently from the exposed adults within the current test framework.  Many6

known sublethal effects are missed by not evaluating the behavior of adult breeding birds, and7

most sublethal effects of endocrine disrupters are missed by not evaluating the anatomy or8

physiology of the progeny.  Development of testing procedures with passerine birds using natural9

incubation and parental care of chicks would greatly increase the breadth of detection of possible10

side-effects.11

12

There is currently a move to better quantify some of the sublethal endpoints that threaten wildlife13

species, particularly in the area of subtle and second-generation reproductive effects.14

Modification of LC50 and reproductive test guidelines, as part of the harmonization process with15

OECD, proceeds with inclusion of endpoints including quantification of food consumption,16

observance of behavioral response and expansion into less traditional species (OECD Reference).17

The Endocrine Disrupter Screening and Testing Advisory Committee (EDSTAC) was formed to18

recommend specific tests for sublethal effects of endocrine disrupting and modulating chemicals.19

The recommendations from their final report include screens for effects in hormone and hormone20

receptor levels, tissue response to modulators and, at higher tiers of assessment, avian21

reproduction testing modified to include substantial sublethal assessments in the parental, f1 and22

f2 generations (US EPA 1998).23

24

Though these testing procedures will test for specific and developmental side effects, it should be25

noted that individual specific tests will not address the general problem of screening for other26

unanticipated effects of a test compound.  It will remain a challenge to develop a protocol that27

would be universal in its ability to screen for a wide variety of unanticipated side effects.  In the28

absence of such an all encompassing protocol, there is much to be gained by increasing the29
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information gathered in conventional testing protocols and using the harmonized and1

supplemented EDSTAC protocols to better assess sublethal effects of test compounds.  Further,2

with the development of new pesticide chemistries posing unknown risks, an understanding of the3

mechanism of action of the new compounds in their toxicity to wildlife can provide additional4

insights necessary to anticipate some of the more subtle sublethal effects that can occur.5

6

Risk assessment models for birds should include elements for assessing sublethal effects.  Direct7

toxic sublethal effects could be included by incorporating an additional term in the set of8

equations assessing mortality effects.  Side-effects not related to the direct toxic mechanism of9

action will be more difficult to incorporate, but should be included when identified.  The example10

of eggshell thinning should be used as a model for inclusion into the risk assessment, and other11

side-effects, when identified, should be included in a similar manner.  Since side effects may be of12

greater hazard to birds in environmental conditions, it is highly important for any ecological risk13

assessment that they be included.14

15

The charge to the committee was to develop tools and processes that account "for direct and16

indirect effects that pesticides may cause," but went on to focus attention on direct acute and17

chronic effects on terrestrial avian vertebrates due to the limitations of time and resources for the18

committee.  As a result, the Workgroup focused attentions on improving the process for the19

assessment of direct toxicity, with the acknowledgment that indirect and sublethal effects also20

need to addressed if the pesticide risk assessment process is to understand the full ramifications of21

the use of pesticides.  It is recognized that the proposed models and approaches emanating from22

the Terrestrial Workgroup do not and cannot address indirect and sublethal effects, and that23

additional work is required before the ecological effects of pesticide use can be realistically24

assessed.25

26

4.4 UNCERTAINTIES ASSOCIATED WITH INTRA-SPECIES VARIABILITY27
28

The dose-response relationship based on a laboratory study represents the effects information for29

a single species, under the specific conditions of the study.  For an acute toxicity study,30
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evaluation of the results leads to an expression for the probability of response as a function of1

dose, which is inherently a probabilistic result (relating to variation in response within a species).2

3

Use of laboratory dose-response information in a risk assessment is subject to diverse4

uncertainties including statistical error associated with estimates (as represented by standard5

errors or confidence bounds), and an array of extrapolative uncertainties. A number of factors,6

intrinsic to the species, the test population and conditions, and the toxicity measurement process,7

can contribute variability around toxicity estimates.  An understanding of the sources of this8

variability makes possible selection and development of better data for probabilistic assessments9

and facilitates the extrapolation processes necessary for under-represented species.  This section10

documents sources of this variability and methods to account for it in probabilistic risk11

assessments.12

13

4.4.1 The Probit Model and Other Dose-Response Models14

15

A full discussion of alternatives to current use of the probit model is beyond the scope of16

ECOFRAM.  Because of the general familiarity of toxicologists with that model, it is used here17

for most of the illustrations of probabilistic calculations.18

19

The concept of a distribution of tolerances.  Even under carefully controlled laboratory20

conditions, some animals will be killed at a given dose while other survive; variability under field21

conditions is likely to be substantially greater.  It is conventional to describe the probit model by22

assuming a distribution of tolerances among individuals.  The animal’s tolerance is the highest23

dose of a pesticide it can ingest without dying.  For the probit model specifically, it was assumed24

that the tolerances have a lognormal distribution.25

26

For concreteness, assume a dietary study is available, so that the parameters are the LC50 and the27

slope.  Expressing the probit results in terms of a tolerance distribution, the distribution of logs of28

tolerances is normal with parameters:29
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1

mean=log(LC50),2

standard deviation=1/slope.3

4

(Base-10 logs are conventional in probit calculations.)  Output of SAS Proc Probit includes the5

mean and standard deviation calculated in this way.  (SAS is a trademark of SAS Inst. Inc.)6

7

For the sake of probabilistic analysis, it is sometimes helpful to note that the dose response8

function is equivalent to the cumulative distribution function (CDF) for the distribution of9

tolerances.  For any distribution, the CDF [conventionally denoted F(x)] gives the probability that10

a value drawn at random from the distribution will fall below x.  If F(d) denotes the probability11

that a random tolerance will fall below dose d, then12

13

P(mortality at dose d) = P( tolerance < d ) = F(d).14

15

The Slope Parameter for the Probit Model and Other Models.  It seems important that a large16

database of ecotoxicity results is available based on the probit model.  To use results based on the17

probit model in some alternative model (such as the logistic) would not necessarily be18

straightforward -- to use an alternative model may require fitting the preferred model to the raw19

data.20

21

This applies in particular to the slope parameter.  For the probit model, the slope expresses the22

change in response (in probit units) per unit change in dose (expressed as logarithms).  For some23

other choices of a dose-response function (and for the logistic model in particular) it is possible to24

define a slope parameter analogous to the probit slope.  However, the slope would not be25

interchangelable with the probit slope because different “probability units” would be involved26

(e.g., logits instead of probit units).  In addition, the specific version of the logistic model27

suggested in Appendix A3 does not involve logarithmic transformation of the dose, unlike with28

standard application of the probit model.29
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1

4.4.2 Sources Of Intra-Species Variability And Their Relative Magnitudes2

3

4.4.2.1 An Evaluation Of Sources Of Variability For Laboratory Toxicity Measurements4

5

Current acute toxicity testing protocols are designed so that the slope of the dose-response can be6

estimated and reported along with a measure of the statistical confidence of the estimate.  The7

question thus arises, when reporting the uncertainty associated with the slope in probabilistic risk8

assessments, on whether the error reported on the estimate of the slope accounts for all the9

sources of uncertainty expected from laboratory-derived data.  Also, the problem of the relevance10

of a slope determined on one species to all other species remains.  The variability in the response11

of the test population has many sources:12

13

• The source of the animals (genetic stock, wild-caught vs. captive-bred vs. domesticated),14

• The condition of the animals (nutritional status, incidence of disease),15

•  Environmental conditions in captivity,16

•  Method of dosing and other aspects of the experimental protocol, and17

•  Inherent toxicodynamic and toxicokinetic characteristics of the compound.18

19

Along with the differences among species in morphology and biochemical and physiological20

processes, the last variable is at the source of inter-species differences in the slope of the dose-21

response curve.  (See discussion on this in Section 4.6.)  More subtle variations in these22

characteristics are also the cause of variation between individuals within a single species.  To23

decide whether the error reported with the slope within a study is sufficient to account for all the24

uncertainty expected, four sources of variability were examined using a variety of data.  The25

results are presented in Table 4.4-1.  The four sources of variability examined were:26
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Table 4.4-1  Various sources of variability associated with the slope of the dose-response curve.1

Sources of variability Source of data Number and nature of
data points

Measure of
variability

Recorded variability

Within test LD50 historical database, multiple
laboratories, all replicates, multiple species

39 estimates of slope
and the standard error

Standard error as % of
slope

22-65%
(median=27%)

LC50 data, dieldrin positive controls (Hill
and Camardese 1986), same species

45 estimates of slope
and the standard error

Standard error as % of
slope

11-44%
(median=20%)

LC50 data, dicrotophos positive controls
(Hill and Camardese 1986), same species

28 estimates of slope
and the standard error

Standard error as % of
slope

12-31%
(median=20%)

Within laboratory LC50 data, dieldrin positive controls (Hill
and Camardese 1986), same species

45 replicate tests Standard deviation as
% of mean slope

24%

LC50 data, dicrotophos positive controls
(Hill and Camardese 1986), same species

28 replicate tests Standard deviation as
% of mean slope

26%

Among tests LD50 historical database, multiple
laboratories, same species (includes some
replicates within the same laboratory)

4 chemicals with at
least three replicates

Standard deviation as
% of mean slope

17-52%
(median= 36%)

Among species LD50 historical database 5 chemicals chemicals
with at least three

species

Standard deviation as
% of mean slope

26-122%
(median=53%)
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1.  Within-test variability.  This is the error associated with the estimate of the slope; for every1

slope reported with a standard error, the ratio of the two was determined.  The range and median2

of the ratios are reported.  For the three sets of data, the medians are approximately 20%.3

4

2.  Within-laboratory variability.  Replicate tests on the Japanese Quail, reported by Hill and5

Camardese (1986) as positive controls in acute lethal dietary tests (LC50) were examined.   While6

the variability in the response is expected to be larger for the LC50 test than for the LD50 test, it7

was the degree of replicability of the slope estimate that is examined here.  It is assumed that this8

should be the same for the two toxicity tests.  The ratio of the standard deviation of all the slope9

values over the mean of the same yields values of 24 and 26% for dieldrin and dicrotophos10

respectively.11

12

3.  Among-test variability.  The historical database of LD50 values was examined for products13

where replicate tests were conducted on the same species, including those from the same14

laboratory and those from multiple laboratories.  The ratio of standard deviation to the mean of15

the reported slopes ranged from 17 to 52% with a median of 36%.16

17

4.  Among-species variability. The historical database of LD50 values was examined for products18

where the slope was determined for at least three species.  The ratio of the standard deviation19

over the mean of the estimates for 5 chemicals ranged from 26 to 122% with a median of 53%.20

21

If the variability from differences among species is ignored, the variability within a test is not22

outside the range of the values reported among laboratories and  among tests.  This would seem23

to indicate that use of the reported error on the estimate from any given test would account for24

most of the variability expected across tests.  This is not, however, a formal statistical approach to25

this question which merits greater attention then what is given here.  At the very least, the26

standard error should be used as the measure of uncertainty surrounding the estimate of the slope,27

until further work is carried out.28

29
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This analysis provides an idea of the relative magnitudes of different sources of variation and1

uncertainty.  For additional analysis application of variance-components models may be desirable.2

Variance components models are a statistical tool adapted to quantifying the relative contributions3

of variance from different sources.  However, further analysis is significantly limited by the4

available data, so it may not be possible to pursue the analysis of sources of variability5

significantly beyond what is presented.  The ideal database for this type of analysis would result6

from systematically repeating a study, in the same and different laboratories for one chemical.7

8

4.4.2.2 Factors Influencing Intra-Species Variability9

10

The factors discussed above concerned characteristics of the dose-response of the test population11

itself.  Of equal importance are those factors which influence this response either in the laboratory12

or in the field and which can play a significant role in determining the shape of the effects profile13

for the key species.  The influence of these factors, some intrinsic to and some outside the14

population, is what has been traditionally accounted for by a “laboratory to field” correction15

factor.  In the following section the effects of the age of the birds on their sensitivity is discussed16

as this is a crucial element from the point of view of assessing population impacts.  The last17

section will briefly touch on other factors thought to influence the variability in the response of18

birds to pesticides.19

20

Life Stage Sensitivity.  Within the test species, life stage can play an important role in the level of21

chemical sensitivity.   Younger birds and mammals can be more sensitive to pesticides than their22

adult counterparts.    Other considerations, such as breeding or migration status, can also affect23

toxicity.    Documentation of these occurrences and understanding of their mechanisms are24

important to allow for adjustments in toxicity distributions and accounting for most-sensitive life25

stages. Similarly, extrapolation from tested to non-tested species must proceed carefully, giving26

consideration to the life stage of the laboratory-generated data and that of the species to which it27

is being extrapolated.28

29
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Due to their greater nutritional needs during development, young animals, overall, consume1

greater amounts of food as a function of their body weight, per day.  They are thus exposed to2

higher relative doses of chemicals compared to their parents.  In addition to their increased3

exposure levels, both mammalian and avian species have demonstrated age-dependence in their4

sensitivity to organochlorine and organophosphate pesticides.  Whether toxicity increases or5

decreases with age depends on the chemical class and species.6

7

Studies with avian species have shown mixed sensitivities to pesticides at the youngest ages of8

exposure.  Many organochlorine and a few organophosphate compounds are less toxic at the9

earliest exposure ages (1.5 days post hatch) in precocial mallards.  Most organophosphate10

pesticides, however, are more toxic to younger ducklings and become less toxic as the birds11

mature (Hudson et al. 1972).  Acute oral toxicity studies with altricial passerine species, focusing12

on European starlings and red-winged blackbirds, consistently show increasing nestling sensitivity13

to organophosphates with decreasing age (Grue and Shipley 1984, Meyers et al. 1992, Wolfe and14

Kendall 1998).  The European starling appears to be the most extreme case, with nearly a 100-15

fold increase in sensitivity to diazinon in nestlings compared to adults (Wolfe and Kendall 1998).16

In this case, increasing amounts of the enzyme, butyrylcholinesterase, protect the older starlings17

and its selective removal can experimentally decrease adult LD50 values down toward those of the18

nestlings (Leopold 1996, Parker 1998).  Little more is known about the occurrence or19

mechanisms of nestling sensitivity to the many other pesticides in use today.20

21

Data on the sensitivity or resistance to pesticides in older wildlife age groups is lacking.  The cost22

of maintaining test animals into their latter years of life and the consideration that long-lived23

animals have had adequate time to effectively reproduce prior to their exposure have likely24

minimized the effort made to collect these data.  As the concern for wildlife does not simply imply25

that they are disposable once they have successfully bred, further study is needed to assess wildlife26

at later stages in their life.27

28

There are currently insufficient data on age-dependent toxicity of pesticides to allow their29

incorporation into probabilistic risk assessments.  What little data are available indicate that30
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estimates of toxicity made for adult wildlife can underestimate the toxicity potential that exists for1

their young by a factor up to 100-fold.  A mechanism for development of these data and their2

inclusion into the risk assessment process is needed.  Until that time, assessments of pesticides3

applied during the breeding season should consider the potential for nestling sensitivity at4

exposure levels lower than for adults.5

6

Additional Factors Influencing Intra-specific Variability.  Intra-specific variability in toxicity test7

responsiveness can occur due to a variety of factors in addition to age.  These include test animal8

health, nutritional status, metabolic status and the occurrence of genetic polymorphisms.9

Deviation from standard test protocols leading to changes in test conditions can also affect the10

responsiveness of test animals and thus the comparability of generated data with those collected11

under standard conditions.12

13

The overall health of the test animals can affect their sensitivity to toxicants.  Animals in poor14

health may have less capacity to withstand insecticide exposure.  Nutritional status can also15

influence toxicity, whether considering the long-term pre-dosing period, or the 24 hours prior to16

initiation of exposure.  The pre-exposure extremes of starvation and ad libitum feeding can17

strongly affect the toxicity of an insecticide compared to animals maintained on a diet that keeps18

them healthy yet lean.  Dietary components, such as phyto-estrogens in feed, can affect animals in19

reproductive toxicity tests, altering background data or interacting with test chemicals (Donaldson20

1994).21

22

Other factors that increase intra-specific variability are those that create or account for differences23

in the physiology of test animals.  In particular, those factors that can cause changes in metabolic24

rates can influence both the profile and quantities of pesticide metabolites as well as the duration25

they are resident in the exposed animal.  Factors that can affect metabolism include age, gender,26

hormonal status, pregnancy, disease and diurnal and seasonal cycles (Ronis and Cunny 1994).27

28

Genetic polymorphisms within a species can lead to distinct sub-populations of test animals29

having specific sensitivities or tolerances to test chemicals.  These differences can have their basis30
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in subtle differences in chemical disposition or receptor sensitivity.  The development of pesticide1

resistant insect populations provided early evidence of this effect, however wild rodent2

populations that have evolved a resistance to endrin and a number of rodenticides have3

demonstrated that vertebrates contain, in their genomes, similar capabilities (Walker 1994).4

These polymorphic genes that impart resistance to one portion of a population also leave a5

portion of the population with a selective sensitivity to the same chemical.  Variability of6

polymorphism prevalence and expression in test populations can increase variability in test7

response.  Limited studies show that some wildlife test species have low occurrence of cross8

strain variability in test endpoints (Hill et al. 1984) but little work exists to allow extrapolation of9

these findings to wildlife species in general.10

11

Though the potential for increased variability exists due to the above factors, the control of test12

animal health and husbandry, and test conditions can provide stability to the test system that13

minimizes much of the potential interference.  When combined with controls on other potentially14

interfering test factors, such as ambient temperature, light/dark periods, chemical formulation and15

administration techniques, intra-species variability can be minimized to the greatest extent.16

Yet these same factors are present in wild populations and are likely influence the outcome of17

exposure to pesticides.  Currently, little is sufficiently know about the influence of these factors to18

consider incorporating this uncertainty in probabilistic risk assessments.  Nevertheless one should19

be aware that under certain circumstances their influence may be substantial and highly relevant to20

the assessment endpoint.21

22

4.4.3 Use Of Dose-Response Information In Risk Assessment23

24

In the context of probabilistic calculations, probit results of particular interest include: (1) The25

point estimates of the probit parameters (slope, median and effective dose).  These two26

parameters define the complete dose-response.  The dose response gives the probability that an27

animal will be killed at a given dose, and thus may be viewed as inherently a probabilistic result.28

(2) Confidence intervals represent the precision of the estimates of the probit parameters, taking29

into account the spacing of doses, the number of test animals used per dose, and the variability in30



4-37

the response variable.  This chapter discusses ways of using this information in risk assessment1

(See Chapter 5.)  Analogous results are available for alternative dose-response models, such as2

the logistic model; the probit model is used for illustrations of probabilistic techniques.3

4

4.4.3.1 Extrapolation of LD5’s or Other Low-response Dose Level5

6

Earlier approaches to protecting sensitive individuals involved choosing a fixed fraction of the7

median lethal dose (e.g., LD50/10) for comparison with expected environmental concentrations of8

a chemical.  This method did not incorporate chemical specific information on the slope of the9

toxicity dose-response curve, so that adverse effects at low exposures may be underestimated10

when the dose-response curve is shallow.  As an alternative, an estimate of another response level11

(e.g., LD5, LC1or LD0.01) can be calculated based on the calculated LD50 (or LC50) value and the12

slope of the probit-line (Finney 1971, Hill and Camardese 1986).  Estimates of lower-end13

response levels, based on the median lethal dose and its associated slope, provide greater14

confidence (Baker et al. 1994).  Therefore some probabilistic effect assessments have focused on15

LD5 or LD10 values as more conservative estimates in toxicity distributions.16

17

Concern over the reliability of such extrapolations arises because of variability in slope estimates18

between and within laboratories for any given chemical, and because of the relatively wide19

confidence intervals for low-toxicity dose levels.  Determinations of acute toxicity are generally20

made with measurement techniques biased toward highest statistical precision in the midrange21

value, the LD50 or LC50.  The statistical error of the estimates, quantified by the 95% confidence22

interval, increases as one moves away from the median measure.  Regulatory levels of concern set23

at 5% or 10% response values, for example, have substantially lower confidence in their estimates24

than do estimates set around the 50% range.25

26

In choosing a level of response, the need for using low levels of effect to protect wildlife should27

be balanced with lower precision for the response measure.  This variability stems from the28

parameter error associated with the determination of the slope and LD50.  This aspect of29
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paramater uncertainty is examined in Section 4.4.3.3 and a method is proposed for incorporating1

this uncertainty into probabilistic assessments.2

3

4.4.3.2  Generating Random Mortality Decisions4

5

A complete account of variability will address variability in exposure, and also address variability6

in the responses of individuals to a given exposure level.  This section is concerned with the7

second source of variability (variability of response, given exposure).  Algorithms are presented8

for generating “random mortality decisions” for individual animals.  Let d denote the exposure for9

a single animal in a Monte Carlo risk assessment algorithm.  Then the outcome of the random10

mortality decision is either that the animal is scored as “killed” or “survives.”  The probabilities for11

these two events are P(d) and 1- P(d) respectively, where P(d) can be calculated using the dose-12

response function.  (See Chapter 5.)13

14

Alternatively, in some situations where the number of individuals is large, the need for random15

mortality decisions can be avoided and the value of P(d) used directly.  Details of the Monte Carlo16

simulation scheme may depend very much on the problem formulation, particularly with regard to17

issues of spatial scale.18

19

Note that this section treats the parameters of the dose-response model (e.g., slope, LC50) as if20

they are known.  (Random mortality decisions are based on a given slope and LC50, but those21

parameters are not varied in the Monte Carlo algorithms.)  In actuality, these parameters are22

subject to a range of uncertainties.23

24

Regarding the form of P(d), the probability of response at exposure d, the range of possibilities is25

not reviewed here thoroughly.  However, two possibilities have actually been suggested in parts26

of this document.  First, for the probit model without background mortality,27

28

P(d) = Φ( slope * [ logd  - logLD50 ] )29

30
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There Φ(x) denotes the CDF of the N(0,1) distribution.  (In other words, Φ(x) is the tail area of a1

N(0,1) distribution corresponding to values below x.)  The function Φ(x) is an integral that cannot2

be solved analytically; however programs for numerical evaluation of the function are widely3

available, including “@functions” in some widely used spreadsheet programs.4

5

Second, f or a form of logistic model suggested in Appendix A3,6

7

P(d) = P1 / { 1 + exp[ ( 2.2 / ( LD10-LD50 ) ) * ( LD50 - d ) ] }.8

9

Here P1 (≤1) denotes the maximum response percentage:  as dose increases the it is assumed that10

the response percentage approaches P1, which may be less than 100%.  Appendix A3 may be11

consulted for additional details on use of this expression.12

13

Access to random number generators is assumed for : (1) a uniform distribution on the range 0 to14

1, and (2) a standard normal distribution (a normal distribution with mean 0 and variance 1).  If a15

software package has random number generators for two or more distributions, these two16

distributions will ordinarily be included. Adopting conventional notation, these two distributions17

are here denoted U(0,1) and N(0,1).18

19

Algorithm 1.   Having generated d, calculate P(d) using the preferred dose-response model (e.g.,20

the probit or logit model), a random probability decision can be generated as indicated in21

Appendix A3:22

23

Step 1: Select a random number from the U(0,1) distribution; and24

25

Step 2: If the value generated in Step 1 falls below P(d) then the animal is scored as a mortality;26

otherwise as a survivor.27

28

Algorithm 2.  In some situations (particularly for the probit model), an alternative algorithm29

emphasizes the notion of a tolerance distribution:30
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1

Step 1:  A random tolerance is generated from an appropriate distribution.  Based on the probit2

model, the following formula may be used:3

4

random tolerance = LD50 * 10( z / slope )5

6

where z has the N(0,1) distribution.  The derivation of this formula is outlined in Technical Note 17

in Appendix D1.8

9

Step 2: The random tolerance generated in Step 1 is compared to the exposure d.  The individual10

is scored as a mortality if its exposure exceeds its tolerance; otherwise it is scored as a survivor.11

12

This approach may have heuristic appeal because it relates directly to the idea of a distribution of13

tolerances.  Also, the need for numerical evaluation of Φ(x) is avoided in the case of the probit14

model.  The approach has been implemented in the PARET model (Appendix A2).15

16

Technically, this approach can be applied with dose-response functions other than probit, by17

drawing tolerances from a distribution other than the lognormal distribution.  However, it appears18

that this approach would be equivalent to Algorithm 1 in terms of the resulting distributions, but19

numerically inferior.  (See Technical Note 2 in Appendix D1)20

21

4.4.3.3 Statistical Confidence in the Dose-response22

23

The methods described to this point treat the dose response function as if the parameters (e.g.,24

slope and median effective dose) are known.  In actuality they are subject to a range of25

uncertainties.  This section is concerned with how statistical precision (as quantified by confidence26

intervals in probit analysis) can be addressed in probabilistic analyses.  Because acute toxicity27

studies are optimized for estimating a median effective dose, the uncertainties considered will be28

particularly important in extrapolating effects at low exposure levels.  This section proposes29

specific algorithms, as well as discussing some conceptual issues.30



4-41

1

The early chapters of the text by Hahn and Meeker (1991) are helpful for placing the information2

provided by confidence intervals in perspective.3

4

Cases involving extremely wide bounds for the LD50.  It has been observed that for some data, the5

confidence bounds for the LD50 may equal zero or infinity.  Such outcomes may be prevented by6

the constraints encoded in the ToxAnal program regarding the data that will be accepted.7

However, the following hypothetical data displayed below meets the constraints but produces an8

extreme bound for the LD50, relative to the point estimate.9

For the following hypothetical data, the chi-square test indicates a good fit of the probit model:10

dose:

1 2 4 8 16

#on test: 10 (all)

#killed: 3 5 7 7 7

Slope (CI) 0.88 (0.02 - 1.7)

LD50 2.3 (10-11 - 7 )

11

12

Problem cases are likely to involve little change in the response fraction over the range of doses13

tested.  Technically, the LD50 is related to the ratio of the probit intercept to the probit slope, and14

if the intercept and slope are both close to zero precise inferences regarding the ratio are difficult15

(Cox and Hinkley, 1974, Example 7.13).16

17

In this type of situation use of the point estimate of the LD50 would seem risky, but this does not18

mean that the data are useless for any purpose  (Cox and Hinkley 1974).  The hypothetical data19

just given suggests that mortality is substantial at least for the upper range of doses tested,20

possibly useful information.  The Workgroup suggests that the Monte Carlo approach described21

in the section can make use of whatever information is available from a given study.  The22
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uncertainty associated with reliance on less-than-perfect data can sometimes be placed in proper1

perspective by adopting a probabilistic approach.2

3

Natural Variability, Uncertainty, and Parameter Uncertainty.  An important distinction from the4

risk assessment literature is the difference between uncertainty and natural variability (e.g.,5

Burmaster and Wilson 1996, Brattin et al. 1996).  A rule of thumb sometimes used to understand6

this distinction is that uncertainties can be reduced by collection of more information; we seek to7

characterize natural variability.  According to this rule, confidence intervals can be viewed as8

representing a component of uncertainty (Brattin et al. 1996).  To some extent the widths of the9

intervals can be reduced (indicating greater confidence) by using more animals.  Using more10

animals is not necessarily expected to result in higher or lower values of the slope.  Specifically,11

confidence intervals can be described as quantifying a form of parameter uncertainty.  Note that12

the category of uncertainty is diverse – the Workgroup makes no claim that confidence intervals13

will capture all or most of the uncertainties that apply in a given situation.14

15

Hierarchical Monte Carlo. The parameters of the probit model can be viewed as parameters of a16

probability distribution.  (In the log10 scale, the mean tolerance is the log of the median effective17

dose (LC50 etc.); the standard deviation equals the inverse of the slope.)  However, these18

parameters are themselves subject to uncertainty.  For this type of situation, the risk assessment19

literature suggests hierarchical Monte Carlo simulation (e.g., Burmaster and Wilson 1996, Brattin20

et al., 1996).  This type of approach, sometimes described as using a “distribution of21

distributions”, involves nested Monte Carlo simulations.  In an outer loop, values of a parameter22

are drawn from distributions chosen to represent parameter uncertainty.  For each sample of23

parameter values, an inner loop involves a Monte Carlo simulation to represent variability.24

25

Can parameter distributions be based on confidence intervals?  In Monte Carlo simulations, it is26

common to select distributions based on confidence intervals, e.g., by fixing the 2.5th and 97.5th27

percentiles of the distribution at the bounds of a 95% 2-sided confidence interval.  Actually the28

standard interpretation of a confidence interval (e.g., Sokal and Rohlf 1995) treats the interval as29

random and the parameter as fixed (not having a distribution).  The intervals are viewed as30
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random because they are calculated from variable data.  According to this formulation, the1

confidence coefficient (e.g., 95%) is the probability that a randomly-generated interval will2

enclose the true parameter value.  Therefore some authors have objected to basing Monte Carlo3

input distributions on confidence intervals (e.g., Warren-Hicks and Butcher 1996).  Cox and4

Hinkley (1974) advise against manipulating confidence coefficients as probabilities, in particular5

to treat the joint uncertainty for multiple parameters.6

7

A response sometimes given invokes Bayesian theory, which does assign distributions to8

parameters (the prior distribution and the posterior distribution).  In many situations there are9

standard uninformative prior distributions for which the resulting Bayesian intervals (termed10

credible intervals) are equivalent to familiar confidence intervals.  There is no general principle11

that such a Bayesian interpretation can be given to a confidence interval calculated by any12

method.  However, there are some grounds for a Bayesian interpretation of the standard intervals13

from probit analysis (Box and Tiao 1973, Seber and Wild 1989, Gelman et al., 1995).14

15

While this is a type of Bayesian approach it is not equivalent to Bayesian analysis, Bayesian results16

depend on the choice of prior distribution.  In particular, one is relying on a very flat prior, as17

appropriate in situations where much prior information is not available or the results could be18

strongly influenced by prior information.  Some “Bayesians” would argue that prior information is19

usually available and should be incorporated into the prior distribution.20

21

Alternatively these issues may be approached from a classical viewpoint, by undertaking Monte22

Carlo “coverage” experiments.  Such experiments involve generating simulated data sets based on23

fixed parameter values, and calculating the probability that an interval calculated from a simulated24

data set will enclose (cover) the true parameter values.  If the 95% probability intervals from the25

proposed Monte Carlo method have approximately 95% coverage, then the approach should be26

acceptable from a classical viewpoint.27

28

From a practical standpoint, if the confidence intervals quantify some kind of uncertainty, an29

approach is needed to capture that uncertainty in probabilistic assessments.  When a particular30
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approach is roughly appropriate from either a Bayesian or classical perspective, the distinction1

may seem like splitting hairs.2

3

Distributions for the probit parameters.  Chapter 5 provides an illustration of a hierarchical Monte4

Carlo simulation and includes a simulation which involved the following assumptions for the5

distributions of the probit parameters:6

7

• The slope was assumed to be normal,8

• The median effective dose was assumed to be lognormal, and9

• The slope and median effective dose were assumed to be statistically independent.10

11

For the slope, the mean and variance were obtained by fixing percentiles equal to standard12

confidence bounds as output by a probit program.  Similarly, percentiles were equated to13

confidence bounds to obtain a lognormal distribution for the median effective dose.14

15

This section describes a more refined joint distribution for the two probit parameters, for the16

situation not involving control mortality.  The distributions suggested are the asymptotic17

distributions suggested in Finney (1971).  For the slope, the result will be identical to the18

distribution just described.  However the marginal distribution of the median effective dose will19

differ.  Also, the two parameters are not assumed to be independent.  The approach has been20

implemented in a spreadsheet program.21

22

Outline of the asymptotic distributions from Finney (1971).  Following Finney (Expression 4.30),23

it is convenient to “reparameterize” the probit model.  Instead of the parameters being the slope24

and the LD50, the parameters chosen are the slope (denoted b) and a quantity.  Finney denotes y ,25

evidently analogous to a grand mean in the context of ordinary linear regression.  The re-26

parameterized probit line can be expressed as:27

28

probit response = y + b ( x - x  ).29

30



4-45

Here x is the dose (ordinarily in the log base 10 scale) and x  is a weighted average dose.1

2

The purpose of expressing the probit model in this form is that b and y , unlike b and the LD50,3

can be treated as having normal distributions and as statistically independent.  Formulae for the4

variances of b and y  are found in Finney (Ch. 4) and are not repeated here.  (The variance5

formulae make use of intermediate calculations in Finney’s iterative fitting scheme.  The formulae6

are available in a spreadsheet.)7

8

The independence and normality of b and y  are convenient in deriving the standard (“fiducial”)9

confidence intervals; these features are convenient here for Monte Carlo simulation.  In Monte10

Carlo simulation values for y  and b can be generated from independent normal distributions, as11

described in the scheme below.   Having generated random values of y  and b, the value of the12

LD50 can be calculated using the formula:13

14

log(LD50) = x  + ( 5 - y  ) / b.15

16

The weighted average dose x  is not treated as uncertain in standard probit analysis.  As in17

regression, no distribution is assumed for an independent variable.  Technically, x does have a18

statistical error because it is calculated using weights that depend on the independent variable.19

20

As an approximation, it is customary to ignore this error in weighted nonlinear regression21

calculations.22

23

Application in Monte Carlo Simulation.  These results justify the following Monte Carlo scheme,24

given here in outline, applicable in cases that do not involve control mortality:25

26

Step 1. Calculate x , y , and the slope (b) from raw acute data using standard probit calculations.27

28



4-46

Step 2.  Calculate the variance of y  and the variance of b (standard probit calculations)1

2

Step 3. Repeat Steps 3a-c a large number of times, generating a distribution of parameter values:3

Step 3a. Generate a random value for y .  The random value has a normal4

distribution.  The mean of the distribution is the value calculated in Step 1;5

the variance is calculated in Step 2.6

7

Step 3b. Generate a random value for b.  The random value has a normal8

distribution.  (The mean is from Step 1; the variance is from Step 2.)9

10

Step 3c. Calculate the random LD50 from the random y  and the random b.11

12

The Marginal Distribution of the LD50.  If these expressions are used, then the marginal13

distribution of the slope is a normal distribution; for the distribution of the LD50, no distribution14

is assigned directly: distributions are assigned directly to b and y ; a random values of the LD5015

may be calculated from random values of b and y .16

17

The resulting distribution of the LD50 will often be approximately lognormal; however, in the18

historical development of the probit method, the possibility of assuming a lognormal distribution19

was considered and rejected as “unsatisfactory as a general technique” (Finney 1971,  Bliss 1945).20

However, a lognormal approximation will be accurate when the standard errors of parameter21

estimates are small.  (This seems to follow from asymptotic normality of maximum likelihood22

parameter estimates.)23

Correlation of the Slope and LD50.  When multiple parameters are estimated from the same data,24

they cannot be assumed to be independent.  SAS Proc Probit routinely prints the covariance of the25

slope with the log of the LD50.   For probit analysis, the correlation may be positive or negative,26

depending on whether the LC50 is in the upper range of doses tested or in the lower range.  (See27

Technical Note 3 in Appendix D1).28

29
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Should the probit parameters be treated as independent in Monte Carlo simulations?  Note that1

the result above applies to the correlation of statistical errors for estimates of the two probit2

parameters, when they are estimated using the results of a single study.  However, the3

distributions used in a Monte Carlo simulation may represent variation among studies.  The4

statistical correlation just discussed may have mininal affect on the correlation of actual slope and5

LC50 values across studies.6

7

The Workgroup suggests that if the Monte Carlo input distributions represent primarily variation8

among studies (particularly among species), the correlation of the parameters across studies9

should be evaluated graphically, using scatterplots.  If there is no indication of correlation across10

studies, the parameters can be treated as independent in Monte Carlo simulations.11

12

4.5 INTERSPECIFIC METHODS AND VARIABILITY13

14

4.5.1 Introduction15

16

One of the largest sources of uncertainty associated with field predictions of the impacts of17

pesticides on terrestrial animals comes from the large variability in the sensitivity of  species to18

toxic chemicals. It is well recognized that for plants and animals alike, both in terrestrial and19

aquatic environments, the range of sensitivities can extend up to three orders of magnitude. This20

is illustrated for birds in Figure 4.5-1. For 53 carbamate and organophosphate insecticides the21

LD50’s among species of birds range from 5 to over one hundred (ratio of 95th to 5th percentiles of22

the lognormal distribution). For 70% of the products this range extends between 10 and 100.23

Thus, not only can the range be wide but the variance changes dramatically among compounds.24
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Figure 4.5-1.  Range in species sensitivities for 53 
insecticides tested with at least six species of birds
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For technical and financial reasons only a few species of birds can ever be tested for their3

susceptibility to pesticides. Only rarely are test species the same as those likely to be exposed4

under field conditions. This implies that test results from one or a few standard test species need5

to be extrapolated to all field species. Given the large amounts of variability among species it is6

expected that interspecific differences in sensitivity will yield large amounts of uncertainty in the7

risk assessment process. This uncertainty can be accounted for in the process of developing8

probabilistic risk assessment methods.9

10

 This section will argue for the use of historical test data to develop standardized factors for11

extrapolating across species and to account for the expected variance among species. Taxonomic12

relationships among species sensitivity data are examined and the implications for the13

development of extrapolation methods are discussed. Two approaches are proposed, each fitting14

into one or more of the risk assessment methods discussed in chapter 5. The first approach15

consists of methods to extrapolate, from test species data, to a fixed level of protection; in this16

case, a level which encompasses 95% of the predicted species sensitivity distribution. The second17

approach generates a predicted distribution of species sensitivity again from one or more test18

species studies.19
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1

The data generated from acute oral toxicity studies (i.e. the LD50 study) conducted on birds for2

the past two decades form the basis to the development of the methods discussed here. The3

reasons for this are that (1) the acute oral toxicity study better reflects the “inherent” toxicity of a4

compound than any of the other existing acute tests, (2) a large number of tests were conducted5

on many species for numerous compounds, and (3) the methods used to conduct the LD506

studies conform to well established protocols which have changed little over time.7

8

4.5.2 Analysis of Phylogenetic Relationships among Species Sensitivity Data9
10

In order to investigate interspecies differences, it is critical to determine whether data from any11

group of species can be considered independent estimates of the toxicity of a given product to12

birds at large or whether phylogenetic aspects have to be taken into consideration.13

14

Baril et al. (1994) conducted two separate statistical analyses to detect patterns in the sensitivity15

relationships among species and to determine whether these patterns are due to phylogenetic16

relationships.  First, a principal component analysis (SAS, 1988) was conducted on a subset of a17

database of avian LD50 values. This subset of 176 LD50 values for 8 species and 22 cholinesterase-18

inhibiting chemicals was selected to avoid missing data. Principle component analysis is an19

ordination technique that allows for the visual inspection of multivariate data. Any existing trends20

in species sensitivities to chemicals should emerge by collapsing the data into a number of21

principal components. A three-way analysis of variance was also conducted on the main database22

with the exclusion of chemicals or species with only one observation and of phylogenetic groups23

with only one species. This dataset consisted of 489 observations for 74 chemicals, 25 species and24

6 phylogenetic categories. The latter were obtained by grouping the 25 species into five families25

and one sub-family: Anatidae (4 species), Columbidae (3), Emberizidae (2), Phasianidae (9),26

Icteridae (5) and Passeridae (2).27

28

The results of the principal component analysis run with eight species and 22 chemicals are29

illustrated in Figure 4.5-2. The analysis by species shows that the ranking of species sensitivities30

tends to persist across chemicals. Red-winged Blackbirds are by far the most sensitive followed,31
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Figure 4.5-2 .  Illustration of the principal component analysis run on 8 species and 22 chemicals.
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as a group, by the Common Grackle, the House Sparrow, the Mallard and the Rock Dove.  A

second group of species, the Pheasant, Japanese Quail and the Starling, trails off as the least

sensitive. This pattern is illustrated on the first principal component in Figure 4.5-2. The loadings

of the chemicals on this component (30% of the variation explained) are consistently high

indicating that these three groupings are ranked consistently across insecticides. The second and

third principal components separate out the Pheasant and Starling respectively. These

observations are most likely due to deviations from the pattern noted above, where for some

compounds, these two species are either extremely sensitive or insensitive. These "outliers" may

reflect real differences in sensitivity or problems with the studies. From a phylogenetic point of

view the only obvious separation seemed to be between the two Icteridae and the two

Phasianidae.

1

The results of the three-way analysis of variance showed that each of the three variables, species2

(F=4.2, P<0.0001), chemicals (F=21.3, P<0.0001) and phylogeny (F=7.9, P<0.0001), explained a3

statistically significant proportion of the variability. A multiple comparison procedure (Ryan-4

Einot-Gabriel-Welsch Multiple Range Test) again allowed for the statistical separation of only5

two taxonomic groupings: the Icteridae and the Phasianidae.6

7

A number of other authors have examined the phylogenetic patterns in the sensitivity of avian8

species to pesticides (Joermann 1991, Schafer and Brunton 1979, Tucker and Haegele 1971).9

These have demonstrated, as discussed above, that across many pesticides, patterns of sensitivity10

exist between some families of birds. Yet, each species shows a wide range of sensitivities among11

the same pesticides. For instance, while some are generally less sensitive than others, they can12

occasionally be ranked as the most sensitive. In conclusion, there are probably enough exceptions13

to prevent the development of a predictive approach based on phylogenetic relationships.14

Nevertheless, taxonomy has to be considered when making inter-species extrapolations.  Based on15

our analysis, at least two groupings of species, based on taxonomic relationships, can be separated16

according to their sensitivity across cholinesterase-inhibiting chemicals.17
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4.5.3 Derivation of Extrapolation Factors to Predict a Pre-detemined Protection Level1

2

4.5.3.1 An Introduction to Distribution-based Approaches to Interspecific Variability3

4

The concept of using distributions to represent the possible universe of species sensitivities to5

toxic chemicals is not new. In essence, this approach assumes that "…sensitivity of species is a6

stochastic variable that can be characterized by fitting a probability density function to test7

endpoints (e.g. LC50s) for several species…" (Suter 1993).  This concept was used in deriving8

water quality criteria for the protection of aquatic life by the U.S. EPA (Stephan et al. 1985). The9

Netherlands also uses this approach to establish protection standards for both soil (Van Straalen10

and Denneman 1989) and aquatic (Kooijman 1987) organisms. A number of probability11

distribution functions were proposed such as the log-triangular, log-logistic and log-normal.12

These differ in their shapes, in particular, at the tail-ends of the distributions. This is significant,13

especially for triangular distributions, which implies that a threshold dose or concentration exists14

below which there are no sensitive species. This implies in theory that protection thresholds can15

be defined which protect 100% of all species. The issue of threshold values for toxic chemicals is16

still the subject of debate. Work done with experimental toxicity data on aquatic invertebrates17

does indicate that there is a good fit to the log-logistic model.18

19

For obvious reasons the whole universe of wild species cannot be tested for their sensitivity to20

pesticides and therefore the true parameters of the distribution cannot be determined. Thus,21

estimates of distribution parameters based on small sample sizes have some uncertainty associated22

with them. Dutch investigators have incorporated this uncertainty in the determination of23

confidence limits for thresholds protective of a fixed percentage of  species (Van Straalen and24

Denneman 1989, Aldenberg and Slob 1993). The implication is that, for any given chemical, as25

the sample of species tested increases the protection threshold also increases.26

27

A number of criticisms have been raised regarding distribution-based extrapolation models.28

Forbes and Forbes (1993) provide a criticism of such models.  The authors question the validity of29

the assumptions inherent to these models, including that (1) "the distribution of species30

sensitivities in natural ecosystems closely approximates the postulated theoretical distribution", (2)31
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"the sensitivity of species used in laboratory tests provide an unbiased measure of the variance and1

mean of the sensitivity distribution of species in natural communities", (3) " by protecting species2

composition, community function is also protected", and that (4) "interactions among species in3

communities/ecosystems can be ignored". While these questions raise important issues, little can4

be done at this time, with current knowledge, to address them. Some of the issues surrounding the5

validity of current lab to field extrapolations can be examined in the context of intraspecific6

variability as discussed in section 4.3. In spite of these criticism it should be noted that the7

adoption of a distribution approach to dealing with species differences in sensitivity is an8

improvement to the assessment of risks to wildlife and essential to probabilistic assessments.9

10

As mentioned previously distribution-based approaches to species sensitivity are used to set11

specific protection criteria for various media in different jurisdictions. These distributions, in12

conjunction with distributions of exposure can also be used to calculate proportions of species13

affected under specific exposure models or scenarios. For products with acute oral tests (LD50) on14

four species or more the values can be fitted to a log-normal or log-logistic distribution directly.15

The parameters of the distribution are thus determined for the product undergoing assessment16

with some error associated with parameter determination that is a function of the sample size. The17

mean and standard deviations are determined directly from the data and used as inputs into the18

methods described in chapter 5 to characterize risk. With birds, the minimum number of species19

required to apply this direct approach to tackle interspecific variability was established by Luttik20

and Aldenberg (1995) at four. These authors explained that when n (the number of species) is21

small, the likelihood of underestimating the variance is very high.  Therefore, when predicting the22

5th percentile (or any percentile) of the distribution with small n, the estimate will tend to be23

closer to the mean than where the real value (for the population) lies.24

25

 Aldenberg and Slob (1993) derived a series of extrapolation constants, each of which is tailored26

to a specific n, so as to compensate for this bias. When Luttik and Aldenberg tried to use these27

same factors to obtain the 5th percentile with their data they found that when n<=4 the28

extrapolation constant are so big that the predicted 5th percentile would be exceedingly low. This29

is somewhat arbitrary and the optimum number, in terms of minimizing uncertainty while keeping30
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the amount of testing within reasonable bounds is yet to be established and will require some1

work.  (See recommendations in Chapter 7.)  For the moment, the Terrestrial Workgroup does2

support the use of this threshold of four species to establish the shape of the distribution.3

Furthermore, the relationship between body weight and toxicity needs to be considered.  (See4

discussion following.)5

6

Under current testing requirements for avian risk assessment, only one or two species are usually7

tested. This precludes the use of the distribution approach discussed above for the assessment of8

new products. The uncertainty associated with extrapolating from studies conducted on usually9

no more than two species to the universe of possible wild species is large. Two similar methods to10

quantifying the uncertainty as a function of the number of test species were proposed11

independently (Baril, Jobin, Mineau and Collins 1994, Baril and Mineau, 1996, Luttik and12

Aldenberg 1995) and are summarized below. Both of these approaches are based on (1) a13

retrospective analysis of historical data on the acute oral tests (LD50) with numerous pesticides14

and bird species, and (2) the assumption that the distribution of species sensitivities, or LD50s,15

approximates a log-logistic distribution. The objective of both methods is to derive extrapolation16

factors that, when applied to a small sample of LD50s yields an estimate of the 5th percentile of17

the predicted distribution of the species sensitivities for that product. They differ in some of the18

assumptions and variables considered: Baril and co-authors take into account the scaling of19

toxicity on body weight and the taxonomic trends in sensitivity discussed in the previous section.20

While the extrapolation factors developed by Luttik and Aldenberg are the same regardless of the21

test species, those of Baril and co-authors are specific to the test species or the combination of22

test species available.23

24

While these methods do not predict the full range of the distribution they may be useful for initial25

screening purposes of new compounds or for comparative work among many products where26

indices of effects are developed. Depending on the questions asked they may represent flags or27

benchmarks of effects in the risk characterization phase, especially where methods 1 and 2 are28

used.  (See Chapter 5)29
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1

4.5.3.2 Method developed by Luttik and Aldenberg (1995)2
3

Using a database of historical data that includes insecticides of varying modes of action, the4

authors propose an algebraic approach based on the following points:5

6

• The standard deviation of the logarithm of the LD50s is independent of the respective means7

across pesticides. A "pooled" standard deviation is thus calculated from the historical data and8

used when nothing is known about the variation in species sensitivity (i.e. when the number of9

test species data are less than 4), and10

11

• No assumption is made about which species are to be used as test species from which12

extrapolations are made. That is, it assumes that species sensitivities are randomly distributed13

without any trends or patterns associated with phylogeny. Thus it also assumes that no prior14

knowledge about the nature of the test species is necessary.15

16

The following steps were used in deriving extrapolation factors:17

Step 1: The "pooled" standard deviation is calculated from all the LD50 data across all pesticides in18

the database.19

20

Step 2: An algebraic solution is derived for the calculation of the extrapolation factor based on the21

"pooled" standard deviation and the number of LD50s available. The extrapolation factors,22

when applied to the test species data predict the 5th percentile of the log-logistic23

distribution (sensitivity across species) and the one-sided 95% left confidence limit of the24

normal distribution.25

26

The resulting calculations arrive at a constant extrapolation factor for the median estimate, the 5th27

percentile of the distribution and a series of extrapolation factors, decreasing with the number of28

LD50 values available, for the one-sided 95% confidence limit of the estimate of the 5th percentile29

of the distribution (Table 4.5-1).30
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Table 4.5-1  Extrapolation factors developed by Luttik and Aldenberg (1995) which aim to1

predict the 5th percentile of the species sensitivity distribution from one or more test species2

LD50s.3

Number of test species Median estimate 95% one-sided left

confidence limit

1 5.7 32.9

2 5.7 19.6

3 5.7 15.6

4

5

4.5.3.3 Method Developed by Baril and Mineau (1996)6
7

This approach recognizes the following points:8

9

• Phylogenetic patterns in species sensitivities do exist, although there are enough exceptions to10

prevent the development of a predictive approach based on phylogeny alone. (See section11

4.5.2.)  Nevertheless, the derivation of extrapolation factors from historical databases needs to12

recognize that standard test species are used for testing products. Therefore extrapolation13

factors, specific to commonly tested species, are derived for use with LD50s.14

• As demonstrated by Mineau, Collins and Baril (1996), the median lethal dose frequently scales15

with weight, usually to a power greater than zero. The use of toxicity measurements expressed16

in mg/kg body weight to extrapolate across species can lead to serious under-protection of17

small-bodied birds. This effect is illustrated in Figure 4.5-3, where the cumulative frequency18

distribution of the logarithm of the LD50s is plotted for the insecticide methiocarb. Once the19

values are adjusted to scale for body weight (see explanation below) and projected to a body20

weight of concern, such as that of the focal species, the curve is shifted up or down depending21

on the body weight. Thus small-bodied birds are predicted to have an increased sensitivity22

when compared to the original distribution whereas the opposite is true for the larger birds.23

The parameters of the distributions illustrated in Figure 4.5-3 are shown in Table 4.5-2. Taking24
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the body weight scaling into account shifts the mean of the distributions.1

Figure 4.5-3  Effect of scaling for body weight  
on the distribution of species LD50s for the 

insecticide methiocarb
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Table 4.5-2. Effect of scaling for body weight on parameters of the distribution of species3

LD50s.4

Original data Extrapolation to
20g bird 200g bird 1000g bird

Mean 8.7 4.3 13 27

5th percentile 1.6 1.1 3.3 7.0

95th percentile 48 16 48 101

Ratio of 5th to 95th perct. 30 14 14 14

5

but, also, removes a substantial amount of variance in the data. The ratio of the 95th to the 5th6

percentiles of the distribution decreases from 30 to 14. While it was argued that this7

relationship simply reflects the greater sensitivity of small passerines (Fischer and Hancock,8

1997), it does account for a significant portion of the variance in the data. Whatever the9

correct explanation for the pattern, by taking this factor (body weight) into account, some of10

the inherent uncertainty can be reduced.11

12

The following steps were used in deriving extrapolation factors based on a historical data base on13

cholinesterase inhibiting insecticides tested on at least six species (Figure 4.5-4):14
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1

Step 1: LD50s were corrected with the appropriate scaling factor b for each insecticide2

(LD50'=LD50/W
b)3

4

Step 2: The median estimate of the 5th percentile of the log-logistic distribution of the corrected5

LD50's is calculated for each insecticide (as per Aldenberg and Slob, 1993).6

7

Step 3: The ratio of the LD50 of a designated surrogate test species (Mallard, Bobwhite Quail,8

Japanese Quail, House Sparrow or Rock Dove, or the geometric mean of a combination9

thereof) to the 5th percentile, calculated in step 2, is determined for each compound.10

11

Step 4: A weight dependent extrapolation factor is thus derived for each testing scenario (i.e.12

specific combination of test species LD50 values) by calculating the geometric mean of the13

ratio across all insecticides, for each of the scenarios (Table 4.5-3). For single test values14

the extrapolation factor is simply applied to it. With more than one test species LD50 the15

appropriate extrapolation factor is applied to the geometric mean of the data.16

17

Since the extrapolation factors are averages, they will overestimate the real 5th percentile in about18

50 % of the cases and underestimate it the rest of the time. This uncertainty can be determined by19

calculating the standard deviation of the ratios that went into the derivation of the factor in the20

first place. Table 4.5-3 illustrates that as the number of test species increases the standard21

deviation of the ratios decreases substantially. Thus there is a benefit in increasing the number of22

species tested in that the uncertainty surrounding our predictions of the 5th percentile decrease23

substantially.24

25

26
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Figure 4.5-4. Derivation of extrapolation factors to account for differences in species1

sensitivities.2
3

For each product:4
• From the historical database correct the LD505

values to account for scaling with body weight6
such that:7

 LD50’= LD50/W
b8

 where b is the slope of the regression of Log(LD50)9
against log(body weight).10

11
• Fit the logarithm of the LD50’ to a logistic12

distribution, calculating the mean and standard13
deviation; calculate the 5th percentile’ of the14
distribution using the extrapolation constants of15
Aldenberg and Slob (1993) to adjust for the16
sample size. The correction for body weight17
carried out earlier implies that the predicted 5th18
percentile becomes itself a function of body19
weight. In fact, the whole distribution will take a20
slightly different shape depending on the weight of21
the focal species to which we wish to extrapolate22
(i.e. 20g bird vs. 200 g bird). Therefore the 5th23
percentile is re-adjusted for the body weight of24
interest:25

 5th perct.=5th perct.`* Wb26
 where W is the weight of the focal species.27

28
• Calculate the ratio ai  of the 5th percentile of the29

distribution to the LD50 of the Bobwhite Quail.30
31

• Calculate the ratio b of the mean of the32
distribution to the LD50 of the Bobwhite Quail.33

34
35

Final extrapolation factors:36
37

• Extrapolation factors are simply the average of all38
the ratios previously calculated for each product;39
thus the factor which allows to extrapolate from40
the Bobwhite Quail LD50 to the 5th percentile, EF5,41
is simply the average of all ai; similarly the factor42
which allows to extrapolate from the Bobwhite43
Quail LD50 to the mean, EF50, is simply the44
average of all bi.45

46
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1

Table 4.5-3. Extrapolation factors developed by Baril and Mineau (1996) which aim to2

predict the 5th percentile of the species sensitivity distribution from one or more test species3

LD50s. The effect of scaling for body weight was taken into account when calculating these4

extrapolation factors and those given here are predictions for 200g birds.5
Species Extrapolation

factora
N Mean

ratio
Standard deviation of

ratios (on which factors
are based)b

One species:

Bobwhite Quail 4.6 29 0.66 0.51

Japanese Quail 5.5 43 0.74 0.36

Mallard 4.9 46 0.69 0.46

Two species:

Bobwhite Quail and Japanese Quail 4.2 25 0.62 0.33

Bobwhite Quail and Mallard 4.9 26 0.69 0.36

Japanese Quail and Mallard 4.9 40 0.69 0.33

Three species:

Bobwhite Quail, Japanese Quail and
House Sparrow

4.4 21 0.64 0.28

Bobwhite Quail, Mallard and House
Sparrow

4.1 21 0.61 0.30

Japanese Quail, Mallard and House
Sparrow

4.3 33 0.63 0.26

Four species:

Japanese Quail, Mallard, House Sparrow
and Rock Dove

3.9 33 0.59 0.20

a: to be applied to the un-transformed test species LD50s; where more than one test species LD50 is available the6
factor is applied to the geometric mean of the values.7
b: Ratios and standard deviation were calculated from the logarithms of the LD50s8
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This second method for deriving factors which allows for the extrapolation of test species data to1

fixed levels of protection is dependent on extrapolation “constants” which are used in the2

calculation of the 5th percentile of a distribution (Aldenberg and Slob 1993). These constants were3

developed to compensate for the tendency of small sample sizes to under-estimate the variance4

and thus over-estimate the 5th percentile of distributions. In order to incorporate the body weight5

scaling variable another series of constants will need to be established so as to account for the6

error associated with the estimate of slope of the toxicity-body weight relationship.  (See Chapter7

7.)8

9

4.5.4 Derivation of Extrapolation Factors to Predict Distribution Parameters10
11

The preceding section discussed methods to develop extrapolation factors which, when applied to12

the geometric mean of the LD50s for one or more test species, will predict the dose which13

corresponds to the 5th percentile of the species sensitivity distribution. Using the same method14

based on historical data, the average distance between the logarithm of test species LD50s and the15

mean of the distribution can be calculated (Figure 4.5-4). This average distance becomes an16

extrapolation factor which is applied to test species LD50s to predict a mean for the distribution.17

18

Table 4.5-4 illustrates some extrapolation factors calculated from a database of LD50 values for 5619

cholinesterase-inhibiting insecticides. These calculations did not involve an adjustment for body20

weight scaling which would be required when establishing “definitive” extrapolation factors. The21

factors shown in Table 4.5-4 illustrate the taxonomic patterns associated with species sensitivity22

data discussed previously. On average the Mallard, Japanese Quail and Bobwhite Quail tend to be23

somewhat less sensitive with respect to the mean; whereas the Red-winged Blackbird and the24

Starling lie at opposite tails of the distribution. From the point of view of reducing uncertainty, it25

is not the exact value of the factor, but the error associated with its use that is of interest. This can26

be estimated by looking at the standard deviation (S.D.) of the ratios from which the factors are27

derived. For instance, Table 4.5-4 shows a lower S.D. for the Japanese Quail than for the Mallard,28

indicating that the Quail is more predictable in its sensitivity than the duck and would thus lead to29

fewer errors in predicting the mean. More relevant, however, is the30
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Table 4.5-4. Some extrapolation factors for use with specific test species values to predict1

the mean of the distribution.a2

Species Extrapolation
factorb

N Mean
ratio

Standard deviation of
ratios (on which factors

are based)c

One species:

Bobwhite Quail 0.96 30 -0.018 0.38

Mallard 0.90 49 -0.046 0.40

Japanese Quail 0.76 44 -0.119 0.30

Rock Dove 1.09 43 0.037 0.26

Red-winged Blackbird 2.27 45 0.356 0.35

House Sparrow 1.30 41 0.114 0.30

Starling 0.61 40 -0.215 0.53

Ring-necked Pheasant 0.84 47 -0.076 0.38

Two species:

Mallard and Bobwhite Quail 0.92 29 -0.036 0.23

Japanese Quail and Rock Dove 0.89 38 -0.051 0.18

Bobwhite Quail and Red-winged Blackbird 1.38 25 0.140 0.19

Three species:

Bobwhite Quail, Mallard and House Sparrow 1.01 21 0.004 0.16

Japanese Quail, Rock Dove, House Sparrow 1.03 34 0.013 0.16

a: The effect of scaling for body weight was not taken into account when3
calculating these extrapolation factors.4
b: to be applied to the un-transformed test species LD50s; where more than one5
test species LD50 is available the factor is applied to the geometric mean of the6
values.7
c: Ratios and standard deviation were calculated from the logarithms of the LD50s8
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finding that as the number of test species increases, the S.D. decreases significantly. The greater1

the number of species tested, the greater the confidence in the predictions of the mean of the2

distribution.3

4

Whereas ways are found to use historical data to predict the mean of the distribution the same5

method cannot be used to determine the variance associated with the distribution. Luttik and6

Aldenberg (1995) have argued that since the standard deviation cannot be estimated from sample7

sizes of less than four a “generic” or pooled standard deviation sp is calculated using the datasets8

of log(LD50)s for all  pesticides using the following equation:9

10
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where x, y, …, w are the respective datasets for m pesticides. The single condition the authors set13

to the use of this generic standard deviation was that the standard deviations for the historical data14

be independent of the mean of the logarithm of the LD50s. The value calculated by Luttik and15

Aldenberg was 1.071 for the ln(LD50) from a database of 55 pesticides encompassing many16

different modes of action. If the same calculations are conducted on a database of avian toxicity17

values for 56 cholinesterase-inhibiting insecticides, the generic standard deviation for the18

log10(LD50)s is 0.428. These two numbers, when back-transformed to the antilog, are essentially19

identical. This suggests that the variance to be found among compounds in the width of the20

distributions may not be introduced by differences among compounds in their mode of action.21

22

4.5.5 Points of Caution about These Methods23
24

The following important points about the distribution-based methods described above need to be25

made:26

27

• There is some bias in the historical database used to derive the extrapolation factors.28

Cholinesterase-inhibiting insecticides, compared to other modes of action, are the dominant29
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group within the database. These products were tested on many species because of their1

toxicity to birds. This bias would have to be evaluated by calculating factors based on2

organophosphate and carbamate insecticides alone and comparing these to similar factors3

determined for all other products combined (see recommendations in chapter 7). If the4

variance associated with the factors is similar for both groups of products than factors based5

on the pooled data could be used.6

7

• Another bias stems from the use of LD50 values determined with the Approximate Lethal8

Dose method. This method which provides an “approximate” estimate of the median lethal9

dose lacks precision and any confidence bounds. A large part of the data consists of10

determination made with this method. Further work needs to be carried out to determine the11

influence of these data on the methods proposed here (see recommendations in Chapter 7).12

13

• It is important to stress the point that distributions do not replace knowledge about the14

patterns of toxicity observed across species.  In fact trends in toxicity as a function of body15

weight, as described previously, have exceptions to them. While in the majority of cases the16

larger birds tend to be less sensitive, the raptors are an exception to this. For cholinesterase-17

inhibiting insecticides, in 8 out of 10 chemical-species comparisons, the bird of prey was more18

sensitive, sometimes by a wide margin, than predicted from the distribution and weight of the19

bird (Mineau et al. 1999).  Furthermore, some chemicals exhibit very different patterns in20

toxicity to various taxa than what is usually found. For instance insecticide fipronil is more21

toxic to most of the Phasianidae than would be predicted from the historical distributions.22

23

• Should we make assumptions about which species are going to be tested in the future? If this24

is still open to debate then the method proposed by Luttik and Aldenberg would appear to be25

the best at the present time if it is modified to deal with body weight scaling. If, however, the26

Mallard, Bobwhite Quail and the Japanese Quail remain as the preferred test species, perhaps27

a method to derive extrapolation factors should be closer to the one proposed by Baril et al.28

29
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4.5.6 Example of the Use of Extrapolation Factors to Predict the 5th Percentile of the Species1

Sensitivity Distribution2
3

As a summary of the previous sections, Figure 4.5-5 illustrates the methods proposed to predict4

the 5th percentile of the species sensitivity distribution from small datasets. Progression from one5

method to another is dependent on the number of species (N) for which an LD50 value is6

determined. When N is less than four, three methods are proposed which rely on the use of7

extrapolation factors (EF). These factors, as explained above, were established from historical8

data. The EF appropriate to the species tested are used to determine the median estimate of the 5th9

percentile (output no. 3). When used in combination with the standard deviation (SEF) associated10

with the estimate of the EF the 5th percentile can be predicted with a specific level of confidence11

that it is not overestimated (output no. 2). Alternately a distribution of predicted values of the 5th12

percentile can be generated using a distribution of factors with EF as the mean and SEF the13

standard deviation (output no. 3). When N is equal to four or more species the parameters of the14

distribution are determined directly without the use of extrapolation factors. The technique used is15

that of Aldenberg and Slob (1993). Two outputs are thus obtained: the median estimate of the 5th16

percentile (output no. 4) and the one-sided 95% left confidence limit of the 5th percentile (output17

no.5).18

19

An example of these methods is presented in Table 4.5-5 for a hypothetical insecticide. The input20

data required to apply the methods and the output from each are presented. The “real” value of21

the 5th percentile was established at 6.5 mg/kg based on data for 18 species. The predicted values22

are compared to this “real” value. It is apparent that for this compound methods 2, 4, 5 provided23

ample protection in that they underestimated the value of the 5th percentile. Method 5, however,24

tends to provide an exceedingly high safety margin. Methods 1 and 4 predicted values closest to25

the real value, usually within a factor of two. This is not a justification for the use of one method26

over the others but only to demonstration their use. Such an examination is warranted, however,27

to establish the preferred option. This could be carried out using the historical database itself, not28

as a validation, but as a verification of the precision of the predictions.29

30

31
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Figure 4.5-5. Illustration of the methods used to predict the 5th percentile of the distribution
of species sensitivities from small datasets. The different methods lead to separate outcomes
which are are numbered 1 to 5.
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Figure 4.5-5. Cont’d.
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Determine parameters of the
distribution such as:

mean, standard deviation, kth

percentile

Run Monte Carlo simulation m
times and generate distribution of m
estimates of the 5th perc.

Calculate 5th percentile:
Log(5th perc. ) == −−X EF

Sample distribution

Normal distribution of extrapolation
factors with mean=EF and standard
deviation=SEF

(2) a distribution of values
(uncertainty is incorporated)

(1) a single fixed value
(no measure of uncertainty)

Median estimate

One-sided 95% left
confidence limit

1

2

3
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Figure 4.5-5. Cont’d. *

The number of LD50’s is equal to four or higher

LD50s for four or more (n)
species (a,b,c)

Pre-determined extrapolation
constants Kn(50%) and Kn(95%)
(Aldenberg and Slob, 1993) to
compensate for small sample size
(n)

INPUT
DATA

Log-transform LD50 values
such that X=log(LD50)

Calculate the mean of the
transformed LD50s:

X
LD

nn ==
∑∑ log( )50

and the standard deviation

(( ))
S

X
X

n
nn ==

−−
∑∑∑∑ 2

2

Calculate the predicted 5th

perc.:
(( ))5th perc.== −−10 X K Sn n n*

Kn(50%)

Kn(95%)

Median estimate of
the 5th percentile

 One-sided 95% left
 confidence limit of the
estimate of the 5th

percentile

4

5
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Table 4.5-5. Example of the use of methods to predict the 5th percentile of the species sensitivity distribution from small
datasets. The outputs from the five methods are labelled 1 to 5. Acronyms for the species names: Bob=Bobwhite Quail,
Mall=Mallard duck, Hsp=House Sparrow, Japa=Japanese Quail, Rock=Rock Dove, Rbq=Red-billed Quelea.

INPUT DATA

mean log(LD50) Stdev (log LD50) N EF stdev (EF)
Bob 1.51 1 0.65 0.51

Mall, Bob 1.83 0.47 2 0.69 0.36

Mall, Bob, Hsp 1.61 0.51 3 0.6 0.30

Kn(50%) Kn(95%)
Mall, Bob, Hsp, Japa 1.51 0.47 4 1.92 5.49

Mall, Bob, Hsp, Japa, Rock 1.45 0.42 5 1.85 4.47

Mall, Bob, Hsp, Japa, Rock, Rbq 1.41 0.39 6 1.81 3.93

OUTPUT Predicted 5th percentile

Fixed Distribution parameters

mean
LD50

N median
estimate

estimate with
95% confidence

frequency of
overestimatea

5th
perc.

95th
perc.

Range

Bob 32 1 7.2 1.0 53% 1.0 49.0 47

Mall, Bob 68 2 13.9 3.9 82% 3.5 53.7 15

Mall, Bob, Hsp 41 3 10.2 2.9 74% 3.2 31.6 12

Mall, Bob, Hsp, Japa 32 4 4.1 0.1

Mall, Bob, Hsp, Japa, Rock 28 5 4.6 0.4

Mall, Bob, Hsp, Japa, Rock, Rbq 26 6 5.0 0.7

5th percentile determined
with 18 species

all species 29 18 6.5

a: establishes the frequency with which the values in the distribution overestimate the real value of the 5th percentile.

1 3

54

2



4-70

4.5.7 Slope of the Dose-response Curve1
2
3

The slope of the dose-response curve is thought to differ among species due to the differences  in4

morphology, and biochemical and physiological processes which interact with the inherent5

pharmacokinetic characteristics of the compound. The variability in the variance of the slope6

originating from differences among species needs to be distinguished from that originating from7

other sources. In essence, the question becomes the following: if we cannot make predictions8

about the slope based on taxonomic relationships, which at this point in time is not possible due to9

the lack of appropriate data, is the variability introduced by species differences any greater than10

the existing variability originating from other sources? In section 4.4, Table 4.4-1, the sources of11

variability in the estimate of the slope were examined. This brief analysis showed that variance, as12

determined by the standard error of the estimate or the standard deviation of the mean of the13

replicates, originating from within-test and from replicate test variability rarely exceeded 30%.14

Conducting tests in different laboratories did not result in variability (S.D./mean) exceeding 50%.15

When test results including different species were added to the analysis the variability ranged16

between 26 and 122% with a median of 53%. The analysis of the sources of variability cannot be17

pursued beyond what is presented here. Much of the toxicity data is obtained using the up-and-18

down method which does not provide an estimate of slope. Thus few species, other than the19

standard test species used for regulatory purposes, are tested in such a way that slopes can be20

determined. This prevents a more thorough examination of the species differences in slopes.21

Nevertheless, the level of variability noted in Table 4.4-1 tend to suggest that inter-species22

differences do not contribute much more than what is already present.23

24

The following options can be considered for use when extrapolating from test species data to the25

focal species in a probabilistic risk assessment.26

27

Option 1: When there is only one dose-response:28

29

A. Use the slope as the mean of a distribution of slopes and a coefficient of variation of 53%30

(median in Table 4.4-1 for the “global” variance); this is for use in Monte Carlo simulations.31
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1

B. Use as in “A” to determine the 5th percentile of this distribution to set a lower “conservative”2

bound; a small slope value is considered conservative since it predicts mortality at lower doses3

than a higher value for the slope.4

5

C. Do the same as in “A” or “B”, but using the standard error of the estimate from the study6

itself, as a measure of variance.7

8

Option 2:  When there is more than one dose-response  (n >1):9

10

A. Do as in Option 2, “A” or “B” above, but substitute the mean of n slopes for the mean of the11

distribution.12

B. Use a uniform distribution with the minimum and maximum values defining the range.13

14

4.5.8 Choice of Test Species15
16

As noted earlier it is quite clear that much uncertainty regarding the sensitivity of species to17

chemicals can be reduced significantly by testing for toxicity with more species than is currently18

done. It has been argued that testing additional species with the up-and-down method would be19

sufficient to obtain this additional information (OECD, 1996). What needs further clarification,20

however, is the types of species chosen for further testing. It is assumed for the purpose of this21

discussion that the existing test species most often used, the Bobwhite Quail, Mallard and the22

Japanese Quail, will continue to be used for determining the acute toxicity of pesticides.23

24

In section 4.5.2 the taxonomic patterns in species sensitivities were discussed. It was25

acknowledged that the information collected so far indicates that broad patterns exist. The26

Phasianidae are less sensitive than the ducks, and passerines, in general, especially the Icteridae,27

are more sensitive. This evidence suggests that any further testing of species should move away28

from testing more Phasianidae. Edwards and Schafer (1998) discuss some of the criteria set out to29

select species for testing. They considered the following factors as important:30

31
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Phylogeny:  Passerines make up more than 50% of all species; other major classes of agricultural1

birds include Anseriformes, Galliformes, Columbiformes, Psittaciformes and Falconiformes.2

3

Tolerance to laboratory conditions: There should be a preference for captive breeders over wild4

caught birds which must be acclimatized to laboratory conditions quickly; low stress and5

uncomplicated laboratory requirements are highlighted.6

7

Availability:  Captive bred birds available commercially (other than the standard test species)8

include Parrots and fringillids. Falconiformes such as the American Kestrel are difficult to breed in9

captivity. Wild caught birds include abundant species such as the feral Pigeon and various10

Passeridae, Icteridae, Corvidae, Fringillidae or Emberizidae.11

12

Regurgitation:  Regurgitation may be unavoidable although smaller dose volumes and capsules13

may reduce it.14

15

Sensitivity:  A rough ranking of average sensitivity across species is available (see section 4.5.2),16

however, it is not applicable across all compounds.17

18

Effect of size on sensitivity: Whatever the reason for the size effect seen by Mineau et al. (1996)19

“…it would seem prudent to include at least two passerine species in any shortlist of species…”20

for testing “…because of their significance in agriculture and sensitivity due to their size or21

phylogeny.”22

23

Edwards and Schafer conclude with the following short list of species: Quail (Bobwhite or24

Japanese), Mallard, Zebra finch, Icteridae or Turdidae, feral Pigeon, and the Bugerigar.25

26

4.5.9 Extrapolation Across Species for Other Tests27

28

The methods developed for inter-species extrapolation with the avian acute oral LD50 test owe29

their strength to the availability of extensive collections of LD50 data from numerous species for30
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each of a number of agricultural chemicals.  For each of the multi-species distributions of1

compound specific LD50 values, the relative positioning of key test species within the distribution2

provided the predictive power to approximate anticipated distributions based on limited data sets3

made up of those key species.  Inter-species extrapolations are thus made by predicting toxicity4

distributions (based on demonstrated acute toxicity distributions) using data from those key test5

species, the Mallard Duck, Japanese Quail and the Northern Bobwhite.6

7

Inter-species extrapolations of the other principle toxicity tests, the avian dietary LC50 and avian8

reproduction test, as well as any other new test protocols, could be approached using a similar9

method.  Toxicity data from key test species are compared to other species within data groupings10

for key agricultural chemicals for which large databases exist.  This, unfortunately, is where our11

ability to perform similar inter-species extrapolations ends.  Avian LC50 and reproduction tests12

generated for agrochemical registration purposes for the past 30 years have relied, almost13

exclusively, on the Mallard Duck, Japanese Quail and the Northern Bobwhite.  Unlike the LD5014

test that has been applied to wide varieties of test species in many test compounds, there are few15

distributions of multi-species data available for the standard LC50 or reproduction tests.  In order16

to develop inter-species extrapolation capability for these tests, more must be known about the17

comparative responsiveness of a variety of avian species in order to predict sensitivity of wild18

birds in the environment from results with key test species.19

20

There are several examples of chemicals that have been examined for specific reproductive21

endpoints that might offer insight into the nature of distributions. The principle example is the22

large data base on the occurrence of eggshell thinning with DDT and its metabolites  (Lloyd Kiff,23

The Peregrine Fund, pers. comm.).  A wide variety of species has been tested for eggshell thinning24

and a review of that literature may provide insight into the nature of distributions of sensitivity.25

Another similar database may be constructed from work investigating effects of dioxin-like26

compounds and their teratogenic effects on avian embryos.  Aside from these compounds, there is27

little data available in sufficient breadth for use in distribution development.28

29
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To effectively develop inter-species extrapolation capability similar to that used for LD50s, there1

are two data collection needs.  First, to appropriately interpret LC50 and reproduction test data,2

findings with the three key test species must be put into perspective with data from other relevant3

wild species.  Until there are sufficient data to create distributions of comparative sensitivity, the4

relevance of standard test species data cannot be effectively assessed.  Second, in order to make5

optimal use of this approach, key representative chemicals and avian species, chosen for their6

abundance of data in the LD50 database, should be chosen for further focused assessment.  This7

approach will yield benefits at two levels.   It will provide the data necessary to develop8

“horizontal” distributional analysis and creation of inter-species extrapolation techniques9

necessary for the LC50 and reproduction tests.  Perhaps as important is that the choice of test10

compounds and species similar to those with rich LD50 data will allow “vertical” integration11

between toxicity tests.  A better understanding of the comparative distributions of toxicity data12

within each test, and how those distributions change in between-test comparisons may allow for13

extrapolation not only between species, but between tests.  Taken to its extreme, it may be14

possible, given sufficient background data on a variety of chemicals, to predict LC50 or15

reproduction distributions based on minimal key species tests or even from an LD50 distribution.16

The ability to perform these types of comparisons will require, however, an effort to better17

characterize distributions of toxicity beyond the mallard duck, Japanese quail and northern18

bobwhite for the avian LC50 and reproduction toxicity tests (see recommendations in chapter 7).19

20

It is proposed that, until further work is done with the LC50 test, that the factors developed with21

the LD50 be applied to the results of LC50 tests. It could be argued that the "real" interspecies22

variability associated with the LC50 is just as likely to be lower than greater than observed with the23

LD50 test. It is important to remember that the LC50 test deals with issues beyond the sensitivity of24

birds to toxicants such as the onset of illness, food avoidance and body burden, all related to the25

temporal components of dose consumption, absorption, metabolism and excretion. Extrapolations26

from one species to another cannot be made except with a compound that has been well-studied27

for its pharmacokinetic properties. At the moment, given how little is know, it must be assumed28

that the inter-species variability seen with the LD50 test is applicable to the LC50. At the very least,29
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it is the best measure of the sensibility of species to toxicants and that is definitely an element1

involved in the variability associated with the LC50 test.2

3

For the reproduction study, however, the factors from the LD50 work should not be used. The4

toxic mechanisms are most often different from the ones involved in acute toxicity. Predictions are5

difficult to make. In a review of reproduction studies done with the Mallard and Bobwhite Quail6

(Mineau, Boersma and Collins 1994) showed that for developmental effects results differed7

significantly between the two species. There was greater similarity between the rat and bird results8

than between those obtained in the two bird species. This suggested there are doubts about the9

ability to extend the results of an avian reproduction study to any potentially affected bird species.10

The authors concluded that the current reproduction study be recognized only as a rough11

screening tool. Therefore it is proposed that if any significant effect is detected in either of the two12

species that further work be done on more species, but that the study be tailored to the focal13

species and to understand the origin of the observed effect. This implies that, for the purpose of a14

probabilistic risk assessment, the reproduction endpoint would always consist of one point. The15

probabilistic element would have to come only from the exposure side of the modeling efforts.16

17

4.6 OUTPUT OF EFFECTS ASSESSMENT18
19

The basic output of the effects assessment is an estimated dose-response profile, that estimates the20

probability or magnitude of a specified effect to the focal species at a given level of exposure,21

along with the uncertainty of the estimate. This effects profile quantifies the relationship between22

exposure to the pesticide and the assessment endpoint.  In the event that the focus species23

representing the species of concern for the risk assessment is the same as the species tested in the24

toxicity study, the effects profile would be the same as the dose-response relationship derived25

from the study.  Typically, the test species will not be the same as the focal species and the effects26

profile must account for the uncertainty associated with extrapolating among species.  Uncertainty27

from interspecies variability is one major source of uncertainty that must be considered.  Other28

sources include uncertainty from intraspecific variability and sublethal effects.  Another large29

unknown is the relationship between laboratory results and effects in the field which will be30

affected by the quality of the simulated exposure, differences in inherent toxicity between31
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laboratory and field populations, and the variable influence of stress of captivity on toxic1

responses among species.2

The nature of the effects profile varies with the amount of data available, the desired level of3

certainty for the analysis, and the nature of the assessment endpoints.  Depending on the desired4

level of certainty and the assessment endpoints, additional testing and chemical and/or biological5

data may be required.  Uncertainty analysis has not been explicit in the current regulatory6

assessments and has been managed by introducing conservatism into the risk assessment.  The7

proposed effects characterization will identify and incorporate various sources of uncertainty into8

the effects profile and aim to characterize and reduce these at increasing levels of refinement.  The9

objective of this section is to summarize options for refined effects testing, effects analysis, and10

consideration of uncertainty into Levels of Refinement that focus efforts on the most sensitive11

parameters in the analysis, and enable the risk assessment to be refined.  Ideally, the effects12

characterization should consider measurements of acute (mortality), reproductive and other13

sublethal) effects across short-, medium- and long-term periods of exposure.  However to date,14

chronic effects have focused on reproduction and have been associated with only long-term15

exposure (Table 4.6-1). Consequently, considerable research is required to develop new  toxicity16

tests.  As a result, the Levels of Refinement for effects analyses will reveal that only acute17

assessments of mortality following short-term exposure can be determined reasonably well using18

existing tools, and that other areas require considerable research associated with developing19

suitable toxicity tests and associated methods for effects characterization.20

21

Table 4.6-1. The relationship between current toxicity tests and assessment endpoints associated with22
various periods of exposure.  Ideally, each endpoint should be assessed at short-, medium- and long-term23
periods of exposure.24

Short-term Exposure Medium-term Exposure Long-term Exposure

Acute endpoints Oral LD50 test Dietary LC50 test No assessment

Reproduction endpoints No assessment No assessment Reproduction Test

Other Sublethal
endpoints

No assessment No assessment No assessment

25

In order for a valid risk assessment to be conducted, the periods of exposure used in toxicity26
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studies and considered in the effects analysis must approximate those used in the exposure1

analysis.  Four distinct Levels of Refinement for the characterization of effects have been2

identified (Tables 4.6-2, 4.6-3, 4.6-4) for each period of exposure (short-, medium- and long-3

term) and the three toxicity tests most often carried out on birds (acute, dietary, and4

reproduction).  The progression from low to higher levels is not rigid and aims to reduce or at5

least quantify various uncertainties associated with the effects characterization.   Depending on6

the situation, any element recommended at higher levels could be put into place earlier in the risk7

assessment process.8

9

Similarly, the effects characterization may remain unchanged and yet the resulting risk assessment10

could be refined due to a refinement of the exposure assessment. The need to move to higher11

Levels of Refinement for the effects characterization is generally dependent on the acceptability of12

risk from the risk assessments and uncertainty.  Results from a sensitivity analysis may indicate a13

need for refinement in exposure or effects, or both. The characteristics of further studies and tests14

especially at higher Levels of Refinement will be driven by the results of a sensitivity analysis.15

Effects analysis at various Levels of Refinement are very much limited by available test species for16

toxicity testing and suitable study designs.  It is often very difficult to obtain permission from U.S.17

Fish and Wildlife Service to test wild avian species to provide additional data to that from18

common test species (i.e., mallard duck, bobwhite quail, Japanese Quail).  Consequently, the19

methods for effects analysis are tailored to make the most of available data while giving due20

consideration to uncertainty with an emphasis on an outstanding need to redesign dietary tests.21

Tables for Levels of Refinement illustrate the types of responses obtained, the analysis providing22

the profile of the effect, the sources of variability accounted for, the modifications to current tests,23

additional tests recommended and the sources of variability not accounted for.   The effectiveness24

of these Levels of Refinement in refining the risk assessment and reducing uncertainty will be25

determined as part of future “Proof-of-Concept” research involving case studies.26

27



4-78

Table 4.6-2 Levels of refinement for avian toxicity testing and effects analysis associated with short-term1
periods of exposure by direct ingestion of the pesticide within minutes or hours.2
Short-term Level I Level II Level III Level IV
Test Species

Focal Species

Dose-response (DR)
for mortality

             EF             EF         
Focused study
dependent on:
-Sensitivity
analysis
-Uncertainty
-Exposure   

Toxicity Test -Full LD50 DR for
1 test sp.
(N<4)

-Full LD50 DR for
1 test sp.
-LD50 for 1 or 2
test spp by ALD or
full DR (N<4)
-Granular
formulation test

-Full LD50 DR for
1 test sp.
-LD50 for 3 test
spp by ALD or full
DR (N≥4)

-Field data on
focal or surrogate
spp
-Pen-type study

Effects Analysis
for Focal Species

-EF based on historical data
-Extrapolate to “fixed” LD50 (5

th %tile)
or
-Extrapolate to distribution

-Probability
distribution
defined for focal
species
- Calculate
5th%tile

-Mortality
estimates based on
field exposure
-Inputs for
modeling effects
on population
dynamics

Interspecific
Variability

Application of EF
to LD50

Application of EF
to geometric mean
of LD50’s

Distribution is
defined

Extrapolations to
focal species as
necessary

Intraspecific
Variability

Accounts for:
-Variability in sensitivity (slope of DR) among individuals
- Variance in estimate of mortality from dose ingested

Variability within
study population
measured

Uncertainty not
accounted for

-Variability in response from age
-Variability in slope of DR among species
-Variability from environmental conditions
-Effects of short-term exposure on sublethal  endpoints

Regions, crops,
uses and species of
concern that differ
from field study

Modifications
(research)

-Determining effects on sublethal  endpoints from  short-term
exposure
-Further evaluation of use of EF approach
-Appropriateness of ALD or alternative test
-Requirement for toxicity testing non-granule formulations
- Test method under development for avoidance behavior
associated with seeds and baits and avoidance for granule and
spray formulations needs to be developed.

3
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Table 4.6-3 Levels of refinement for avian toxicity testing and effects analysis associated with medium-term1
periods of exposure to the pesticide in the diet over a period of days.2
Medium-term Level I Level II Level III Level IV
Test Species

Focal Species

Concentration-
response (CR) for
mortality

             EF

As for short-term

            EF                EF
Focused study dependent
on:
-Sensitivity analysis
-Uncertainty
-Exposure    

Toxicity Test -Full short-term
exposure LD50 DR
for 1 test sp.1

-Full LD50 from
CR for 1 test sp.
(new test)

 -Full LD50 from
CR for > 1 test sp.
(new test)

-Field data on focal or
surrogate spp
-Pen-type study

Effects Analysis
for Focal Species

As for short-term -EF based on historical LD50’s 2

-Extrapolate to “fixed” LD50 (5
th %tile)

or
-Extrapolate to distribution

-Mortality estimates
based on field exposure
-Inputs for modeling
effects on population
dynamics

Interspecific
Variability

As for short-term Application of EF
to LD50

Application of EF
to geometric mean
of LD50’s

Extrapolations to focal
species as necessary

Intraspecific
Variability

As listed for short-
term

Accounts for:
-Variability in sensitivity (slope of CR)
among individuals
-Variance in estimate of mortality from
dose or conentration ingested

Variability within study
population measured

Uncertainty not
accounted for

- As listed for
short-term
-Test from short
and not medium-
term exposure

-Variability in response from age
-Variability in slope of DR among
species
-Variability from environmental
conditions
- Medium-term exposure  resulting in
sublethal  effects

Regions, crops, uses and
species of concern that
differ from field study

Research 3 -Development of
appropriate trigger
for movement to
Level II  1

-New test
(quantifiable
observations of
sublethal effects4,
individual caging,
frequent measures
of food
consumption, food
avoidance
assessment,
dynamic exposure
regime)
-Appropriate EF
(number of test
spp.)

-New test
(quantifiable
observations of
sublethal effects4,
individual caging,
frequent measures
of food intake, food
avoidance assessed,
dynamic exposure
regime)
-Refined exposure
in toxicity test
-Food avoidance
test (separate)
-Determine number
of spp. to be tested
-Determine when
EF unnecessary

-Aviary or pen testing

1 The full short-term LD50 test is used to assess Level I medium-term effects.  Level II (medium-term effects) will be triggered3
based on an unknown or new chemistry, mechanistic (e.g., where delayed action), potential to bioaccumulate, or  persistence.4
2 Currently, historical data available only for acute oral LD50. Future objective to base EF for effects from medium-term5
exposure on a new medium-term dietary toxicity test.6
3 Research is necessary because 1) there is no confidence in the existing dietary LC50 test 2) there is no historical data7
appropriate for determining EF’s for medium-term effects8
4 May result in trigger for assessment of sublethal effects in chronic tests9
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Table 4.6-4 Levels of refinement for avian toxicity testing and effects analysis associated with long-term1
periods of exposure to the pesticide  in the diet over a period of weeks.2
Long-term Level I Level II Level III Level IV
Point estimate
NOEL from most
sensitive species
assumed to equal
NOEL for focal
species

         *Sp.1NOEL

       *Sp.2 NOEL

mg/kg/d

-Possibly an aviary
or small pen study
-Dependent on
outcome of further
research

-Risk assessment
refined only on
basis of exposure
assessment not
toxicity

Focused study
dependent on:
-Sensitivity
analysis
-Uncertainty
source
-Exposure

Toxicity Test -Reproduction
toxicity test for 2
test species1

-Refined exposure
regime
-Focus on
sensitive/critical
endpoints
-Refinement of
NOEL (or
development on
concentration-
response for new
test)

No additional
toxicity studies

-Field data on
focal or surrogate
spp
-Field assessment
of reproductive
effects on marked
populations of
birds or sentinel
populations (e.g.
nest box studies)

Effects Analysis
for Focal Species

-Lowest NOEL
value selected to
represent sensitivity
of focal species

-Dependent on
outcome of further
research

-Reproductive
effects based on
field exposure
-Inputs for
modeling effects
on population
dynamics

Interspecific
Variability

Data available for
only 2 test spp.

Extrapolations to
focal sp. as
necessary

Intraspecific
Variability

Test not designed to
deal with this
aspect

Variability within
study population
measured

Uncertainty not
accounted for

-No DR (cannot
predict magnitude
of effect as a
function of
exposure)
-Variability within
and among spp.
-Variability from
environmental
conditions
-Effects of short-
term exposure on
sublethal  endpts

Regions, crops,
uses and species of
concern that differ
from field study

Research -New test (dynamic
exposure regime,
proven egg-layers
using pre-treatment
laying as covariate)
-Determine
appropriate EF for
extrapolation to
focal species

-Large aviary test
-Include emphasis
on parental care
(egg incubation)
-Focus on critical
endpoints
- Dose-response
testing

1 The current reproduction test with modifications to the exposure regime will be used until replaced by a new reproduction test3
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There are four Levels of Refinement for avian toxicity testing and effects analysis associated with1

short-term periods of exposure (minutes or hours) following direct ingestion of the pesticide2

(Table 4.6-2).  The basic element of the effects profile from short-term exposure is the dose-3

response relationship generated from the existing acute oral toxicity test.  At Level I, a single4

dose-response test that quantifies mortality is required. Assuming the response takes a typical5

sigmoidal shape relative to the dose, the Probit model can be fitted to the data to get the slope and6

LD50 estimates  From the resulting regression equation, one can estimate the proportion of the7

test population affected at a given exposure dose.  For each test there is uncertainty associated8

with the estimate of the LD50 and the slope.  Consequently, for each exposure dose there is a9

distribution of possible values of the effect which can be used in a probabilistic assessment in10

place of a single point estimate.  A specific dose may be determined to represent the LD50 in a11

test, but based on the uncertainty in the dose-response relationship, the possible effect at that12

dose, for example, may have ranged from 30% to 70%.   In addition, most risk assessments are13

faced with estimating the risk of a pesticide to species that have not been directly tested in the14

laboratory or field. Variation among species in sensitivity to pesticides has been demonstrated to15

be substantial and may be the greatest source of variation for integrating effects estimates of16

untested species into the probabilistic assessment (see Section 4.5).  Where no data exist on the17

toxicity of the focal species, the distribution of potential toxicity values is estimated by applying18

an Extrapolation Factor (EF) to LD50 data for test species (Section 4.5).19

20

To refine this extrapolated mortality estimate at Level II (Table 4.6-2), it is necessary to conduct21

a toxicity test on the focal  species or, if this is not possible, another acceptable test species.  In22

the case of the acute toxicity test, an ALD (up-down) test for one or two additional species may23

be adequate to estimate the LD50 with the slope of the relationship assumed from the definitive24

test conducted on another species.  Further research is required to assess the benefits of using25

ALD tests over full dose-response tests for obtaining data on additional test species at Levels II26

and III.  This would entail an assessment of the confidence in assuming similarity in  slope27

(intraspecific variability) among species.  At Level II an EF is applied to the geometric mean value28

of the LD50’s for each test species to extrapolate to an estimated LD50 for the focal species that29
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is based on the 5th percentile.  Where the chemical of interest is a formulated as a granule, a1

separate acute oral dose-response test would be conducted with the granular formulation.2

Additional research is necessary to determine the necessity for testing with other types of3

formulation and to determine how these results would be considered in the effects4

characterization.  In addition, research is required to develop tests for assessing avoidance5

behavior associated with short-term exposure.   Some work has been conducted on avoidance6

associated with seeds and baits however techniques for measuring avoidance associated with7

granule and spray formulations still needs to be developed.8

9

At Level III, additional toxicity testing (ALD or full dose-response test) is conducted so that10

LD50 values are available for at least four test species.  With greater than or equal to four test11

species, it is appropriate to calculate the parameters of the estimated dose-response distribution12

for the focal species (section 4.5).  The uncertainty in slope and LD50 parameter values is13

represented by the standard error of the mean of the LD50 values (see section 4.5). It is14

recommended that additional research include further statistical review of the EF methods15

including the appropriate number of test species for calculating parameters of a distribution, and16

use of slope estimates in extrapolations. The proposed approach also assumes that the variance in17

species sensitivity for toxic pesticides is similar to that for less toxic chemicals.  Additional18

consideration of this assumption could potentially provide a means of explicitly accounting for19

differences in sensitivity from different modes of action.  A further problem is  that in practice,20

acute oral toxicity tests often result in an absence of mortality at a limit dose. Further research is21

required to determine an appropriate approach for characterizing effects for use in risk assessment22

when this situation occurs.23

24

The methods outlined in Levels I through III account for variability among species, variability in25

the sensitivity among individuals within a species as estimated from the slope.  In addition, the26

methods account for variance in the predicted mortality of the focal species as estimated from the27

dose ingested.  The methods do not explicitly account for uncertainty resulting from variance in28

the age of animals or environmental conditions affecting sensitivity to the pesticide nor variability29
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in the slope of the dose-response among species.  A limitation is that only mortality and not1

sublethal endpoints from short-term exposure are considered in the effects characterization.2

Important sublethal effects associated with some compounds are neglected with current toxicity3

testing. For instance, transient paralysis in a laboratory situation, under controlled conditions,4

while insignificant  in this setting, become critical to the survival of the individual in the natural5

world.  Also effects of short-term exposure on parental behavior could affect their success in6

rearing off-spring.  While observations are made of such sublethal effects they are not quantified7

in a manner amenable to statistical treatment or input into a dose-response model.  Numerous8

methods, developed by animal behaviorists, could be adopted to better integrate this neglected9

aspect of acute toxicity testing.  Further research is necessary to determine how to quantify these10

effects and to incorporate such measurements in the effects characterization.11

12

Effects characterizations associated with short-, medium- and long-term exposures at Level IV13

involve focused pen-type studies or field studies (Tables 4.6-2, 4.6-3 and 4.6-4). The guiding14

principles for these studies is that they are case specific and driven by a need to further assess key15

parameters identified in a sensitivity analysis associated with the risk assessment.  Consequently,16

the studies may focus on refining exposure assessments rather than effects or on reducing17

uncertainty associated with parameters such as Food Intake Rate (FIR) and Avoidance (AV).18

Field studies may also provide estimates of mortality based on more realistic exposure regimes.19

They may also provide input values for modeling longer-term effects on population dynamics.20

Level IV studies will be site and scenario specific and therefore will not account for uncertainty21

associated with differences among regions, crops and species of concern that differ from the study22

scenario but are relevant to the risk characterization.23

24

Levels of refinement for toxicity testing and effects analysis associated with medium-term25

exposure in the diet over a period of days are shown in Table 4.6-3.  Toxicity testing involving26

medium-term exposure does not occur synchronously with short-term exposure assessments.27

Level I  short- and medium-term effects assessments are the same.  However, specific criteria for28

triggering the requirement for Level II medium-term assessment have been identified.  The29



4-84

principles of these criteria include1

2

• The test chemical is from a relatively unknown or new chemistry ,3

• An evaluation of the mechanism of toxicity indicates that a medium-term effect could occur4

e.g., a delayed action,5

• The test chemical has the potential to bioaccumulate ,6

• The test chemical is likely to be very persistent on avian food stuffs in the environment.7

8

At Level II, a full concentration-response dietary study for 1 test species that follows a new9

testing design is required and at Level III, tests on additional species would be required. The10

existing dietary test has many problems rendering it inappropriate for risk assessment.  The study11

does not provide a  reasonable estimate of toxicity because measurements of dose ingested per12

individual are not possible and apparent toxic effects are confounded by starvation.  The proposed13

changes to the study for Level II and III assessments will replace the existing dietary study and14

will be based on the 21 day exposure OECD proposed test design (section 4.2) and will include15

quantitative measurements of sublethal effects, individual caging and measures of food16

consumption, and an assessment of food avoidance.  Unlike the proposed OECD dietary test17

design, this new study would include an option for using a dynamic exposure regime that could be18

aligned with dissipation rates of the chemical on avian food items in the environment.  Individual19

assessments of food consumption will be used to estimate the daily dose consumed and related to20

mortality (mg/kg food to mg/kg body weight per day).   In addition, the concentration-response21

will include non-lethal endpoints.  At higher levels, where the exposure regime is refined, better22

estimates of daily “dose” consumed can be obtained and the concentration-response will better23

reflect the predicted exposure pattern.  To further refine effects assessments at Level III, a stand24

alone avoidance test would be an option where avoidance was considered to be an important25

factor based on Level II assessments.26

27



4-85

The preferred method for analysis of effects from medium-term exposure would be to use the EF1

approach described for short-term assessments (Table 4.6-2) but to base the EF on historical data2

from dietary studies.  However, a major limitation is that a historical data base on which to derive3

appropriate EF’s for dietary tests does not exist.  In addition, unlike the acute oral toxicity study,4

there is minimal confidence in results from the existing dietary test.  Until such a time that a5

historical data base for medium-term dietary toxicity studies can be developed, and associated6

EF’s derived, the medium-term effects characterization will use the EF’s proposed for Levels I7

and II short-term assessments.8

9

Levels of Refinement for toxicity testing and effects analysis for chronic effects following long-10

term exposure are shown in Table 4.6-4.  In summary, the current avian reproduction test has11

severe limitations concerning its use in ecological risk assessments and needs to be redesigned.12

For Level I, avian reproduction tests will be conducted on two test species and the current test13

will be used until it can be replaced. The NOEC and LOEC can be compared to the exposure14

profile to determine the degree of exceedence (Chapter 5) and for both Levels I and II the NOEL15

from the most sensitive species will be used in this assessment.  However, in order to estimate the16

magnitude of reproductive effects, the study needs to be redesigned to determine a dose-response17

relationship with an acceptable level of statistical power and to address issues of compatibility18

with the exposure profile.  Following the development of a dose-response type study, appropriate19

EF’s will have to be determined to apply to appropriate effect-concentration thresholds to account20

for various sources of uncertainty.  This dose-response test would be required at Level II.  The21

new avian reproduction test will be based on the proposed OECD test method and will include an22

option for refining the exposure regime to simulate the use pattern and behavior of the test23

chemical on avian food stuffs in the environment for both Level I and II.   Recommended research24

also includes modifications to the design at Level II  to assess effects on parental care and criteria25

for necessitating measurements for sublethal effects based on those measured in the medium-term26

dietary study.   At this stage, Level III long-term assessments would involve only a refinement of27

the exposure analysis and not further refinement of effects beyond that identified in Level I.28

29
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In conclusion, the certainty in generating a reasonable analysis of effects for risk assessment is1

greatest for the short-term assessment that utilizes the existing acute oral toxicity study.  Certainty2

decreases for medium-term assessments where the existing dietary study needs to be redesigned,3

and an absence of historical data prevents the development of specific EF’s.  Certainty is least  for4

long-term effects assessments where the existing reproduction study is inappropriate for5

probabilistic risk assessment.  Important modifications to medium and long-term toxicity studies6

include7

• Flexible exposure regimes,8

• Assessments indicative of quality of parental care,9

• Individual data thus improving options for effects analysis models, and10

• Avoidance.11

The Levels of Refinement are presented in such a way that risk assessments can be improved with12

existing tools while new ones studies and analyses methods being developed.   The proposed13

Levels of Refinement will require modification depending on the outcome of further research, and14

the hypothesis that new tests are significant improvements to existing studies must be tested.  The15

outcome of further method development will have implications for management of uncertainty16

associated with intraspecies and interspecies variability, methods of effects analysis and risk17

assessment.18

19



5-1

1
5.0 RISK ASSESSMENT METHODOLOGY2

3
5.1 OBJECTIVE OF RISK ASSESSMENT4

5

Risk characterization is a final stage of ecological risk assessment where results of exposure and6

effects analyses are integrated to evaluate the likelihood of adverse ecological effects occurring7

following exposure to a stressor.  The risk assessment is different from the effects profile8

characterization (Chapter 4.0), in that the risk assessment integrates the effects profile with the9

exposure profile for the pesticide, and the probability and magnitude of effects on non-target10

organisms in the environment can be determined. In the risk characterization, the ecological11

significance of the adverse effects should be discussed, including consideration of the types and12

magnitudes of the effects, their spatial and temporal patterns, and the likelihood of recovery13

(USEPA, 1992). This section discusses methods for risk assessment.  Risk assessment is the14

analysis component of the risk characterization that integrates exposure and effects and evaluates15

uncertainties (USEPA, 1998). In addition to an evaluation of uncertainty, the risk16

characterization should provide a discussion of the ecological significance of effects with17

particular emphasis on the magnitude and spatial-temporal extent of effects. The risk18

characterization should link back to risk associated with the assessment endpoints that were19

defined in the Problem Formulation stage. The assessment endpoints determined by ECOFRAM20

in the Problem Formulation stage (Chapter 2.0) were i. effects on the survival and reproduction21

of individual birds and mammals  ii. effects on population size and persistence of birds and22

mammals.  Risk associated with assessment endpoints needs to be interpreted in the risk23

characterization to provide concise information that can be used for risk management.  If the24

information is insufficient to support decision-making by risk managers, or the risk assessment25

needs to be further refined, it may be necessary to proceed to a further iteration of the risk26

assessment or to a higher level of refinement in the risk assessment process (Chapter 6.0).27

28

A suite of potential methods for ecological risk assessment are described that include29

deterministic quotients, comparisons of exposure to effects distributions (or point estimate),30

integrated exposure and effects distributions (using Monte Carlo simulations) and mechanistic31

models. The basic objective of each different method is to demonstrate how the exposure and32



5-2

effects analyses may be combined to provide an estimate of risk.  The risk output can be1

displayed in many different formats and should be modified according to the questions being2

asked by risk managers. In general, the risk assessment is portrayed using a cumulative3

probability distribution to illustrate the probability of a certain size of effect affecting a certain %4

of a population.  Examples are provided to demonstrate the risk assessment methods, including5

“spreadsheet model” methods that integrate exposure and effects distributions by using6

stochastic modeling to simulate many individuals in a population.  This particular method will7

help to determine effects at a population level however, the risk assessment provided is still8

inadequate in its capability to truly provide assessments for determining effects on actual9

population size and persistence.  Options for risk assessment methods for terrestrial vertebrates10

are affected by major limitations in available data to characterize exposure and effects.11

Consequently, the methods will need to further evolve as these research needs are addressed and12

also improve in their capability of characterizing the risk associated with assessment endpoints13

of interest.14

15

The following are general criteria for selecting tools for risk assessment that will provide16

probabilistic estimates of risk:17

• For effective decision making, risk managers need to be provided descriptive information on18

risk that describes the probability and magnitude of adverse effects.19

• A suite of methods may be the most effective way of providing the flexibility necessary to20

manage a diversity of pesticide scenarios where a refined risk assessment is necessary.21

• Methods within the suite are grouped according to the level of sophistication, effort required,22

data required, and extent of risk refinement. This forms the basis of the risk characterization23

process (Chapter 6.0)24

• Risk assessment methods must be aligned appropriately with methods used for exposure and25

effects analysis with due consideration to the unit of time used in the analysis and the26

different uncertainties.27

28

5.2 OVERVIEW OF RISK ASSESSMENT METHODS29
30
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All of the risk assessment methods considered integrate outputs from the exposure analysis (Fig.1

5.2.1, graphs A., B., and C.) with the effects profile (Fig. 5.2.1, graph D.)  in order to determine2

the probability of an adverse effect on non-target organisms.  How risk is expressed will vary3

depending on the risk assessment method used and the questions that need to be addressed with4

the risk assessment (Fig. 5.2.1, graphs E., F., and G.).  For example, the probability distribution5

function (PDF) is useful for illustrating the discrete probability of various input parameters6

whereas the cumulative distribution function (CDF) can more clearly show the probability that a7

value on the x-axis will not be exceeded (graph F.) or the probability of exceeding a value on the8

x-axis (graph G.)9

10
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Fig. 5.2.1 A conceptual model of the distributions associated with an ecological risk1

assessment.  The exposure analysis is composed of a residue and a biological component2

resulting in an estimate of  dose.  The exposure dose is integrated with the effect analysis3

resulting in an estimate of risk which can be expressed in a number of different ways4
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Various options for risk assessment have been considered in order of increasing complexity and7

potential realism (see Fig. 5.2.2).  Less realistic risk assessment methods will tend to be more8

conservative and with increasing realism, conservative assumptions including values in the risk9

assessments can be replaced as further information is obtained. These risk assessment methods10

can generally be divided into three categories:11

12

i. Deterministic quotients that are simply a ratio of single values of exposure divided by13

toxicity (Fig. 5.2.2; Method 1). A major limitation of this method is that the result is not14

expressed probabilistically.15

ii. Assessment methods that involve a comparison of the exposure distribution or fixed16

value for exposure to a fixed value for effects or distribution.  These provide a probability17



5-5

of exposure levels (from a cumulative frequency distribution)  exceeding a fixed effect level1

(ratio-based) or vice-versa (Fig. 5.2.2; Methods 2 and 3).  A limitation of these methods is2

that an estimate of the probability of magnitude of effect occurring, based on the complete3

exposure and effects distribution is not given.  In other words, risk is expressed as the4

“probability of exceeding a fixed value”. This method has been proposed by the aquatic5

ECOFRAM workgroup for aquatic risk assessments.6

iii. Methods that incorporate functions to integrate exposure and effects distributions (Fig.7

5.2.2; Methods 4, 5 and 6). These methods use stochastic modeling (Monte Carlo techniques)8

to simulate variability associated with parameters and individuals. In Method 4, distributions9

of quotients are generated using Monte Carlo simulations to randomly sample values from10

exposure and effects distributions. Here, the probability of exceedance is based on a ratio of11

exposure to effects rather than fixed values of exposure or toxicity.  Method 5, integrates12

exposure and effects distributions by simulating the resultant fate (e.g., dead or alive) of large13

numbers of individuals (using Monte Carlo) based on a dose-response distribution or14

survivorship model.  Risk is expressed as a probability of a magnitude of effect occurring15

based on randomly sampling the complete distributions of exposure and effects.  Method 616

refers to more complex and data-intensive individual-based and population-level models.17

Unlike the previous methods described, these models should not only integrate exposure and18

effects distributions using algorithms that represent various ecological or physiological19

processes but also provide a spatial-temporal analysis of the non-target organism and/or20

information that describes cause and effect.  These models may also incorporate risk21

assessment modules based on Methods 1 through 5.22

23
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Fig. 5.2.2 Overview of Risk Assessment Methods1

Point Estimate Quotients (deterministic)
Exposure:  Point estimate of exposure (mg/kg b.w./ unit time)
Effects:  Point estimate of toxicity (e.g., NOEL, LD50)
Output:A ratio of exposure/toxicity (relative to risk but risk is not quantified)

Method 1

Method 2

Method 3

Method 4

Method 5

Method 6

Comparison of Exposure Distribution with Point Estimate for Effects
Exposure: Distribution of exposure (mg/kg b.w./ unit time)
Effects: Point estimate of toxicity (e.g., NOEL, LD50)
Output: Probability of exposure exceeding the effect level

Integrated Exposure and Effects Distributions (uses Monte Carlo Simulations)
Exposure:  Distribution of exposure (mg/kg b.w./ unit time)
Effects: Distribution of toxicity (dose response distribution)
Output: Probability of certain magnitude of effect (mortality) occurring

Mechanistic/Process models
Stage/Age structured; Meta-population; Individual-based; Spatially explicit models

Risk based on
a comparison
of exposure
and effect
distributions
(Probability of
Exceeding a
Fixed Value)

More Realistic
Risk Assessment

Ratio of
single values
of exposure
and effects

Less Realistic
Risk Assessment

Comparison of Exposure and Effects Distributions (degree of overlap)
Exposure: Cumulative frequency distribution of exposure (mg/kg b.w./ unit time)
Effects: Distribution of toxicity for i. various species or ii. single species (e.g., LD50)
Output: Probability of certain effect occurring when a fixed exposure level is exceeded

Risk based an
integration of
exposure and
effects
distributions

Distribution-Based Quotients (uses Monte Carlo Simulations)
Exposure: Distribution of exposure (mg/kg b.w./ unit time)
Effects:Distribution of toxicity for i. various species or ii. single species (e.g., LD50)
Output: Probability distribution of quotients (probability that exposure exceeds toxicity)

2

Table 5.2.1 summarizes the advantages and limitations of Methods 2 through 5.  All of these3

methods have their value and are equally applicable to risk assessments for birds and mammals.4

Future development of risk assessment models together with communication with risk managers5

will be necessary to determine which of these risk assessment methods are most useful in a6

regulatory framework.  The simplest methods may serve as tools for screening in order to scope7

the risk assessment (Method 1) or they may be the only applicable method due to limitations in8

available data.  For example, current avian reproduction test endpoints are limited to a NOEL9

and therefore are dependent on Methods 1 and 2 because  it is not possible to apply risk10

assessment methods that depend on a knowledge of the dose-response distribution (e.g., Method11

5).  In all methods, deterministic estimates or distributions of exposure and effects are expressed12

in mg/kg body weight per unit time.  The unit time will be dependent on whether the assessment13

is for short-, medium-  or long-term periods of exposure.14
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TABLE 5.2.1 STRENGTHS AND WEAKNESSES OF DISTRIBUTION-BASED PROBABILISTIC RISK ASSESSMENT METHODS1
(METHODS 2 THROUGH 5)2

Method Type Description Strengths Weaknesses
2 Comparison

of Exposure
Distribution
with toxicity
Point
estimate

-Risk is the probability that
a fixed effect level lies
within the exposure
distribution

-spatial-temporal analysis of
exposure possible
-can be used where no dose-
response available

-under utilization of toxicity data
-no cause-effect information
-no spatial-temporal analysis of effects
-no probability of magnitude of effect

3 Comparison
of
Distributions
of exposure
and effects

-Analysis of degree of
overlap of distributions
-Risk is probability of
exceeding a fixed value
-Effects distribution may
represent several species or
single species

-spatial-temporal analysis of
exposure possible
-use of point estimate (e.g.,
10th%tile) from distribution
could be modified to use entire
distribution

-no spatial-temporal analysis of effects
-no cause-effect information
-risk based a sample population
-no probability of magnitude of effect

4 Distribution-
based
Quotients:
(distribution
of quotients
(exposure/
toxicity)

-Calculate distributions of
quotients by sampling from
distributions of exposure
and toxicity
-Risk is based on the
probability of quotients (of
exposure and effects)
exceeding fixed levels

-more information than single
quotient
-can utilize all available
toxicity data
- can consider varying
exposures
-can be used where no dose-
response available

-no probability of magnitude of effect
-no cause-effect information
-no spatial-temporal analysis of effects

5 Integrated
Exposure and
Effects
Distributions

-Simulations (e.g., Monte
Carlo) of large numbers of
individuals
- uses mortality response
function to integrate
distributions
-Quantal response used

-probability of magnitude of
effects based on exposure and
effects distributions
-spatial-temporal analysis of
exposure possible

- no cause-effect information
-no spatial-temporal analysis of effects
(survivorship model provides a temporal
analysis)
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Examples based on hypothetical data sets were developed to illustrate ecological risk assessment1

Methods 1 through 5.  These examples are not case studies and do not provide a proof-of-2

concept but do allow a conceptual comparison of the risk assessment methods and their outputs.3

The examples use distributions of exposure values (Table 5.2.2) and distributions of effects4

(Table 5.2.3 and 5.2.4). For purposes of simply illustrating the risk assessment method, the5

exposure values are entered to the risk assessments models as a fixed distribution (i.e., it is6

assumed that the exposure analysis has been run separately).   The risk assessment methods as7

presented do not illustrate spatial and temporal elements. For the purpose of these examples, it is8

assumed the time period of exposure in the field is equivalent to that used to derive the LD50 in9

the laboratory (see section 2.8).   Effect distributions 1a and 1b are from median lethal dose10

values for several different test species and can either represent  the universe of sensitivity for the11

focal species, where the actual median lethal dose is unknown, or the sensitivity of several12

species for a multi-species risk assessment model.  Effects distribution 2 equates to the effects13

analysis output described in Chapter 4.0 and represents the estimated or actual dose-response for14

the focal species (i.e., a single species model). The estimated LD50 for the focal species may be15

assumed to equal that of the test species, or may be modified using an extrapolation factor that16

varies according to the number of species tested. The single-species risk assessment is more17

appropriate for population level assessments where the magnitude of effects and recovery are the18

important aspects of the assessment.  It assumes that the toxicity to the focal species is known or19

that a specific level of protection is sought.20

21

Table 5.2.2 Exposure distributions used in risk assessment examples.  Risk assessment22
methods 2 and 3 used  the probability distributions. The parameters of the distribution were used23
for methods 1,4 and 5.24

Exposure Distribution
Exposure
mg/kg/d

% Discrete
Probability

% Cumulative
Probability

30 10 10
33 10 20 Distribution Type = Lognormal
45 10 30 Mean = 77.61
60 10 40 Standard Deviation = 40.05
81 10 50 95 percentile = 153.37
88 10 60 90 percentile = 128.56
89 10 70
95 10 80
120 10 90
126 10 100
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Table 5.2.3 Effects distribution 1a expressed as a probability distribution was used in risk1
assessment examples for method  3.  The parameters of effects distribution 1a were used in2
examples for methods 1 and 4.  Effects distribution 1b was used in risk assessment examples for3
method 3.  Effect distributions 1a and 1b are from median lethal dose values for several different4
test species and can either represent  the universe of sensitivity for the focal species, where the5
actual median lethal dose is unknown, or the sensitivity of several species for a multi-species risk6
assessment.7

Effects Distributions 1a Effects Distribution 1b
LD50 % Probability LD50 %  Prob.

mg/kg/d Discrete Cum. mg/kg/d Cum.
90 25 25 Distribution Type = Lognormal 150 20
120 25 50 Mean = 203.51 155 40
250 25 75 Standard Deviation= 119.92 195 60
350 25 100 5 percentile = 71.43 210 80

10 percentile = 87.1 350 100
8
9

Table 5.2.4 Effects distribution 2 was used in risk assessment examples for methods 2,3,4 and10
5.  Effects distribution 2 represents the estimated or actual dose-response for the focal species.11
The estimated LD50 for the focal species may be assumed to equal that of the test species, or may12
be modified using an extrapolation factor that varies according to the number of species tested.13

Effects Distribution 2
NOEL

mg/kg/d
LD50

mg/kg/d
95%tile
mg/kg/d

5%tile
mg/kg/d

120 220 260 180

14

For avian risk assessments there will typically be a separate assessment (and exposure15

distribution) representing each type of focal species. In some instances, it may be only the16

exposure distribution that changes according to the focal species with a more generic effects17

analysis based on available test species. However, the effects analysis may also change where18

estimates of the median lethal dose or dose-response are available for the focal species or in a19

situation where toxicity data is available for the focal species.  It is important to note that the20

characteristics of the distributions for exposure and effects including what these distributions (or21

point estimates) actually represent will affect the interpretation of the risk assessment output.22

The selection of a risk assessment  model and the expression of risk should be modified23

according to the question being asked by risk managers.  For each example, details of the output24

information from the risk assessment is provided to illustrate how the output could be25

interpreted. Probabilistic risk assessment examples involving stochastic modeling were generated26

using Monte Carlo analysis within Crystal Ball (an MSExcel add-in for conducting model27

simulations). Using this software (or similar software e.g, @Risk) it is very easy to view data and28
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to fit distributions to data.  Distributions can be used instead of a fixed value to represent the1

uncertainty associated with the fixed value.  Where actual data are available,  these data should2

be preferentially used and the appropriate statistical distribution carefully fitted to data. Selection3

of distributions based on minimal data, or data that poorly fit the distribution, should be used4

with caution. Where data are adequate, the empirical distribution based on the data should be5

used.6

7

Each risk assessment method will include assumptions and associated uncertainties.  As methods8

increase in sophistication, and their ability to provide a refined risk characterization for9

assessment endpoints improves, in general, uncertainty should become better defined.  An10

essential element of the risk characterization stage will be to analyze and summarize the major11

sources of uncertainty.  Types of uncertainty include uncertainty associated with natural12

variability (stochasticity), measurement or parameter error, and incomplete knowledge including13

model error.  The uncertainty in the ecological risk assessment will include the uncertainties14

within the exposure and effects analysis and uncertainties associated with the risk assessment15

method.  Consequently, the risk assessment will include a hierarchy of levels of uncertainty that16

will vary according to the scenario being simulated.  Uncertainties within the exposure and17

effects analysis are typically associated with natural variability and parameter error whereas18

additional uncertainty ensuing from the risk assessment method may include incomplete19

knowledge.  Depending on the method of analysis used in the risk assessment, a sensitivity20

analysis can be performed to identify the parameter most affecting the output such that a further21

iteration of the risk assessment can be refined.  Risk assessment refinements should focus on22

these sensitive variables particularly those with the greatest uncertainties.23

24

5.3 POINT ESTIMATE QUOTIENTS (METHOD 1)25

26

In the FIFRA regulatory process to date, the quotient method has been used in risk assessment27

for pesticides.  Results from this method are not probabilistic.  The quotient is a ratio that28

represents the simplest approach for comparing estimates of exposure and effects.  A quotient of29

single values for exposure and effects are calculated (exposure value/toxicity value) and if the30

quotient exceeds a trigger value (equal to or less than 1), an adverse effect is considered likely to31

occur.  The quotient values do not quantify risk but provide results that are relative to risk.32



5-11

1

Limitations of this approach include:2

• There is no quantification of the magnitude and probability of adverse effects occurring.3

• Output cannot be compared to assessment endpoints.4

• Output cannot be compared to probabilistic estimates.5

• There is an increased dependence on expert judgment as the quotient approaches 1.6

• Only single points that usually represent the more sensitive or conservative data are used in7

the estimate, other available data are usually ignored.8

• Because the estimate is conservatively biased, the safety margin may be large. However, the9

actual size of the safety margin will remain unknown.10

• The method does not account for space or time.11

• Species tested in the laboratory are assumed equal to those in the field.12

• An evaluation of the effect of risk mitigation measures is difficult.13

14

Advantages of this approach include:15

• Provides a crude index of magnitude of effects and therefore could be used for comparisons16

amongst alternative compounds (where comparable data are available).17

• May identify certain groups of non-target organisms where risk is low and further assessment18

unnecessary.19

• Identifies pesticides that are likely to be very safe in the environment when used in20

conjunction with conservative safety margins.21

• Simple and low-effort method22

• Risk managers are familiar with the quotient method.23

24

The quotient approach may have utility as a first step (e.g., Level 1 and/or during Problem25

Formulation) when it matches the needs defined in the conceptual model. The rationale for this,26

is that if a chemical does not trigger a level of concern then resource for further risk assessment27

effort could be saved.  A  single quotient (Method 1) is generated by selecting point estimates28

from the exposure or effects distribution (Table 5.3.1) for example the 95th percentile value for29

exposure and the 5th percentile for toxicity.30

31
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Table 5.3.1  An example assessment using the point estimate quotients (Method 1)1

Inputs for Exposure and Effects
(Effects Distribution 1a)

Exposure
mg/kg/d

LD50

mg/kg/d
Quotient Value

(exposure/toxicity)

Based on 95 and 5 %tile 153 71.4 2.1
Based on 90 and 10%tile 128.6 87.1 1.5
Based on worst case data points 126 90 1.4

2
The example shows that the exposure values exceed the LD50 values resulting in quotient values3

greater than 1. This assessment does not indicate that an effect is unlikely.  It does indicate that a4

refined assessment is necessary to determine the risk.  The assessment provides no information5

on either the probability of an effect occurring or the size of the effect.6

7

5.4  COMPARISON OF EXPOSURE DISTRIBUTION AND POINT ESTIMATE FOR8
EFFECTS (METHOD 2)9

10

In some circumstances, data supporting exposure assessments may be more available than11

toxicity data and therefore resulting distributions for exposure more easily obtainable than12

distributions of the effects profile.  In this method, a single distribution of exposure is generated13

and a point estimate of toxicity is selected.  Risk is estimated based on the probability of the14

effect level occurring within the distribution of exposure.  This method is applicable where a15

dose-response is not available and toxicity is represented by a NOEL.  This method is also16

applicable to situations where a point estimate of exposure is available and a distribution of17

effects.18

19

Exposure: A probabilistic distribution of exposure may be generated from two basic models  i.20

Dietary model   ii. Granule model.21

22

Effects: Several options are available and include:  i. The point estimate represents a toxicity23

endpoint (e.g., LD50,  NOEL)  from the most sensitive species where dose-response data were24

unavailable (e.g., avian reproduction test).  ii. The toxicity estimate for the species could be25

obtained from a generic species sensitivity distribution where there is no information on the26

toxicity to the focal species.  iii. The toxicity to the focal species has been estimated on the basis27

of data from test species modified by an extrapolation factor.  iv. The toxicity data for the focal28

species is available.29
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1

Risk: Risk is expressed from a cumulative probability distribution of exposure to provide a %2

exceedance of a fixed effect level.  For example, there is a 20% probability that exposure values3

will exceed the effect point estimate (e.g., a NOEL).4

5

An example: Method 2 (Fig. 5.4.1) uses the distribution for exposure and point estimates for6

toxicity.  The arrows on the solid line illustrate where the point estimate for toxicity of 907

mg/kg/d (equal to the lowest LD50 value from Effects distribution 1a) intercepts with the8

exposure distribution. This shows that 65% of the calculated exposure values will not exceed the9

effect threshold of 90 mg/kg/d which corresponds to 50% mortality of exposed birds, and that10

35% of exposure values would exceed the effect threshold and lead to more than 50% mortality11

of exposed birds.  The arrows on the dashed line illustrate where the toxicity threshold of 12012

mg/kg/d (equal to the NOEL value from Effects distribution 2) intercepts with the exposure13

distribution. This shows that over 90% of the calculated exposure values will not exceed the14

effect threshold of 120 mg/kg/d which corresponds to a no effect level.  In other words, < 10% of15

exposure values would exceed this no effect threshold.16

17



5-14

Fig. 5.4.1 Example of Method 2 (Comparison of Exposure Distribution with Point Estimate1

for Effects). The arrows on the solid line illustrate where the point estimate for toxicity of 902

mg/kg/d  intercept the exposure distribution.  The arrows on the dashed line illustrate where the3

toxicity threshold of 120 mg/kg/d intercept the exposure distribution.4

20 40 60 80 100 120 140

mg/kg/d

0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

E
xp

os
ur

e

5

5.5 COMPARISON OF EXPOSURE AND EFFECTS DISTRIBUTIONS (METHOD 3)6
7

Where sufficient data exist to provide meaningful distributions of both exposure and effects,8

joint distributions can be compared to determine the extent of overlap.  Risk can be expressed as9

a probability of exceedance of a fixed exposure level.  In contrast to method 2, the probability of10

exceeding different effect levels can be determined because the dose-response profile is known.11

12

Exposure: A probabilistic distribution of exposure may be generated from two basic models  i.13

Dietary model   ii. Granule model.  This is expressed as a cumulative probability distribution or a14

discrete probability distribution.15

16

Effects: i. The distribution is based on several toxicity values (LD50’s) each representing a17

different species or the distribution represents possible sensitivities for the untested focal species18

(Effects Distributions 1a and b).  Or,  ii.  The toxicity distribution represents a dose-response19

distribution for the focal species.  Variability associated with the dose-response (i.e., the LD5020

and slope) can be introduced into the assessment using Monte Carlo techniques (see Method 421

below)  or using statistical confidence limits.22
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1

Risk:  Risk is expressed from a distribution of mortality probabilities.  The probability of2

occurrence of an effect level of a specific magnitude (e.g.,10, 25 or 50% mortality) when a fixed3

level of exposure  is exceeded can be determined.4

5

Examples of Method 3 use the distribution for exposure and Effects Distributions 1a, 1b and 2.6

A risk assessment based on Effects Distribution 1a where multiple LD50 values are represented is7

shown in Fig. 5.5.1.    Here there is a fairly extensive overlap between the distributions for8

exposure and effects (species sensitivities represented by LD50 ‘s).  At 129 mg/kg/d, the 90th9

percentile for exposure values, LD50 toxicity thresholds for 40% of species would be exceeded.10

However, where the effects distribution represents uncertainty in sensitivity for the focal species11

rather than sensitivities for multiple species, then for 90% of calculated exposure values there is12

a 40% probability that the median lethal dose (LD50) for the key species will be exceeded.  A13

Margin of Safety (quotient) can be calculated (Fig. 5.5.1) by dividing the 10th percentile for the14

sensitivity distribution by the 90th percentile for the exposure distribution (Solomon et al, 1996).15

This gives a value of 0.68 (87.1 / 128.56) which is considerably less than 1.0 indicating a16

potential for unacceptable risk.  Depending on the question asked, the same data used in Fig.17

5.5.1 can be used to show the % Probability of Exceedance  (reverse cumulative probability18

distribution) for different species sensitivities as shown in Fig. 5.5.2.  For example, there is a19

10% probability of exceeding the median lethal dose for 40% of species where the distribution20

represents multiple species.  Alternatively, there is a 10% probability of exceeding the 40th21

percentile median lethal dose (LD50) for the focal species (Fig. 5.5.2).  Where, the effects22

distribution represents a dose-response for the focal species (e.g., Effects distribution 2), this23

type of plot can be used to show the probability of exceedance for % mortality (x-axis).  This is24

the method proposed by the aquatic ECOFRAM group for aquatic risk assessments.25

26

A risk assessment based on Effects distribution 1b (Fig. 5.5.3) shows that at 129 mg/kg/d, which27

represents 90% of exposure calculations, median lethal doses for approximately 20% of species28

would be exceeded. This approach, based on representing multiple species, may be useful where29

there is a need to interpret effects on a community of species (e.g., aquatic risk assessments).  In30

this type of assessment, there may be more than one relevant exposure distribution because31

exposure for each species within the community may not be equal.  The risk assessment could be32
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based on the most conservative distribution or some other appropriate representation of exposure1

to the community. However, typically in terrestrial risk assessment, the distribution of species2

sensitivities will represent the uncertainty associated with predicting the sensitivity of the focal3

species.  Thus in Fig. 5.5.3 it could be concluded that for 90% of exposure values, there is a 20%4

probability that median lethal dose for the focal species will be exceeded. In other words, for5

10% of the time,  there is a 20% probability that the dose lethal to 50% of the focal species6

population is exceeded. Fig. 5.5.4 illustrates a risk assessment for a focal species where the7

effects distribution is based on a single dose-response distribution (Effects Distribution 2).  At8

the 90th %tile for exposure, negligible mortality would be expected.9

10

Fig. 5.5.1 Example of Method 3 (Comparison of Exposure and Effects Distributions) using11
Effects Distribution 1a.  The y1 axis represents the % cumulative probability distribution for12
exposure and the y2 axis represents the % species sensitivity (cumulative distribution of median13
lethal doses).  The shading shows the area of overlap of the 90thpercentile exposure with the14
species sensitivity distribution (intercepts at 129 mg/kg/d).15
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Fig. 5.5.2 Example of Method 3 (Comparison of Exposure and Effects Distributions) based1
on Effects Distribution 1a.  This shows the probability that exposure values will exceed a2
specified portion of the species sensitivity distribution using a reverse cumulative distribution.3
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Fig. 5.5.3 Example of Method 3 (Comparison of Exposure and Effects Distributions) using1
Effects Distribution 1b. The shading shows the area of overlap of the 90thpercentile exposure2
with the species sensitivity distribution.3
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 Fig. 5.5.4 Example of Method 3 (Comparison of Exposure and Effects Distributions) using6
Effects Distribution 2.  Error bounds (95% confidence intervals) around the dose-response are7
shown by dashed lines.8

0 50 100 150 200 250 300 350

mg/kg/d

0

20

40

60

80

100

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

E
xp

os
ur

e

0

20

40

60

80

100

%
 M

or
ta

lit
y

Exposure

9

10

11



5-19

5.6 DISTRIBUTION-BASED QUOTIENTS (METHOD 4)1
2

In the Distribution-Based Quotient Method, each individual quotient represents a ratio of3

exposure to toxicity. The exposure and effects distributions are integrated using Monte Carlo4

simulations to randomly sample values from distributions of exposure and toxicity to generate a5

probabilistic distribution of quotients.  Distributions of exposure and toxicity may be derived6

from various sources.  In the simplest form, uncertainty associated with point estimate values can7

be incorporated by assigning distributions to the exposure and effects variables.  In some8

instances, adequate empirical data may be available to develop actual distributions for exposure9

and effects.  The output shows the probability of exposure exceeding effect thresholds.10

However, the probability of a certain magnitude of effect occurring is unknown.  Risk is11

expressed from a probability distribution of quotient values, and the probability of the quotient12

exceeding 1 or any other quotient value.  For example, there is a 20% probability that exposure13

levels exceed effect levels (based on a quotient of 1).14

15

Two different examples of the Distribution-based Quotient methods were developed to reflect a16

toxicity profile with multiple LD50 values (Effects distribution 1a) and another composed of a17

single dose-response with uncertainty around the LD50 value (Effects distribution 2).  The18

exposure and toxicity data were each fitted to a log normal distribution (Fig. 5.6.1).  Monte Carlo19

methods were used to randomly sample from the distribution (10,000 simulations).   The20

assumptions used to generate probabilistic quotients are shown in Fig. 5.6.1.  The resultant21

probabilistic distribution from the simulation shows that there is a 90% probability that the22

quotient will not exceed 1.0 (Figures 5.6.2 and 5.6.3), i.e. a 90% probability that exposure levels23

will not exceed effect levels.  Fig. 5.6.2 shows the results as a probability distribution whereas24

Fig. 5.6.3  illustrates the results as a cumulative probability distribution.  The risk statement must25

be modified depending on what the distributions represent.  Where the species sensitivity26

distribution represents possible LD50 values for the focal species, and the lack of knowledge27

concerning the sensitivity for the focal species, the output can be expressed as a 90% chance that28

the sensitivity of the key species (as expressed by the median lethal dose) will be less than29

estimated exposure levels (Figures 5.6.2 and 5.6.3).30

31
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The output from the second example shows that there is 90% probability that the quotient value1

will not exceed  0.65 (Figures 5.6.4 and 5.6.5).  In this example, there is a 99% probability that2

the quotient will not exceed 1.0.  Specifically, where the distribution of LD50’s represent the3

error around the LD50  for the focal species, the model output can be expressed as a 99%4

probability that exposure will be below levels that result in 50 % mortality of the population of5

focal species.6

7

Fig. 5.6.1 The individual distributions for exposure (graph 1) and toxicity (graphs 2 (Effects8
Distribution 1) ) and 3 (Effects Distribution 2) ) used to generate  Distribution-based Quotients9
(Method 4).  Plot 2 represents potential LD50 values for the focal species and therefore the10
uncertainty (lack of knowledge) associated with estimating an LD50 value for the focal species.11
Plot 3 represents the uncertainty (model and measurement error) associated with the actual12
estimated LD50 value for the focal species.13
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Fig. 5.6.2 An example of  Distribution-based Quotients (Method 4) based on Effects1
Distribution 1 which contains multiple LD50 values illustrated as a Discrete Probability plot.  The2
right arrow shows a quotient value of 1.0 (equal to the 90th% tile).3
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Fig. 5.6.3 Distribution-based Quotients (Method 4) based on Effects Distribution 17
illustrated as a reverse cumulative probability plot or exceedance plot. The arrow on the x-axis8
shows a quotient value of 1.0. There is a 10% probability of exceeding a quotient of 1.0.9
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Fig. 5.6.4 Distribution-based Quotients (Method 4) represented as a Discrete Probability1
plot.  This is based on Effects Distribution 3 which represents the distribution around the LD502
from a single dose-response distribution. The right arrow shows the 90% probability level which3
is equal to quotient value of approximately 0.65.4
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Fig. 5.6.5 Distribution-based Quotients (Method 4) based on Effects Distribution 21
illustrated as a reverse cumulative probability plot or exceedance plot.  The arrow on the x-axis2
shows a quotient value of 0.65.  There is a 10% probability of exceeding a quotient of 0.65.3
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5.7 INTEGRATED EXPOSURE AND EFFECTS DISTRIBUTIONS (METHOD 5)6
7

This risk assessment method uses a probabilistic distribution of exposure that may be generated8

from the two basic exposure models  i. Dietary model   ii. Granule model.  Generally, the9

resulting risk may be expressed such that there is a probability that a certain magnitude of effect10

will occur e.g., a 20% probability that 40% mortality will occur within a population.  The11

integrated exposure and effects method is applicable to risk assessments where data is available12

to characterize the dose-response relationship for the focal species or the functional relationship13

based on survivorship is described.  Method 5 is similar to Distribution-Based Quotients14

(Method 4) in that the exposure and effects distributions are integrated using Monte Carlo15

simulations to sample from both distributions to provide an assessment of risk.   However, in16

Method 5 the quotient (in Method 4) is replaced with a mortality response function, therefore the17

results of the risk assessment can be expressed as a probability of a certain magnitude of18

mortality (or some other effect).  Also, unlike risk assessment Methods 2 and 3, where risk is19

based on a probability of exceeding a fixed effect level, the output is a probability associated20

with a certain size of effect derived by “sampling” from the complete distributions for exposure21

and effects. The probability that an effect occurs (e.g., mortality) is estimated by observing the22

frequency of occurrence of the event in a large population of similar individuals. Consequently,23

Method 5 simulates both individual variability and parameter uncertainty whereas previously24
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described risk assessment methods describe only parameter uncertainty.  The dose-response1

curve is essentially the cumulative distribution function (CDF) for the distribution of tolerances2

of individuals to a pesticide.  The CDF describes the variability in susceptibility of individuals3

within a population, where F(t) is the proportion of individuals in the population with tolerance4

less than or equal to t.  For the individual drawn at random, the probability of mortality is related5

to the CDF by:6

7

P(mortality to exposure dose d) = P (tolerance ≤ d ) = F (d)8

9

The response of an individual is dependent on the parameters of the CDF or dose-response (e.g.,10

normal, probit, lognormal or logistic response curves) and these describe the probability of an11

effect for an individual in relation to a dose.  For the probit model, tolerances follow a lognormal12

distribution and the proportion reacting will be related to the logarithm of the exposure dose by13

the normal CDF.  The logistic curve can also be used to describe the probability of an effect.  It14

has a similar shape to the normal CDF and may be preferred because it is simpler to interpret.  In15

all these models, each individual in the population has a tolerance to a dose and if the16

susceptibility of the individual is less than the received dose then the individual will react.  For17

example, for a given dose and tolerance, an animal may die or survive (quantal response).18

19

Two different approaches for simulating variability in response by individuals are described to20

illustrate the Integrated Exposure and Effects Distributions risk assessment method:  i. A dose-21

response approach based on a distribution of tolerances  ii. A survivorship approach.22

A more detailed explanation of the derivation of the dose-response approach is described in23

Chapter 4.0.  Examples of the dose-response using the same exposure and effects distributions as24

earlier risk assessment examples are used to demonstrate how different types of uncertainty25

associated with the effects analysis can be considered within the risk assessment.  In addition,26

other risk assessment examples provided show how the different mortality response functions27

described for Method 5 can be integrated with the various exposure analysis models developed28

for dietary and granular ingestion and previously discussed in Chapter 3.  Finally, an approach29

that is based on survivorship or time-to-event is described where temporal consideration is given30

to effects as data on individuals transitions over time.  Mortality (or other effects) probability31

distributions are based on specific times, ages or stages.32
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1

5.7.1 Dose-Response Approach2
3

The mortality response function in these examples is based on a dose-response approach where4

the sensitivity of each individual is represented by a distribution of random tolerances. Three5

different models with varying degrees of representation of uncertainty were developed (Table6

5.7.1).  Each is based on the example distribution for exposure (Table 5.2.2) and the single dose-7

response (Effects Distribution 2, Table 5.2.4) where an extrapolation factor may have been used8

to estimate the median lethal dose for the focal species.  Model 1 uses fixed values for the LD509

and slope of the dose-response.  Models 2 and 3 use distributions to represent the LD50 and slope10

where uncertainty associated with interspecies and intraspecies variability can be represented.  In11

addition, model 3 incorporates a distribution to represent uncertainty associated with12

extrapolation from the laboratory derived LD50 to the LD50 for the species of concern in the field.13

This would account for uncertainty associated with the realism of the exposure simulated in the14

laboratory for example, differences in inherent toxicity between field and laboratory populations15

and variability resulting from increased stress in the laboratory affecting sensitivity.16

17
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Table 5.7.1 The assumptions in the three examples for a dose-response approach based on1
random tolerances for risk assessment Method 5 (Integrated Exposure and Effects Distributions).2

3

Parameter Model 1 Model 2 Model 3
Dose
(exposure) (D)

Lognormal
Distribution

Lognormal
Distribution

Lognormal Distribution

LD50 Fixed Value Normal Distribution Normal Distribution
Slope Fixed Value Normal Distribution Normal Distribution
Lab to Field
Extrapolation
Uncertainty
Factor (UF)

none none UF= 75% Probability
that the Field LD50 is
within 2X Lab LD50

Number of
Individuals

20 20 20

Number of
simulations

500 500 500

Tolerance of
each Individual
(T)

T= LD50*10^(z/slope)
z=standard normal
distribution (mean=0,
F =1)

T=
LD50*10^(z/slope)
z=standard normal
distribution (mean=0,
F =1)

T=
(LD50*UF)*10^(z/slope)
z=standard normal
distribution (mean=0, F
=1)

Fate of Each
Individual

if D>T then mortality
if D<T then survival

if D>T then mortality
if D<T then survival

if D>T then mortality
if D<T then survival

4
In models 2 and 3, the error in the LD50 and slope estimates are represented by normal5

distributions (Fig. 5.7.1).  In this example, these distributions are not correlated, however, if6

LD50 and slope is correlated,  this modification could be made.  In model 3, the uncertainty factor7

for extrapolation to the species of concern in the field was estimated by assuming the ratio of the8

laboratory and field LD50s have a lognormal distribution with median 1, implying that9

underestimation and overestimation are equally probable.  For illustrative purposes, the variance10

of the distribution was calculated by assuming a 75% probability that field LD50 values would be11

within a factor of 2 of the laboratory LD50.   The examples are based on the probit model (other12

dose-response models could also be used) where tolerances are assumed to have a lognormal13

distribution and the logarithms of the tolerances have a mean of log(LD50) and standard deviation14

of 1/slope.  This can be simplified using the equation:15

Random Tolerance = LD50*10^(z/slope)16

17

where z is a random number from a standard normal distribution (mean=0, variance=1).18

19
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The sample population in these examples has 20 individuals and 500 simulations were conducted1

for each (Table 5.7.1). The mortality probability function is a quantal response, and for a given2

dose and sensitivity, an individual either dies (where the tolerance of the individual is less than3

the dose received) or survives.4

5

The results of model 1, 2 and 3 assessments are expressed as a probability of a certain mortality6

occurring in the sample population (Figs. 5.7.2, 5.7.3 and 5.7.4) and are illustrated as both7

cumulative probability distributions and discrete probability distribution.  For model 1 where8

fixed values for the dose-response parameters were used, there is a 100% certainty that mortality9

will not exceed 40% of the population.  There is a 12.4% probability that no mortality will occur10

in the population and a certainty of 87.6% that 5 to 35% mortality will occur in the population11

(Fig. 5.7.2).  For Model 2 where dose-response parameters were variable, there is a 100%12

certainty that mortality will not exceed 30% of the population.  This model predicts no mortality13

with a 9.6% certainty and a 90.4% probability that 5 to 30% mortality will occur in the14

population (Fig. 5.7.3). For Model 3 where dose-response parameters were variable and an15

uncertainty factor for lab to field uncertainty was applied, there is a 100% certainty that mortality16

will not exceed 60% of the population.  In only 1% of cases is no mortality predicted and there is17

a 99% probability that 5 to 60% mortality will occur in the population (Fig. 5.7.4).  The18

probability of mortality increases (distributions shift to the right) as uncertainty associated with19

lab to field extrapolations is considered in the model (Model 3 compared to Model 1 and 2).20

This results from uncertainty not explicit in Models 1 and 2 being quantified in Model 3.  The21

contribution of each source of uncertainty can be explored further in a sensitivity analysis.22

23
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Fig. 5.7.1 Assumptions for parameters characterizing the exposure distribution and dose-1
response used in Models 2 and 3.2

3

 Lognormal distribution with parameters:

5% - tile 31.02

95% - tile 153.37

 Normal distribution with parameters:

5% - tile 1.70

95% - tile 4.40

 Normal distribution with parameters:
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95% - tile 260.00

16.06 86.11 156.16 226.21 296.25

Exposure Distribution
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Fig. 5.7.2 Example outputs for Integrated Exposure and Effects (Method 5) based on a dose-1
response approach with random tolerances and fixed values for dose-response parameters2
(Model 1).  The graphs show reverse-CDF,  CDF and discrete PDF respectively.3
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Model 1 Results
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Fig. 5.7.3 Example outputs for Integrated Exposure and Effects (Method 5) based on a dose-1
response approach with random tolerances and distributions for  dose-response parameters2
(Model 2). The graphs show reverse-CDF,  CDF and discrete PDF respectively.3
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Fig. 5.7.4 Example outputs for Integrated Exposure and Effects (Method 5) based on a dose-1
response approach with random tolerances, distributions for  dose-response parameters and an2
uncertainty factor for lab to field extrapolation (Model 3). The graphs show reverse-CDF,  CDF3
and discrete PDF respectively.4
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The simulations provided in the examples above require that a certain number of individuals (n)2

be specified.  It should be noted that when the number of individuals is increased beyond a3

certain threshold that sampling variability may be essentially eliminated as a source of variation4

among simulated populations.  In this case, mortality can be generated directly from the dose-5

response without the use of the random mortality component (see Appendix D1).6

7

The Pesticide Agro-eco Risk Evaluation Tool (PARET) is a risk assessment model under8

development that uses the dose-response approach based on a random distribution of tolerances9

(Appendix A2).  PARET assesses the risk posed by the use of a pesticide using a simple10

comparison of exposure and effect on an individual basis.  Development of PARET to date has11

been based on the dietary exposure model including pesticide intake through drinking water12

(Chapter 3).  Random number generators are used to select application dates within an13

application window.  Distributions are used to describe exposure in a spatially and temporally14

variable agro-ecosystem with temporal variability built into the model in a daily time-step.  A15

grid-based approach is used to represent treated and treated fields on which an animal may move16

at random (not behavior specific).  The number of fields on which an individual feeds is a17

function of the median size of field in the local area relative to the local range of that species.18

Effects are assessed using the parameters of the dose-response and by assuming a random19

distribution of tolerances.  The model does not account for depuration of body burden.   For each20

individual the exposure is compared to the effect level and depending on whether exposure levels21

exceed effect levels, the individual is counted as dead, reproductively impaired or alive.22

23
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A further variation of the dose-response approach is described below.  As for the previous1

example, for a given dose and tolerance, an animal may die or survive. The functional2

relationship is described by the CDF of a standard normal distribution, however, the tolerances3

do not follow a hypothetical random distribution as in the previous examples.  For the probit4

model, the CDF for the probability of mortality at exposure dose d can be described as follows:5

6

F(d) = Φ(slope*log10 (d / LD50))7

8

The logistic curve can also be used to describe the probability of an effect and an example of this9

approach is the individual-based risk assessment model described in Appendix A3.  In this10

model, pesticide ingestion and mortality in avian species is used to link pesticide exposure11

concentrations to predict mortality on populations of avian species with different feeding habits12

associated with agricultural fields.  The model consists of two parts i. a calculation of the body13

concentration, or dose, for each individual in the population, and ii. a calculation of the14

probability of mortality of many individuals of a given species in a population.  Each component15

of the model is stochastic. Random variables include the ingestion rate of granules, pesticide16

residues in other diet components, and the probability of mortality.  The proportion of consumed17

food items with pesticide residues will depend on the relative time spent in treated areas18

compared to untreated areas.  Each individual accumulates pesticide over time and primary19

mechanisms for reducing body burdens are excretion and metabolism of absorbed pesticide.  The20

probability of mortality occurring in an individual is determined by a dose-response function in21

which mortality probability is a logistic function of dose or body concentration.  The quantal22

response is determined using a random number generator.  This model uses the following form23

of the logistic function:24

F(d)= P1 / ( 1 + e^[(2.2/P3)(P2-d)] )25

26

where F(d)=probability of mortality at dose d; P1=maximum probability of mortality; P2=LD50;27

P3=difference between LD10 and LD50; d= dose or body concentration.28

29

A further variation of this dose-response approach based on non-random tolerances provides an30

approximation of the cumulative standard normal distribution.  An example of a risk assessment31
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based on this mortality response function provides an assessment of the effects of the insecticide1

chlorpyrifos on blue tits in orchards in the U.K. ( Appendix C10).2

5.7.2 Survivorship (or time-to-event) Models3
4

Survivorship models have potential application to ecological risk assessment for example the5

“Hazard Analysis” method described by Caswell and John (1992).  Unlike the majority of6

integrated risk assessment examples as presented above, survivorship or time-to-event- models7

give temporal consideration to effects. Survivorship models yield estimates of population level8

transition rates, estimated from event history data on individuals and could be useful in9

estimating the probability of mortality under a number of exposure or risk scenarios.  They10

therefore provide an opportunity to improve utilization of information on times or ages of death11

of individuals, or generation of predictions with a time dimension (e.g., as in life tables).  For12

example, Hazard analysis uses individual-based modeling to estimate rates or probabilities of13

parameters such as survival, reproduction, or mortality where the data consist of individual14

transitions over time (e.g., the dependent variable may be monthly rate of mortality). Hazard15

Analysis is essentially a regression model where the dependent variable is the rate at which the16

transition (the hazard) occurs. The method can incorporate censored data (i.e., data in which the17

fate of some individuals is not observed), such as the probability f(t) of an event happening at18

time t and the cumulative probability F(t) of the event happening before time t to derive the19

hazard function f(t)/[1-F(t)], which gives the risk of an event occurring at time t, given that it has20

not yet occurred.21

22

In simple situations such as construction of life tables, the methods may involve obvious23

calculations involving age- or time-specific mortality rates. For example IBMOD (see Appendix24

E1) , an individual-based growth model, uses probabilities for fecundity and survival on each25

individual in separate age classes (similar to a Leslie-matrix type population model).  The26

fecundity probabilities form a cumulative probability distribution used to create a specific27

number of off-spring per individual.  IBMOD tracks off-spring numbers and survival by sex and28

age class and will simulate growth of a population over time.29

5.8 MECHANISTIC (PROCESS) MODELS FOR POPULATION EFFECTS (METHOD30
6)31

32
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Part of the charge to ECOFRAM was to develop methods for ecological risk assessment that are1

based on risks to populations where both spatial and temporal scales are considered. There are2

several types of models that are applicable to estimating the risk of pesticides to populations of3

non-target organisms (Barnthouse, 1996) that may fulfill this remit.  These include models that4

are individual-based, stage/age structured, meta populations or spatially explicit landscape5

models. A summary of the advantages and disadvantages of these approaches for probabilistic6

risk assessment is shown in Table 5.8.1.  Like risk assessment Method 5 above, these models7

integrate exposure and effects distributions to provide a risk estimation.  However, unlike the8

distribution-based methods discussed above, these models are more sophisticated and include9

mathematical expressions that represent the various mechanisms in the system under evaluation.10

Mechanistic models can be used to characterize the abundance and/or persistence of populations11

and can characterize the spatial and temporal characteristics of effects.  Each model may be more12

specific to certain species and/or scenario in comparison to the more generalized distribution13

approaches.   Consequently, reference data sets for representative species associated with certain14

agricultural ecosystems where pesticides are used may be necessary.  The extent of use of the15

pesticide and persistence, and how this affects the rate of recovery of exposed populations may16

also be considered. These models, due to  their increased realism, may imply a higher level of17

certainty in comparison to earlier methods, however, to surmise this may not always be18

appropriate, and careful consideration should be given to underlying assumptions in the model.19

20

Population level effects are traditionally modeled by treating all individuals as genetically,21

morphologically, and physiologically equal. Different age groups, sexes, body size classes, and22

even individuals can react differently to exposure to a toxicant. The development of probabilistic23

risk assessment approaches will explore several approaches for the modeling of population level24

effects. There are several excellent summaries of the approaches discussed below (DeAngelis25

and Gross, 1992; Emlen, 1984; Engen, 1978; Freedman, 1980; Gutierrez, 1996).26

27

Population models are available and many could potentially be modified for use in ecological28

risk assessment.  However it should be noted that a major limitation in the use and development29

of these models is an absence of adequate data.  Given this, it was concluded by ECOFRAM that30

the use of these models should be a longer-term objective.31
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5.8.1 Age Class Structured1
2

Grouping individuals by age and sex can provide much better estimates of population growth;3

combining this approach with estimates of differential toxicity will greatly improve risk4

projections. Models are available that allow for either discrete generations (e.g. the Leslie5

Matrix) or continuous reproduction (e.g. McKendrick-VonFoerster or distribution delay models).6

The major advantages of age-class structured models are their relative simplicity, especially in7

discrete models, and the ability to segregate exposure or risk by age. Research has shown that8

post-exposure mortality is often age dependent. The disadvantages of this approach relate to the9

difficulty of obtaining reliable field derived vital rates as inputs to the modeling process.  In10

addition, vital rates are species specific and vary intra-specifically across habitats, and even with11

the range of a species in a single habitat. Finally, age is not always easy to determine in the field12

adding to inaccuracy in the population projections derived by the models. Major challenges will13

include collecting vital rates for age and sex classes for the wide array of species under risk.14

15

5.8.2 Stage And Size Structured16
17

Individuals of different body sizes can be differentially susceptible to exposure to environmental18

contaminants. Several matrix-based procedures, such as Lefkovitch stage-classified models,19

allow exposure and risk to be partitioned among life-stage or body size classes (e.g., Caswell,20

1989; Slade, 1994). These matrix models have the advantage that they are relatively simple and21

do not require ages of organisms. It is only necessary to be able to define the life-cycle stages or22

sizes of the organisms. The disadvantages are similar to age-class structured models; life-cycle or23

size specific vital rates are difficult to obtain under field situations and these rates will vary in24

space and time. Even accurately obtained, expected values lack estimates of variability in the25

wild. The incorporation of estimates of levels of environmental stochasticity also is a major26

challenge.27

28

5.8.3 Composite Age And Size Structured29
30

There are several models that combine age and size structured data in developing population31

projections. They include discrete (Slobodkins model) and continuous (Sinko-Streifer equation)32

forms.  Advantages include the capability to consider size differences within ages and relative33
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simplicity of the models. The disadvantages are a composite of those of age and stage structured1

matrix approaches. Vital rates must now be obtained or estimated for ages and sizes within ages.2

Again, these rates will vary in space and time, and age must be determined under field conditions3

with precision.4

5

All of the above matrix-based models can be modified to include density dependence, stochastic6

variation, and contaminant-induced impacts. Sensitivity analyses can be run on any of the7

parameters in the model. However, all are aggregate models to some degree and assume that all8

individuals in a particular class are behaviorally, morphologically, and physiologically identical.9

In many cases, this assumption is violated, however, there is a class of models that allows for the10

incorporation of individual differences.11

5.8.4 Individual-based12
13

Individual-based models simulate large numbers of individual organisms at various life stages14

with explicit consideration of foraging and predation, physiology, behavior, and/or15

pharmacodynamics.  Individual-based models may also be called physiologically-based models,16

where they focus on physiological differences among individuals in exposure and response.17

Historically, these models have been applied almost exclusively to aquatic systems. Individual-18

based models hold great heuristic promise, however, they often require extensive data on19

individuals in order to characterize the dynamics of a population of individuals  with20

consideration of physiology, behavior and pharmacodynamics at various life stages.21

Individual-based models possess the following advantages:22

• They recognize the reality of individual variation in morphology, behavior and23

physiology.24

• There is, in principle, no loss of biologically important information.25

• The responses of interest can be determined under controlled laboratory or field26

conditions (to a degree).27

• These models can be modified to include spatial dependence.28

Disadvantages of individual-based models include:29

• A dependence upon biological data on individual organisms.30

• The fact that these models are computationally intense.31

• A history of application primarily in aquatic toxicology.32
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1

The great attraction of individual-based modeling approaches is the ability to incorporate2

physiological, behavioral, competitive, and habitat differences, all of which are known to3

influence exposure and risk under field situations.4

5

5.8.5 Spatially Structured Populations6
7

In the Problem Formulation stage of the risk assessment the population structure and spatial scale8

of the risk assessment should be determined.  Examples of risk assessment methods described in9

earlier sections assume that a single population is being exposed to a particular distribution of10

exposure.  As methods become further developed it may be necessary to link several different11

exposure scenarios to spatially separate subpopulations.  The exposure may vary within and/or12

among subpopulations.  This concept is described in detail in Appendix C1.  In reality13

populations are exposed to environmental contaminants distributed unequally across the14

landscape. Agricultural fields will contain more pesticides, for example, than surrounding15

woodland. It will be important to include information on the density and reproductive output of16

species in different habitats as well as the different levels of exposure in these habitats. This17

information should be included in a variation of source-sink modeling. A specific expression of18

source-sink models is that of the meta-population (Pulliam, 1994). A meta-population represents19

a group of geographically separated subpopulations of a species where each patch is separated20

from others by unsuitable habitat. Some of the subpopulations can be sources and others sinks.21

The degree of migration among subpopulations can be modeled. The meta-population modeling22

approach can incorporate information on which patches are likely to be exposed to contaminants23

and which are distant from agricultural areas.24

25

Spatially explicit risk models can be developed either in matrix-based aggregate models or26

individual-based approaches. Data inputs can be life-history data specific to each habitat and27

images of the habitat mosaic derived from some remote sensing approach (aerial photos, satellite28

imagery). Many spatial database software packages can develop a number of estimates of risk29

based upon these inputs. The advantages are that the results are site and species specific, locally30

relevant, and not data-input intensive. The major disadvantages include the lack of generality of31
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the results, except in a theoretical sense. This approach becomes essentially a case-by-case1

analysis.2
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Table 5.8.1 Strengths and Weaknesses of Mechanistic Models for Probabilistic Risk Assessment (Method 6)1

2

Section Type Description Strengths Weaknesses
5.8.1,
5.8.2,
5.8.3

- Stage/age-
structured

- demographic
- behavior of population
- effects at different ages
or life-stages related to
overall population effects

- causal mechanisms given
- direct link to lifecycle toxicity data
(if available)
- existing models for resource
management could be modified
- modification for probabilistic
expression of risk
- include predicted or observed
effects on populations
- could use reference data sets for
species of interest and their habitats
- long-term exposure and effects

- define population (statistical vs
ecologically relevant)
-difficult to obtain vital rate input
information
- multiple species
- spatially homogeneous
- unable to link to spatial & temporal
variation in exposure
- steady state
-data intensive
-increasing complexity resulting in
increasing propagation of error

5.8.4 Individual-
based

-Model large numbers of
individual organisms at
various life stages with
consideration of foraging
and predation,
physiology, behavior,
pharmacodynamics

-to warrant the effort consider use
where special review, specific
concern for organism at a high
trophic level, large body size and
longevity
-dynamic
-focus on benchmark popln.
-easy to extend individual based
information to population level
study
-input data most readily accessible
or easily obtainable

-focus on single species
-considerable effort to provide detailed
individual data

5.8.5 - Meta-
population

-set of subpopulations
-linked by immigration
and emigration following
local extinction of

-may be useful to evaluate specific
problem
-habitat considerations could be
linked to pesticide use areas (ag

-data intensive
-increasing complexity resulting in
increasing propagation of error
-determining size of Astudy@ area
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species within
subpopulation

ecosystems)
-able to incorporate important
spatial information giving high
realism

-in part site specific

5.8.6 - Landscape/
spatially
explicit

-simulation of
interactions between
organisms and
landscapes

-improved link to exposure
mitigation
-spatial & temporal description of
risk
-GIS software accessible and
inexpensive
-high realism

-too specific to be generally applicable
-spatial representation of stressor and
receptor
-data intensive
-increasing complexity resulting in
increasing propagation of error
-determining size of Astudy@ area
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5.9 FURTHER TESTING AND SELECTION OF METHODS1
2

Several methods for risk characterization were identified by ECOFRAM. Some of these3

methods may be very similar in function and possibly redundant. The final process4

implemented for terrestrial ecological risk assessment should focus only on those5

methods that are most useful in a regulatory risk assessment framework.  To achieve this,6

further evaluation of these methods using case studies is necessary to ascertain7

redundancy in the proposed methods (see Chapter 7.0).  This evaluation is necessary to8

refine the process for risk assessment.  Risk assessment methods must be suitable to use9

in a regulatory context and therefore must be adequately calibrated and validated.  An10

evaluation of methods proposed by ECOFRAM in case studies should consider several11

criteria:12

• Estimated costs and benefits13

• Description of the probabilistic components and expression of risk14

• Development of case scenario examples that rigorously test the methods15

• Directly address assessment endpoints of regulatory significance16

• Easy link to probabilistic distributions of exposure and easy incorporation of17

appropriate toxicity data18

• Consideration of utility within a tiered regulatory process19

• Timing of exposure for pesticides needs to be accurately reflected20

(particularly where a minimal number of applications and minimal persistence21

will result in a greater probability of not coinciding with a critical biological22

event).23

• Need to understand significance of effects of a perturbation compared to24

stochastic variability25

• Expect to make predictions based on incomplete information and therefore26

need to be able to assess the uncertainty27

• Model error may be a major contributor to overall uncertainty and difficult to28

measure29

• Ease of use in a regulatory context where consistency in requirements for30

refining assessments may be essential31
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.1

• In models that use populations of individual organisms, the risk2

characterization needs to consider differences between the collective statistical3

population used in the model as oppose to the actual population being risk4

assessed5

6
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1

2

6.0 LEVELS OF REFINEMENT FOR THE ASSESSMENT PROCESS3

4

6.1 Objective5

6

Terrestrial ECOFRAM has identified a wide variety of possible tools and processes for7

exposure and effects analysis, and risk characterization.  Alternative methods are8

necessary to provide the flexibility to manage a diversity of pesticide risk assessment9

scenarios, where different degrees of refinement may be required in order to achieve an10

adequate understanding of risk. However, in order to be useful within a regulatory11

framework, these methods need to be organized within an overall, streamlined process12

that allows efficiency and transparency in conducting regulatory terrestrial risk13

assessments. As stated in the charge to ECOFRAM, procedures for risk assessment need14

to be standardized and specific enough to allow different assessors supplied with the15

same information to produce similar estimates of risk (which is essential for the16

credibility of the assessment). In fact, the tools and processes discussed in this report are17

in their infancy, so it would be premature to attempt to standardize them at this stage.18

Therefore, the objectives of this chapter are to:19

• Consider how the principle of Levels of Refinement (developed in earlier chapters)20

can be applied to the risk assessment as a whole.21

• Consider the relative advantages of rigid and flexible assessment procedures.22

• Explore ways of deciding how far to refine assessments and how they might work in23

practice.24

• Consider what steps can be taken towards developing more standardized procedures.25

26

6.2 Levels of refinement for the assessment components27

28

At the end of each preceding chapter, the various tools and processes developed by29

ECOFRAM have been organized into four different levels of refinement. Table 6.2-130

summarises the methods at each level of refinement, and attempts to illustrate the31
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integration of exposure analysis, effects analysis and risk characterization to form the1

basis of a risk assessment process.2

3

Table 6.2-1 Overview of Levels of Refinement for ecological risk assessment4
5

Level I Level II Level III Level IV
Spatial Treated Field

PT=1
Treated Field &
Non-target areas
PT<1

Treated Field, Non-
target areas & Drift
Zone
PT<1

Landscape
-clumping
-explicit sizes
- pesticide market

Unit Time • short-term= minutes, hours
• medium-term= hours, days
• long-term = weeks

Effects assessment adjusted to pattern of
exposure over time

Species of
Concern

• generic • generic/focal • focal

Use Pattern • label maximum • label maximum • label maximum
• typical/distribution

Crop • generic • linked to focal species
• generic

• linked to focal
species

• individual crop
• individual region

Exposure
Output

• short-term:
conservative
single bout
exposure

• medium-long
term: peak daily
dose & time-
weighted average
(TWA, mg/kg/d)

• short-term:
distributions for
size of single-
bout dose, plus
frequency of
single-bout
exposures

• medium-long
term:
distributions of
daily dose, &
distribution of
TWA

• improved
distributions (more
data)

• consideration of
drift zones

• distributions
replacing fixed
defaults for
parameters

• consider additional
mechanisms, e.g.
avoidance

• improved
distributions (more
data)

• field data on
focal species

• consideration of
landscape factors
in spatially explicit
models

Effects
Output

Short: 1 LD50 dose-
response * EF
Medium: as for
short-term
Long:2 NOELS for
Reproduction

Short: 2-3 LD50 *
EF
Medium: 1 LD50

concentration-
response *  EF
Long: refinement of
NOEL

Short: 4+ LD50 * EF
Medium:>1 LD50

concentration-response
*  EF
Long: refinement of
NOEL

Field options but only
in combination with
exposure assessments

Risk
Characteriz-
ation
Method

Deterministic
Quotients
or Method 2

Short: methods 2-5 as appropriate
Medium: methods 2-5 as appropriate
Long: method 2

Risk
Characteriz-
ation Output

Quotient
or Method 2

Probability distribution specific to method selected

6
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This logical progression of methods provides the basis for a process for refining exposure1

and effects analysis, and risk characterization.  Early levels within the process have2

greater simplicity and conservative assumptions moving towards more realistic estimates3

of risk at later stages.  However, the Levels of Refinement are intended to be used in a4

flexible manner, so that at any stage of the assessment different elements may be assessed5

at different Levels of Refinement (see later for elaboration of this important issue). The6

four levels of refinement may be characterized as follows:7

8

Level 1 is designed to provide a protective screening assessment, and is therefore not9

predictive of actual risk. Consequently, conservative assumptions are made at this Level10

for many parameters. For example, animals are assumed to feed only in the treated field,11

following application of a pesticide at maximum label rates.   The assessment is typically12

based on a conservative scenario (i.e. tending towards the worst case), in which crops and13

species are represented generically.  Toxicity data may be limited at this level and a14

conservative uncertainty factor is applied to compensate for this uncertainty.  Level 1 is a15

deterministic analysis that culminates in the calculation of a quotient.  The objectives of16

the Level 1 assessment are to:17

• Identify products that have minimal ecological concern even under a conservative18

exposure and effects scenario.19

• Identify sensitive taxa (birds or mammals, types of birds or mammals) for further20

risk assessment refinements.21

• Determine whether acute and/or chronic effects are of concern.22

• Identify use patterns, crop scenarios, or formulations of products of environmental23

significance that require further risk assessment refinements.24

25

The objectives of ECOFRAM are to move away from deterministic quotients because26

they do not provide information on the probability and magnitude of effects.  At this27

stage, deterministic quotients have not yet been dismissed and feature as the risk28

assessment method in Level 1, for the following reasons:29

• Quotients may serve as an interim measure that provides a bridge for risk30

assessors and risk managers between current and new probabilistic risk31

assessment methods.32
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• Quotients remain a primary method within the aquatic ECOFRAM proposal1

and may continue to be used by EPA risk managers.2

• Terrestrial ECOFRAM has not yet conducted case studies to further evaluate3

proposed risk characterization methods therefore it is premature to eliminate4

deterministic quotients.  Quotients may also play a role in future evaluations5

by providing a benchmark to which new methods could be compared.6

• Further evaluation of risk characterization methods and further development7

of a Levels of Refinement process may demonstrate that quotients serve a8

useful purpose in scoping the risk assessment and identification of scenarios9

of concern (e.g., during the Problem Formulation stage).  On the other hand, it10

may be demonstrated that quotients are redundant.11

However, simple probabilistic methods of risk characterization (e.g. Method 2) are also12

feasible in Level 1 and may allow decisions about the need for refined assessment to be13

made in a manner consistent with higher levels of the process (see later).14

15

Level 2 is designed to be protective but also introduces greater realism into the16

assessment by substituting some conservative estimates with more realistic values, and17

deterministic values with distributions.  For instance, the exposure assessment may18

explore more realistic estimates of the portion of time that a non-target animal resides in19

the treated field.  The Level 2 assessment could be based on either generic species or the20

focal species associated with the target use of the product.  The uncertainty in the effects21

assessment is decreased by using additional toxicity data and more accurate estimates of22

dose.  The resulting risk assessment is based on probabilistic distributions generated from23

Methods 2 through 5.  The risk assessment for reproductive effects is limited to Method 224

due to the constraints of the current test design (a comparison of the exposure distribution25

with a point estimate for effects).26

27

Level 3 is similar to Level 2 but incorporates greater biological realism resulting from28

improved distributions (e.g. empirical or statistically-fitted distributions) and considering29

additional parameters in the exposure assessment. The effects estimate is refined by30

testing additional species, and specialised tests may be used (here or at Level 4) to31

quantify avoidance behavior.  Flexibility is introduced for customizing the exposure32
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regime in toxicity tests.   The resulting risk assessment is based on probabilistic1

distributions as described for Level 2.2

3

Level 4 is the highest level of refinement and considers landscape factors in spatially4

explicit exposure models and consequently the risk assessment may be crop and5

regionally specific.  Improvements to distributions for exposure and effects may involve6

focused field studies that provide more accurate measurements of key parameters. The7

resulting risk assessment is based on probabilistic distributions as described for Levels 28

and 3.9

10

6.3....................... LEVELS OF REFINEMENT FOR THE OVERALL ASSESSMENT11
12

A consequence of the flexible approach advocated by the Workgroup is that most13

completed assessments will include elements at more than one Level of Refinement.14

However, users are likely to want to describe the overall level of their assessments15

without having to refer to the Levels of all the component parts. It is possible to16

categorise the overall assessment in broad terms so, to avoid confusion, the following17

descriptions are offered:18

19

Level 1 Assessment Entirely deterministic assessment. All inputs and outputs are point
estimates, although some inputs may be ‘worst case’ values drawn
from a distribution (e.g. 95 percentiles).

Level 2 Assessment At least one input and the output are in the form of distributions, but
the input distributions are all hypothetical or generic (i.e. not specific
to the pesticide and scenario in question), and may be based on
relatively limited information (e.g. means and standard deviations
available from the scientific literature).

Level 3 Assessment At least one input and the output are in the form of distributions.
Input distributions are generally not specific to the pesticide and
scenario in question, but are likely to include statistically-fitted
distributions and/or empirical distributions. Likely to use more
distributions than at Level 2 and consider additional parameters.

Level 4 Assessment At least one input and the output are in the form of distributions,
with at least one input distribution being specific to the pesticide and
scenario in question (e.g. derived from field studies or non-standard
effects studies). May use a spatially-explicit model.

20

For the overall assessment, the Level of Refinement refers to the extent that biological realism, risk and21
uncertainty are incorporated in the risk characterization and how well actual risk is described. Level 1 is22
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suitable for screening purposes, and information is not provided on the probability of a1
certain magnitude of effect occurring. The purpose of higher levels is to address2
additional data needs, reduce uncertainty in the risk characterization, and reduce the need3
for the use of conservative assumptions.  Consequently, more explicit information on4
risk, and improvements in the prediction of actual risk will occur at increasingly higher5
levels.  In general the progression from lower to higher levels of refinement is based on:6

• Point estimates for parameters in the exposure assessment are replaced with7
distributions.8

• Additional parameters in the exposure model are considered.9

• Increased spatial realism.  Both treated and untreated habitat are considered.10

• An improved estimate of mg/kg/b.w. per unit time for test animals.11

• Number of species tested is increased.12

• Pattern of exposure in toxicity test is refined.13

• Increased realism in the risk assessment.14

• More uncertainty is explicitly considered in the analysis.15

• Decreased uncertainty in the estimate of actual risk.16

• Increased understanding of risk, and increased credibility of the assessment.17
18

Each refinement of the assessment should be preceded by a review of the Problem19
Formulation. The measurement endpoints employed may change as the risk assessment20
progresses through higher levels. Assessment endpoints, however, remain unchanged as21
the assessment is refined, although some assessment endpoints may be adequately22
addressed at lower Levels and not require as much refinement as others.23

24
As experience is accumulated it may be possible to define more standardized sets of25
parameters, distributions and models to use at each Level, for particular types of pesticide26
(e.g. granulars vs. foliar sprays vs. seed treatments). Cooperative case studies would be a27
good way to start identifying these (see later).28
6.4 Levels versus tiers29

30
Traditional approaches to pesticide eco-risk assessment have tended to be organised in31
hierarchical frameworks, in order to focus assessment resources on the pesticides and32
impacts of most concern. The levels in these frameworks have often been called Tiers.33
Tiers have been used simultaneously to classify the tools for risk assessment (particular34
types of study are done in specific Tiers) and define the process for risk assessment (a35
step-wise progression from lower to higher Tiers, triggered by levels of concern). They36
have also tended to be rather rigid, although this is not always the case (the Aquatic37
ECOFRAM has defined a Tiered process but emphasizes that the Tiers are flexible). An38
extreme example might proceed as follows:39

1. conduct all studies in Tier 140
2. conduct risk characterization41
3. if risk unacceptable, proceed to Tier 242
4. conduct all studies in Tier 243
5. repeat risk characterization… and so on.44

45
This has the advantage of transparency but is very unlikely to be efficient. Usually, only46
some of the studies within a Tier will be really necessary for the risk manager’s decision47
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to be made. So if the Tiers are applied rigidly to every pesticide, many studies may be1
conducted and evaluated unnecessarily.2

3
It has been stated many times in this report that the Terrestrial Workgroup regards the4
Levels of Refinement as flexible. Specifically,5

• in a completed assessment, some components may have been refined to a higher6
Level than others7

• there is no requirement to refine every component to one Level before proceeding to8
the next.9

Furthermore, the Workgroup does not regard the assignment of methods to Levels in this10
report as definitive: further development and experience might suggest modifications (see11
later). It is partly to avoid the traditional expectation of rigidity, that the term ‘Levels of12
Refinement’ is preferred to ‘Tiers’.13
The issue of flexibility versus rigidity is not a trivial one. As the charge to ECOFRAM14
implied, consistency between risk assessors is important, and different assessors are more15
likely to produce the same estimate of risk if procedures are standardized. This is16
particularly true when they are faced with new approaches, and with the wide variety of17
possible tools and processes identified in this report.18

19
This diversity of options raises two key questions:20

• how far to refine the assessment?21

• which parameters to refine?22
23

These questions are important. Without answers, it will not be known which parts of the24
risk assessment to refine, nor when to stop. This would lead to unnecessarily complex25
risk assessments, and inefficient use of resources for both regulator and registrant. Rigid26
Tiers and triggers are designed to help the risk assessor answer these questions. Rigid27
Tiers and triggers also provide transparency for the registrants, making it easier for them28
to anticipate what studies will be required and plan product development. It is therefore29
important to consider whether more flexible procedures can also provide efficient30
answers to these questions.31

32

6.5 How far to refine the assessment ?33
34

The purpose of risk assessment is to enable EPA risk managers to decide if the risk from35
a particular pesticide use is acceptable or requires mitigation. The assessment therefore36
needs to be refined to the point where the actual risk is known with sufficient certainty37
for risk managers to decide which side of the threshold of acceptability it lies.38

39
The closer the actual risk is to the threshold of acceptability, the more precision is40
required in the risk assessment to enable a decision to be made. To put it another way, the41
closer the actual risk is to the threshold of acceptability, the more refined the assessment42
needs to be to provide sufficient understanding and credibility for the risk manager to43
make a decision. Consequently, the degree of refinement required depends on how close44
the actual risk is to the threshold of acceptability.  This concept is illustrated in Figure45
6.5-1.46

47
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The Workgroup recognizes that the concept of a threshold of acceptability is a sensitive1
issue. However, the fact that risk management decisions are made implies that thresholds2
exist, even if they are never explicit.3

4
Figure 6.5-1 shows that, if the threshold of acceptability is not defined, it is very difficult5
to decide how far to refine the assessment. Even if the position of the threshold is known,6
it may vary from case to case depending on the balance between risk and benefit.7
Nevertheless, if the actual risk is much higher than the acceptable level, or much lower,8
this may be apparent from a very simple initial assessment.  A risk prediction with a high9
level of uncertainty may be sufficiently far from the threshold that a decision can be10
made with adequate certainty.11

12
6.6 Which parts of the assessment to refine ?13

14
Comparison with the acceptability threshold provides the key to deciding how far to15
refine the assessment. For example,16

• If the initial prediction of risk is far enough below the threshold, further refinement17
may be unnecessary.18

• If the initial prediction of risk is close to the threshold, further refinement is likely to19
be essential.20

• If the initial prediction of risk is far enough above the threshold, then it may be more21
cost-effective to look for mitigation methods than to invest in refining the assessment.22

23
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Figure 6.5-1. The closer the actual risk is to the threshold of acceptability, the more the1
assessment has to be refined for the risk manager’s decision to be taken with adequate2
certainty. The threshold is shown as a broad band rather than a line, because its position3
can vary from case to case and may never be defined precisely.4
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If it is decided to progress beyond the initial assessment, the next question is which of the1

assessment parameters to refine. An efficient approach would identify those refinements2

which will achieve adequate certainty in a given assessment with the minimum cost in3

time and money. At any point in the assessment, all the parameters will have been4

addressed at some Level of Refinement. To decide which parameter(s) to refine:5

1.  assess how much uncertainty will be reduced by refining each parameter6

2.  assess how much each will cost in time, money etc.7

3.  choose the most cost-effective option or set of options.8

9

The selected options would then be implemented in the next phase of assessment,10

producing a refined estimate of risk.  If it was concluded that there was still too much11

uncertainty, then the cycle could be repeated to identify options for a further phase of12

refinement.  Thus the overall process would be an iterative refinement of the assessment13

which would stop when the result was sufficiently certain for the risk manager’s decision14

to be made (Figure 6.6-1).15

16

Note that risk mitigation options could also be considered at any stage in the process, if17

the earlier results suggested that the result of refining the risk was likely to be18

unacceptable.  This is also illustrated in Figure 6.6-1.19

20

Note also that this process can be applied equally to the registration of new pesticides and21

re-registration of existing pesticides. For new pesticides, one will probably start with the22

lowest level of refinement for every parameter. For older pesticides, the process may start23

at higher levels, if the necessary data already exist.24

25
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Figure 6.6-1. Possible iterative approach to refining the risk assessment, so as to provide the information1
required for the risk manager’s decision with the minimum cost and effort. The shaded box represents the2
decision to be taken by the risk manager. Other boxes represent actions by the risk assessor.3
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6.7 MAGNITUDE AND PROBABILITY OF EFFECTS1

2

Figures 6.5-1 and 6.6-1 imply that the flexible assessment process will involve a series of3

comparisons between a distribution of predicted risk and a threshold of acceptability. For4

convenience, the discussion so far has referred to risk and the threshold in simple terms.5

In practice, as indicated by the charge to ECOFRAM, the assessment should predict both6

the magnitude and probability of effects. The threshold of acceptability therefore needs to7

be defined in terms of magnitude and probability as well.8

9

For example, if the assessment endpoint is mortality, the threshold of acceptability might10

be, say, a 5% chance of 5% mortality for the focal species. At community level, a 5%11

chance of more than 5% of species suffering more than 5% mortality might be12

unacceptable. It is emphasized that the percentages chosen for these and the following13

examples are purely illustrative: in practice they would be determined by the risk14

manager, taking account of many factors. In the past thresholds have not been expressed15

in this way, perhaps because adequate tools to quantify risk in these terms were lacking.16

17

The thresholds of acceptability for the probability and magnitude of effects will generally18

be interdependent. For example, if a 5% chance of 5% mortality was acceptable, 10%19

mortality might be acceptable at a lower level of probability. If the probability and20

magnitude of effects are plotted on a graph, then a line could be drawn to join the points21

marking the threshold of acceptable risk (a similar representation has been used by the22

Aquatic ECOFRAM). In practice, it is unlikely to be realistic to define the threshold23

precisely, so it may be more appropriately represented by a broad band than a line (Figure24

6.7-1a).25

26

Predicted risk can also be characterized in terms of magnitude and probability, using27

Methods 2-5 in Chapter 5. These can be plotted as an exceedance curve (Figure 6.7-1b).28

Plotting this on the same graph as the acceptability threshold enables a direct comparison29

(Figure 6.7-1c).30

31
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Figure 6.7-1. (a) Graphical representation of the risk manager’s threshold of1
acceptability in terms of the probability and magnitude of effects. The threshold is shown2
as a broad band rather than a line, because its position can vary from case to case and3
may never be defined precisely. (b) Graphical representation of risk assessor’s prediction4
as an exceedance curve, showing the probability that the magnitude of the effect exceeds5
each point on the horizontal axis. (c) Comparison of predicted risk with acceptability6
threshold. Areas where the prediction exceeds the threshold indicate potentially7
unacceptable risk.8
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At any point in the risk assessment, this comparison between predicted risk and1

acceptability threshold can help decide how to proceed. For example:2

• If the whole of the exceedance curve is well below the threshold, the risk is likely to3

be acceptable and further refinement may not be required (Figure 6.7-2a).4

• If the whole of the exceedance curve is well above the threshold, the risk is likely to5

be unacceptable and no further refinement is required (Figure 6.7-2b).6

• If only the bottom tail of the curve exceeds the threshold (Figure 6.7-2c), refinements7

which reduce the variance of the predicted risk may be sufficient to achieve an8

acceptable outcome. For example, reducing measurement error in exposure parameters,9

or conducting effects tests with additional species to decrease the variance of the mean10

LD50.11

• If the median of the curve exceeds the threshold, refinements which move the median12

to the left (lower risk) will be necessary (Figure 6.7-2d). Replacing ‘worst-case’13

assumptions with real distributions is the most effective way of doing this, even though14

it will increase the variance of predicted risk. For example, replacing ‘maximum’15

residues with a measured distribution, or using a distribution for PT instead of setting it16

to 1. Alternatively, the median can be moved to the left by risk mitigation measures.17

18

In the last 2 categories, it may not be obvious which variable it is best to refine. Perhaps19

the most practical way to decide is to use expert judgement to guess the effects of each20

possible refinement, and then use sensitivity analysis to compare their effects on the21

assessment outcome. For example, before deciding to quantify PT (the proportion of time22

spent in the treated area) by radio-tracking, one might define a hypothetical best-case23

distribution for PT. If including this in the assessment was not enough to reduce the risk24

below threshold, one would hesitate to proceed with radio-tracking. This combination of25

expert judgement and sensitivity analysis should be a powerful way to optimize the26

refinement of the assessment.27

28
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Figure 6.7-2. Comparison of the distribution of predicted risk with a threshold of1
acceptability could help decide how to proceed with the assessment. Here percent2
mortality is used as an example of an assessment endpoint, and the curve shows the3
uncertainty in the predicted mortality: (a) low probability of exceeding threshold – risk4
acceptable? (b) low probability of being below threshold – consider mitigation? (c)5
variation too great for adequate certainty whether risk exceeds threshold – reducing6
measurement error may be sufficient; (d) curves overlap but median risk exceeds7
threshold – may need to replace worst-case assumptions with distributions or consider8
risk mitigation.9
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1

This approach can also be used for a preliminary, ‘screening’ assessment. The magnitude2

of the effect for a specified level of exposure can be estimated from a single dose-3

response curve. The probability is unlikely to be quantified but will be very low, because4

the exposure assessment will incorporate ‘worst-case’ assumptions and a conservative5

extrapolation factor may have been applied to the effects data. The predicted magnitude6

of effects can therefore be plotted as having a probability close to zero. The position of7

this point relative to the threshold indicates whether refinement of the assessment is8

required (Figure 6.7-3). The use of this approach is illustrated in Appendix C10.9

10

As well as being efficient, this approach has a number of other advantages:11

• Although defining the threshold may be sensitive and difficult, it need not be precise,12

and should help risk managers to be explicit about what they are trying to protect. This13

should be an improvement over the ‘triggers’ and ‘bright lines’ of the past, which have14

perhaps suffered from arbitrary over-precision and less-than-explicit justification.15

• Uncertainty is dealt with explicitly in the risk assessment and assigned to the16

parameters it affects, rather than being accommodated by implicit safety factors built17

into a ‘level of concern’. This avoids confusion as to whether particular types of18

uncertainty have been allowed for, and to what extent.19

• The whole assessment process becomes focussed on quantifying the magnitude and20

probability of effects in a manner compatible with the threshold of acceptability. It21

should therefore deliver precisely the information the risk manager needs to make a22

decision.23

24
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1

Figure 6.7-3. Comparison of screening-level assessment (Level 1). The magnitude of effects is estimated2
using a conservative extrapolation factor, for a conservatively high level of exposure. The predicted effect3
therefore has a probability close to zero and is plotted close to the horizontal axis. For example, point A4
indicates that the predicted risk may exceed the threshold, so further refinement of the assessment is5
required. Point B indicates that the risk is well below the threshold. Point C may require further assessment,6
as the full curve could cross the threshold if its slope was very steep (illustrated by dotted line).7
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1
6.8 Practical implications2

3

Currently, there are no generally-accepted definitions of assessment endpoints and4

thresholds. It is unlikely there will ever be a standard list of definitions, if only because5

the threshold of acceptability varies from case to case depending on the balance of risk6

and benefit, as already mentioned. Therefore, risk assessors may need to consult risk7

managers to agree definitions case-by-case at the start of each assessment. Initially8

setting thresholds will be difficult, but it should become easier over time as precedents9

are established.10

11

The flexible approach envisaged here should be more efficient than rigid Tiers, but it12

does imply that completed risk assessments will vary in the types and amounts of data13

they contain. Therefore, when risk assessments are presented, the endpoints and14

thresholds which were used and the choices made in refining the assessment, should all15

be clearly explained.16

17

Note that the flexible approach is not inconsistent with the division of responsibility18

between risk assessors and managers in EPA. For example, in Figures 6.6-1 and 6.7-1,19

the risk assessor quantifies the distribution of predicted risk, but the risk manager20

determines the position of the threshold and makes the decision. However, to realize the21

efficiency gains of the flexible approach requires close interaction between risk assessor22

and risk manager: if this occurs only at the end of the process, the assessment may often23

be refined unnecessarily far, or not far enough.24

25

Throughout this chapter, risk assessment and risk management have been described as26

functions conducted by USEPA, whose formal responsibilities they are. In practice, risk27

assessment and management are also carried out informally by most registrants, as part of28

their approach to product development and stewardship. The iterative process envisaged29

in Figure 6.6-1 should be well suited to this, as it would help registrants to identify for30

themselves which products may raise environmental concerns, which studies may be31

required for risk assessment, and whether mitigation is likely to be required. This could32

also benefit the Agency, by increasing the chance that the data submitted for registration33
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are appropriate, and avoiding unnecessarily large or complex submissions which require1

additional resources to evaluate. These benefits will be increased for both sides if there is2

good communication between registrants and Agency about the principles of assessment,3

including the definition of acceptability thresholds. Again, this is something which4

should become easier over time as precedents are established.5

6

6.9 Development of standardised procedures7

8

As stated in the charge to ECOFRAM, procedures for risk assessment need to be9

standardized and specific enough to allow different assessors supplied with the same10

information to produce similar estimates of risk.11

12

The flexible approach described in this chapter is not necessarily inconsistent with these13

objectives:14

• The principles and tools could be standardized, even if the process is not.15

• Assessment endpoints could be standardized.16

• Thresholds of acceptability could be standardized as broad zones, perhaps with17

standard variations for specified types of situation.18

• Perhaps even the paths through the assessment process could be standardized to an19

extent, without too much loss of efficiency. As experience with probabilistic methods20

accumulates, it is anticipated that the most efficient routes will follow a limited number21

of paths through the options for refinement, with particular paths being more suitable22

for particular types of pesticide (e.g. granulars vs. foliar sprays vs. seed treatments).23

These paths could then form the basis for defining a standard set of assessment24

sequences, which might be represented either as tiered processes or decision-trees.25

26

Even if it were desired to impose a rigid structure, all of the tools for probabilistic27

assessment are in their infancy so it is too early to say where they should fit in the28

structure (e.g. which studies go in which Tier). It would be necessary, therefore, to adopt29

a flexible approach initially until sufficient experience accumulated to define a more30

structured process.31

32
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Whether the eventual process is to be flexible or rigid, cooperative case studies would1

provide a means of testing the feasibility of ECOFRAM’s proposals by applying them to2

data on existing pesticides whose environmental effects are already well understood.3

These case studies could be used to explore alternative assessment sequences, compare4

rigid and flexible approaches and if possible identify a limited number of standard5

sequences. They could also be used to explore issues relating to the definition of6

assessment endpoints and acceptability thresholds. Given the crucial role of the risk7

managers it would be important for them to participate fully in the case studies, in8

cooperation with risk managers and registrants.9

10

Finally, given the potential complexities of probabilistic analyses, it may be useful to11

establish standard approaches to presenting them so that they can be readily understood.12

13
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1

7.0 RECOMMENDATIONS2

3

7.1 OVERVIEW4

5

The following recommendations result from hours of discussion over many months by6

the ECOFRAM Terrestrial Workgroup. So that the reader can understand the rationale7

for, and the significance of, the recommendations, it is necessary to briefly review the8

process and the progress made to date.9

10

7.1.1 The ECOFRAM Process -- Charge, Scope, and Limitations11

12

EPA presented its Risk Quotient methodology to the FIFRA Scientific Advisory Panel13

(SAP) in May of 1996.  As a result of the SAP recommendations, ECOFRAM was14

formed and given the charge to help EPA move past its current deterministic procedures.15

Specifically, ECOFRAM was to expand the pesticide risk assessment process to include16

probabilistic risk assessment tools and methods for non-target organisms.  It was not a17

certainty that the Workgroup would conclude that this charge was feasible, given the18

current database and the challenges involved.19

20

To fulfill the charge, ECOFRAM began by evaluating the primary goal of ecological risk21

assessment for pesticides.  The resources the assessment is designed to protect were22

identified.  Conceptual models and assessment endpoints that would provide a broad23

estimation of the ecological consequences of pesticide applications were identified.  All24

relevant guideline environmental fate and effects studies and models were reviewed in25

detail.  The potential utility of these studies and models in probabilistic assessments was26

critically evaluated.  Also, the strengths and limitations of current EPA risk assessment27

methodology were discussed.  These reviews and discussions formed the basis for28

developing approaches to increase the usefulness and validity of risk assessment outputs.29

30

Early in the review and discussion process, the Workgroup was forced to acknowledge31

the enormity and complexity of the charge.  It became clear that the charge, as given,32
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simply could not be achieved in the time allotted with the databases available.  Therefore,1

the Workgroup chose to limit the scope of its efforts.  It would place most emphasis on2

birds, on oral exposure, and on direct effects.  The Workgroup wants to emphasize that3

this decision was based solely on resource limitations.  Other taxa, other routes of4

exposure, and other types of effects are also important and need to be considered.5

However, these other areas will have to be covered in future efforts.  Despite the limited6

scope of effort, the Workgroup thinks that the concepts and approach developed will be7

applicable to other taxa, routes of exposure, and types of effects.  Thus, the present8

recommendations of ECOFRAM can serve as a model for future improvements in the9

ecological risk assessment process for pesticides.    Specifically, recommendations10

identify dermal and inhalation routes of exposure as requiring additional work.  Indirect11

and sublethal effects merit consideration. Other vertebrate taxa, such as small mammals12

and amphibians, will need to be considered.  The Workgroup reluctantly agreed that13

current mechanistic models were not generally applicable to probabilistic assessments for14

pesticides.  These models should be modified to allow their use in probabilistic15

assessments and efforts should be made to gather the datasets necessary to run them.16

Also, the Workgroup acknowledged that spatial scale and the relationship of croplands to17

non-croplands might be crucial in assessing the risk of a pesticide use.  However, these18

factors could not be considered in detail.  The reader should note that ECOFRAM19

recommendations include the orderly timing of efforts to advance ecological risk20

assessment in the areas just mentioned above.21

22

7.1.2 The Value of Probabilistic Ecological Risk Assessment – Key Concepts from23

ECOFRAM24

25

Despite the somewhat limited scope of the ECOFRAM effort, the Workgroup recognizes26

and endorses the tremendous value of probabilistic approaches.  The current procedures27

used by EPA provide deterministic, screening level, hazard assessments.  These methods28

can only give indirect estimates of the likelihood and magnitude of effects.    The29

approach advocated by ECOFRAM illustrates why probabilistic assessment is better than30

the way things are being done now.  Specifically, ECOFRAM has reached consensus31

agreement on several key concepts that will form the basis for continued advancements in32
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terrestrial risk assessment.  These concepts are, in and of themselves, recommendations.1

The key concepts agreed upon by ECOFRAM, and being recommended by ECOFRAM2

as foundations for terrestrial risk assessment in general, include:3

4

• Exposure should be expressed as the dose (mg/kg/day) a bird might receive.5

Exposure should no longer be estimated as parts per million of a pesticide in the6

environment.   The new exposure analysis should draw on the equations of EPA7

(1993), Pastorok (1996), Sample et al. (1997) and Nagy (1986).  It will allow8

inclusion of bird behavior that governs risk.  For example, factors such as avoidance9

of food items with pesticide residues and the proportion of its diet that a bird gathers10

from treated fields can be included in the analysis.  Also, mechanistic models11

expressing avian exposure to granular and foliar insecticides as mg/kg/day were12

developed.13

• Existing databases on pesticide residues in food items (e.g., Hoerger and Kenaga14

(1972), Fletcher et. al. (1994)) should be obtained and analyzed.  The Workgroup15

thinks that there is enough information in these databases to derive distributions of16

residues to support probabilistic assessments.17

• The agro-ecosystem should be used as a unit for analysis and the identification of key18

or focal species.   Current EPA procedures do not fully take into account the bird19

species that may actually be using the treated crop.  In the ECOFRAM proposal,20

screening level analysis would be done with generic species that represent different21

feeding guilds.   Higher levels of analysis would use focal species, the species22

actually exposed to the pesticide, or species of special concern, such as endangered23

species.24

• Three feeding scenarios should be considered for a dietary assessment -- short term,25

medium term, and long term exposures.  The Workgroup recommends that all three26

feeding scenarios  be addressed for each compound, unless a compelling argument27

can be made about the relevance of medium or long term exposures.  Short term28

exposure scenarios would be evaluated to determine dose distributions for birds29

exhibiting gorge feeding behavior and for birds feeding on granular pesticides.30

Longer periodic exposure scenarios would represent more normal diurnal feeding31

patterns and would be indicative of doses eliciting longer term acute and subchronic32
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toxicity. The long term exposure scenario would also be used to assess effects.  All1

three scenarios should be evaluated in all risk assessments even at the screening level2

unless there is specific evidence one is not relevant.3

• Existing acute avian toxicity tests should be modified or replaced to reflect the above4

exposure scenarios. Exposure assessments under all three scenarios should present the5

toxicity in terms of a distribution of doses based on the hourly or daily dose6

(mg/kg/hr or mg/kg/day).  Thus, effects tests would provide a dose that relates7

directly to the detailed exposure analysis.8

• Extrapolation factors should be used to address inter-species variability issues.  The9

present report already includes techniques that can be used, with caution, to address10

inter-species variability.  Historical databases should be analyzed to refine and11

standardize extrapolation factors for inter-specific variability.12

• Higher tier refinement of exposure and effects should be based on sensitivity of the13

models used.  Early stage screening evaluations are intended to be conservative.14

Higher levels of refinement would systematically define the uncertainties inherent in15

screening level assessments.  The higher levels of refinement are driven by the16

sensitivity of the models to changes in their input variables.  The likely results of17

reducing uncertainties in effects (susceptibility) or exposure will be evaluated.  These18

sensitivity analyses would enable risk assessors to efficiently move through the19

higher levels of refinement.20

• A suite of techniques for combining information on exposure and effects to21

characterize risk should be used and evaluated.  These techniques are keyed to the22

different levels of refinement and would help risk assessors and managers visualize23

the results of an assessment.   Many of these techniques can be used immediately and24

they represent a major step past the current Risk Quotient approach.  These25

techniques would allow some inferences to be made about effects at the population26

level by simulating effects on individuals.  However, additional work is still needed27

on population models.28

29

 The Workgroup acknowledges that some of the above concepts do not relate solely to30

probabilistic risk assessments.  Nonetheless, we think that these concepts will form the31

basis for the development of sound probabilistic assessments.32
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 1

 7.1.3 The Need for Further Development and Validation2

 3

 The Workgroup also acknowledges that many of the methods and procedures we are4

proposing, although plausible, have not been validated.  In the context of this report,5

validation is defined as a thorough characterization of the behavior and predictions of the6

proposed methods and procedures, and comparison with the predictions from current7

methods, as well as comparison with effects observed in the field.  The Workgroup urges8

the Agency to support analysis of several realistic case studies, such as the ones discussed9

at the June 1997 meeting.  The case studies should be developed into complete ecological10

risk assessments.  The assessments should build on the conceptual models and11

assessment endpoints being proposed.  They should use the methods and processes of12

refinement for exposure, effects, and risk that are being proposed.  The Workgroup wants13

to emphasize that this development and validation exercise, which could be termed a14

"proof of concept", should be completed before EPA can develop a full process for15

probabilistic ecological risk assessment.16

 17

 The proof of concept exercise would be invaluable in exploring issues related to18

assessment endpoints, evaluating assessment sequences, and providing a reality check for19

the process.  Predictions from the various levels of refinement can be compared to the20

predictions using current procedures.  The proof of concept exercise should be the basis21

for an ongoing dialogue between risk assessors and risk managers within the EPA and22

elsewhere.  This dialogue should be the foundation and justification for agreement on23

what additional efforts, detailed below, will be most useful to risk managers.  In the near24

term (1-2 years) to medium term (3-4 years), these efforts may be additional research25

projects, analyses of existing data, or new tests.  In the long term (5 years and beyond),26

these efforts could include a follow-up ECOFRAM that focuses on other taxa.27

 28

 The above overview should be kept in mind as the reader considers the following29

recommendations.  The recommendations will be organized into 3 areas: exposure30

assessment and characterization; effects assessment and characterization, and; risk31

assessment.  For each area, near term and medium term activities will be proposed.  At32
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this time, the Workgroup does not think it useful to make detailed recommendations for1

long term activities.  The necessary long term activities will depend on the outcomes of2

the near and medium term activities.  Nonetheless, the Workgroup wishes to point out3

that long term activities will be needed to fully implement probabilistic assessments.4

 5

 7.2 EXPOSURE ASSESSMENT AND CHARACTERIZATION6

 7

 7.2.1 Near Term Activities8

 9

 7.2.1.1 Improved Test Designs or New Tests10

 11

 There are two significant gaps in the current data requirements.  These gaps are12

information on foliar dissipation and information on fate in invertebrates.   ECOFRAM is13

recommending that EPA develop guidance for a radio-labeled study, which evaluates the14

degradation rate on a variety of plant types.  It would include volatilization and washoff15

rates on vegetation, dissipation rates on vegetation, and the fate of compounds in16

invertebrates.   Also in the near term, other data gaps, highlighted in Section 3.10, which17

are critical to the prediction of the environmental fate of a compound and potential18

concentrations in wildlife food items, should be reviewed and prioritized.  The most19

critical needs should then be included in medium term activities.20

 21

 7.2.1.2 Model Development, Validation, or New Models22

 23

 In keeping with the basic concept of using the sensitivity of models to drive the24

refinement process, models should be subjected to sensitivity analyses.  These exercises25

are important for data development activities because they will focus time and resources.26

They will also form the basis for efficiently moving through the levels of refinement.27

 28

 The EPA currently estimates pesticide concentrations in wildlife food items using29

databases  developed by Hoerger and Kenaga (1972) and Fletcher et. al. (1994).  Residue30

estimates used from these papers are point estimates immediately following application31

of the pesticide.   ECOFRAM recommends that EPA move away from point estimates of32
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environmental residue concentrations, particularly in wildlife food items, and begin the1

process of developing models specifically designed to predict concentrations in the2

terrestrial environment.    The Hoerger and Kenaga, 1972 and Fletcher et. al., 19943

databases can be used probabilistically.  By gaining access to the full databases, it will be4

possible to develop distributions of residue concentrations.  This activity should start5

immediately.6

 7

 Although there are aquatic exposure models that could be adapted to predict some8

terrestrial residue concentrations, there does not appear to be any exposure model9

designed specifically for terrestrial environmental concentrations.  A short term solution10

to the current deficiency could be utilization of the simple mass balance equations11

presented in Chapter 3 and Appendix C4 –C9, or reworking existing aquatic models (i.e.,12

PRZM, EXAMS, AgDrift) to incorporate Monte Carlo simulations.13

 14

 An analysis of the components of the nutritional (ecological energetics) equations should15

be performed to produce distributions for various species.  These distributions could then16

be used rigorously in probabilistic assessments.  Efforts for this activity should initially17

aim to develop distributions for the focal species.  The Workgroup is aware that research18

is underway in the UK to break down one ecological energetics equation into various19

elements, based on the extensive existing database.20

 21

  Also, there should be development of models such as TEAAM, PARET, and the22

granular models.  In the interim, various spreadsheet models, using available risk analysis23

software, will be important tools for the proof of concept exercise.  At some time in the24

future, based on the results of the proof of concept exercise, there will be a need to25

standardize the various models.26

 27

 7.2.1.3 Analyses of Existing Data or New Research Projects28

 29

 The prediction of pesticide residue concentrations in terrestrial media is the basis for all30

pesticide risk assessments. Environmental fate data currently required by the EPA are31

generally adequate in providing data to run deterministic residue estimation models.32
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However, only one study of each type is generally required, eliminating the possibility of1

further developing the distributions needed for probabilistic assessments.  Based on the2

results of the above sensitivity analyses, there should be an exploration of ways to3

develop the distributions needed for probabilistic assessments.  Options could include4

using empirical distributions, performing additional tests, or reviewing the literature and5

agreeing on standard distributions.  Simulations that employ, for example, empirical6

(where adequate data available), uniform, log-normal, and triangular distributions can7

evaluate the consequences of using empirical or assumed distributions.8

 9

 There are several data sets that should be developed to reduce uncertainty and improve10

the accuracy of exposure assessments.  Registrants should pool their habitat use11

information and develop a database characterizing wildlife species in and around12

agricultural crops.  If possible, information should be included on the home ranges of13

these species.  A similar type of database project should be undertaken for dietary habits,14

and residues in the diets, of wildlife associated with agricultural systems.  If such15

information is not available from the registrants, the EPA should make the development16

of these databases a priority.  Information of this type would greatly increase our17

confidence in performing risk assessments.18

 19

 Based on the above results, EPA and the regulated Industry should agree on sets of focal20

species for major crops.21

 22

 Field studies can play an important role to 1) refine field residue and fate data, 2) provide23

relevant life history and behavior information on focal species, 3) test estimates of24

exposure to focal species, and 4) test hypotheses on exposure pathways.  However, there25

are many uncontrollable factors, which can confound the results and make interpretation26

difficult.  Consequently, field studies should be considered if they are designed to answer27

specific questions that will help to clarify issues raised by the risk assessment.  These28

studies should be designed on a case-by-case basis from the results of the near term effort29

and, if desirable, implemented in the medium and long term activities.30

 31
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 Field studies should also be considered for the purpose of characterizing proposed risk1

assessment models prior to full scale implementation of those models.  ECOFRAM2

recommends that EPA and Industry work together to design such studies.3

 4

 5

 7.2.2 Medium Term Activities6

 7

 7.2.2.1 Improved Test Designs or New Tests8

 9

 Develop guidance for the proposed test for foliar wash-off from plants and fate in10

invertebrates.  Do this as a ring test and evaluate the utility of the data for probabilistic11

assessments.  If the test is useful, it could then be required.  HED and EFED could12

explore coordinating changes in crop residue studies to increase the number of sampling13

intervals, or other ways to make the tests more useful for estimating exposure of wildlife.14

 15

 7.2.2.2 Model Development, Validation, or New Models16

 17

 Validate exposure models, such as TEAAM, PARET, and granular models, developed in18

the near term effort.19

 20

 Critically review and evaluate the evidence of the significance of the inhalation and21

dermal routes of exposure.  If appropriate, develop models or criteria for deciding when22

inhalation or dermal exposure, or non-dietary exposure, such as via puddles, may be23

important and needs to be included in an assessment.24

 25

 Other taxa, such as small mammals, amphibians, and insects, although part of the charge,26

were not fully addressed.  Look into models for exposure of other these other taxa.27

 28
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 7.2.2.3 Analyses of Existing Data or New Research Projects1

 2

 Parameterize the standard scenarios for the various major crops developed and agreed3

upon in the near term effort.4

 5

 7.2.3 Long Term Activities6

 7

 As mentioned above, long term activities will depend on results from the near and8

medium term efforts.  Some examples of possible activities follow.9

 10

 7.2.3.1 Improved Test Designs or New Tests11

 12

 Develop guidelines, if appropriate, for tests needed to estimate exposure of small13

mammals, amphibians, and non-target insects.14

 15

 7.2.3.2 Model Development, Validation, or New Models16

 17

 Develop models that will accommodate spatial considerations in assessments.18

 19

 7.2.3.3 Analyses of Existing Data or New Research Projects20

 21

 Use existing public databases to incorporate spatial characteristics of crops.  Evaluate the22

cost and feasibility of developing geographical information systems for major and minor23

crops.  This would likely be done on a case-by-case basis.24

 25
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 7.3 EFFECTS ASSESSMENT AND CHARACTERIZATION1

 2

 7.3.1 Near Term Activities3

 4

 7.3.1.1 Improved Test Designs or New Tests5

 6

 "Up and Down" or "Approximate Lethal Dose" test.  The feasibility and utility of the7

various mammalian and avian test designs should be evaluated.  If  a feasible and useful8

test design can be agreed upon, draft guidance for it and perform ring tests.  Correlate the9

results of this activity with interspecies extrapolation factor analyses.  Also, look into and10

assess the benefits of using the ALD test compared to the full dose-response test for11

obtaining data on additional test species.  This is especially important with regard to the12

robustness of assuming a slope from the full dose-response test for ALD test results.13

 14

 The current avian acute dietary study is inadequate for incorporating into probabilistic15

assessments.  To be more suitable, the test should be designed to provide an estimate of16

the daily dosage, which produces toxicity (i.e., mg/kg/day).  It must provide a better17

estimate of food consumption per individual.  Draft guidance that considers ring testing.18

Until this test is redesigned a crude estimate of dose could be extracted from the current19

study or perhaps from the reproduction test.  However, it must be realized there is great20

uncertainty in the estimate and the output must be used with a clear description of how21

the uncertainty could affect the outcome of the risk assessment.22

 23

 It should be noted that the OECD is currently addressing many of the problems identified24

by the workgroup in the standard toxicity tests.  ECOFRAM recommends the EPA work25

with the OECD in developing test methodology for the ALD, acute dietary and26

reproduction test.  The final design of all standardized toxicity tests should anticipate the27

need to develop quantitative measures of behavioral, and possibly physiological, effects.28
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 1

 7.3.1.2  Analyses of Existing Data or New Research Projects2

 3

 Given the wide range of variability in species sensitivities to pesticides, it is expected that4

interspecific differences in sensitivity will result in large uncertainties in the risk5

assessment.  Practicalities associated with sample sizes, availability of test species, and6

costs, need to be considered when designing a test program.   To circumvent this problem7

and still provide estimates of expected sensitivities, ECOFRAM has evaluated8

interspecific relationships relying heavily on historical data.  Section 4.2.3 discusses9

various methods, which could be used to extrapolate sensitivity between species.  All of10

the methods presented utilize extrapolation factors based upon historical data until the11

number of species tested is greater than or equal to four.  ECOFRAM recommends that12

studies be done to determine the amount of uncertainty extrapolations between13

compounds introduce into the assessment.  This should first be done for the short term14

exposure scenario, and ultimately for the medium term exposure scenario.15

 16

 7.3.2 Medium Term Activities17

 18

 7.3.2.1 Improved Test Designs or New Tests19

 20

 The avian acute oral test is well designed for producing an LD50.  The output from this21

test can be easily included in a probabilistic assessment.  However, it may be important,22

in some circumstances, to develop better estimates of low levels of mortality, e.g., the23

LD5 or LD10. Modifications of the test would be required to reduce the uncertainty24

around these low levels of mortality.   The need to re-design the test will depend in part25

on the results of the proof of concept exercise.26

 27

 Look in to adding relevant sublethal observations to the acute oral LD50 study.  Such28

observations must be quantifiable and amenable to analysis and could include paralysis or29

changes in response to stimuli or challenges.  Also, look into including a dynamic30

exposure regime for the revised LC50 study.  Develop this based on experience with the31

re-designed LC50 study and the new exposure data that will be available.32
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 1

 Avoidance behavior of a bird to a pesticide is a parameter overlooked in current2

assessments.  However, as research has shown (Section 3.3.4.1.3), it can play a3

significant role in the exposure equation.  Screening assessments should assume no4

avoidance, however, if the screen indicates significant exposure to a compound, then an5

estimate of avoidance can be extracted from food consumption data obtained in the acute6

dietary test.  Ideally, if it is thought avoidance significantly lowers the exposure potential,7

at higher tiers of the assessment an avoidance test could be conducted. OECD is currently8

drafting avoidance testing guidelines.  Bearing in mind that research to date has9

avoidance of treated seeds, work on avoidance of granules and foliar sprays would be10

desirable.11

 12

 Re-design the standard avian reproduction test.  This test presents the greatest challenge13

for probabilistic assessments and in its current form is not suitable for probability based14

assessments.  The current reproduction test is not designed to produce dose response15

relationships.  The standard output is the NOEL, a point estimate with no indication of16

the variability around that estimate.  Beyond the design of the test lays an even larger17

problem of being able to detect chronic effects observed in the laboratory in field18

situations.  Section 4.2 discusses in great detail what the workgroup thinks are the many19

limitations of the test and suggestions for its improvement.20

 21

 Another issue relative to avian reproduction is how to incorporate modifications to22

address changes in behavior, such as parental care.  Possible study designs for this higher23

tier test should be explored and evaluated.24

 25

 As probabilistic risk assessments improve, estimates of depuration and metabolism may26

become critical in providing accurate predictions of risk.  Thus, a study that evaluates27

kinetics, including rates of depuration and metabolism, may be warranted on a case-by-28

case basis.  In the interim, depuration and metabolism can be ignored with the29

understanding it is a factor hidden in the acute dietary toxicity test.  Before a test is30

required EPA could evaluate the variation of pesticide metabolism between species.  If31
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significant relationships were found it may be possible to use the rat data generated for1

the human health assessment.2

 3

 Human health assessments require a metabolism study to evaluate the distribution of the4

compound within various tissues and its depuration rate.  These data are not required for5

terrestrial ecological risk assessments but are also of great importance when evaluating6

the effects on a pesticide when exposures are longer than that represented by an acute7

oral toxicity study.  The metabolism of a compound becomes important when secondary8

toxicity is a concern.  The importance of metabolism and depuration and how they affect9

the risk assessment is discussed in Sections 3.3.7.   Guidance should be developed for this10

study.11

 12

 Based on the conclusions from the analysis of the significance of dermal and inhalation13

routes, guidelines should be developed for these routes of exposure, along with "when14

required" criteria.15

 16

 7.3.2.2 Model Development, Validation, or New Models17

 18

 Building on the results of the species sensitivity analyses, look into developing standard19

models for estimating sensitivities of species of concern.20

 21

 7.3.2.3 Analyses of Existing Data or New Research Projects22

 23

 One of biggest problems facing effects characterization is extrapolating laboratory24

toxicity test results to effects under field conditions.  This source of uncertainty in the risk25

assessment may never be fully understood.  However, as recommended throughout this26

document, work must be done to validate any model put forth for ecological risk27

assessments.  Well designed field studies targeted to answer specific questions could28

provide valuable insight into the accuracy of laboratory to field extrapolations.29
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 1

 7.3.3 Long Term Activities2

 3

 As mentioned above, long term activities will depend on the outcome of the near and4

medium term activities.  One possible effort would be, once avian reproduction study is5

re-designed and validated, to look at incorporating dynamic exposure regimes.6

 7

 7.4 RISK ASSESSMENT8

 9

 7.4.1 Near Term Activities10

 11

 A suite of methods for ecological risk assessment has been investigated.  The most12

critical activity in the near term is further development of these methods in the proof of13

concept exercise.  This exercise should employ realistic case studies.  Comparisons14

should be made among risk assessment outputs from the various methods to help15

determine the most useful and valid outputs.  The exercise will require input and16

feedback from risk managers.  The first level of refinement may be deterministic.  At17

higher levels of refinement, various options from the suite of methods may be used18

depending on the outcomes of the proof of concept exercise.  It is critical to evaluate the19

new scheme and to refine it in actual assessments.20

 21

 22

 7.4.2 Medium Term Activities23

 24

- Modify population models for probabilistic assessments.  Look into adding other routes25

of exposure and types of effects into the Levels of Refinement.26

 27

 7.5 PROCESS FOR CARRYING OUT THE RECOMMENDATIONS28

 29

 It is suggested that this process be essentially the same for near and medium term30

activities.  Results from the near and medium term activities will determine what long31

term activities should be pursued and the most efficient process for pursuing the long32



7-16

term activities.  For near and medium term activities, EPA and Registrants should be1

discouraged from attempting to develop the information above as part of evaluating new2

chemicals, that is, on a case-by-case basis.  This piecemeal approach does not permit3

sufficient standardization of individual activities, or coordination of overall programs.4

There must be a partnering of Industry, EFED, ORD, and other interested groups as5

needed.  Past experience has shown that developing a Cooperative Research and6

Development Agreement (CRADA) will be very time consuming.  However, this type of7

agreement allows for efficient use of public and private resources, and should be pursued8

as soon as possible.9

 10

 Due to the likely time involved in finalizing a CRADA, other mechanisms should also be11

pursued.  Another avenue for accomplishing the goal would be the formation of an12

informal research steering committee.  Current members of ECOFRAM, EFED's13

Implementation Team, ACPA, and other interested parties could meet to set the research14

agenda, review projects for consistency, divide up projects and costs, and carry out the15

needed research.  This activity could also include provision for contracting work to16

independent labs or universities.  The research steering committee would also have the17

accountability of integrating the results of other ongoing projects, such as OECD18

guideline development and the SETAC protocol effort.  At different phases of the19

activities, representatives from different interested groups could be added to, or step20

down from, the research steering committee.  This approach would allow the21

implementation process to move forward as the CRADA is being finalized.22
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 7.6 CONCLUSIONS1

 2

 7.6.1 Summary of Recommendations3

 4

 The key ECOFRAM recommendations are summarized in Table 7.6.1.5

 6

 Table 7.6.1  Summary of ECOFRAM Recommendations.7

 Timeframe  Exposure Assessment

and Characterization

 Effects Assessment

and Characterization

 Risk Assessment  Implementation

Process

 Near Term  -Develop protocol for

study on washoff, fate

in invertebrates

 - Perform sensitivity

analyses of models

 - Analyze residue

databases, make

probabilistic

 - Analyze nutritional

equations, make

probabilistic

 - Develop exposure

models, e.g.,

TEAAM, PARET

 - Identify focal

species, home ranges,

residue levels by

agro-ecosystem

 

 

 

 

 - Evaluate the utility

and feasibility of the

ALD test

 - Re-design and ring

test the LC50 test

 - Evaluate the amount

of uncertainty

interspecies

extrapolations

introduce into the

assessment

 -Proof of Concept

Exercise

 

 -Develop CRADA

 -Form ad hoc Steering

Committee

 -Form EPA

Implementation Teams
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 1
 Timeframe  Exposure Assessment

and Characterization

 Effects Assessment

and Characterization

 Risk Assessment  Implementation

Process

 Medium Term  - Perform ring test for

study on washoff, fate

in invertebrates

 - Explore changes in

crop residue studies to

enhance usefulness

for wildlife

assessments

 - Validate exposure

models, e.g.,

TEAAM, PARET

 -Evaluate the

significance of dermal

and inhalation

exposure, develop

techniques to include

these if appropriate

 - Include other taxa,

e.g, small mammals,

amphibians

 - Parameterize models

for standard scenarios

 - If needed, look into

re-designing the LD50

test to get better

estimates of the LD5

or LD10

 - Add sublethal

obseravtions or a

dynamic exposure

regime to the LC50

study

 - Include evaluations

of avoidance behavior

for granules and foliar

sprays

 - Re-design the

standard avian

reproduction test

 - Evaluate test designs

to study effects on

parental behavior in

reproduction

 - Develop guidance

for a kinetics study of

metabolism and

depuration

 - Include inhalation

and dermal exposure,

if needed

 - Develop standard

models for estimating

sensitivities of species

of concern

 - Look into

extrapolations from

laboratory to field

 - Modify population

models so they are

better suited for

probabilistic

assessments

 - Include other routes

of exposure

 

 -As above, ideally

under a CRADA

 2
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 1

 7.6.2 Evaluation of How the Workgroup Fulfilled the Charge2

 3

 Given the above caveats, a key question that needs to be considered is "To what extent4

did the Terrestrial Workgroup fulfill its charge?"  The various elements of the charge, in5

bold italics, and how these were addressed, follow.  This evaluation is useful for6

establishing additional follow-up efforts in probabilistic ecological risk assessment.7

 8

• Develop and validate risk assessment tools and processes that address increasing9

levels of biological organization (e.g., individuals, populations, communities,10

ecosystems) accounting for direct and indirect effects pesticides may cause.  This11

goal, as expected, was not achieved in the available time.12

• First address acute and chronic effects of pesticides on individuals and populations13

of high risk species.  Consider terrestrial vertebrates and aquatic vertebrates and14

invertebrate first.  The Terrestrial Workgroup made good progress towards15

developing tools and processes for individual birds, and to some extent, bird16

populations.  Validation work remains to be done.17

• The process and tools should predict magnitude and probability of adverse effects.18

Methods developed should consist of standardized procedures that integrate19

estimates of pesticide exposure with knowledge about potential adverse effects.20

Methods should account for sources of uncertainty and should be developed in the21

context of FIFRA and EPA's Framework.  The process and tools will predict22

magnitude and probability of adverse effects.  Exposure and adverse effects23

information are integrated, but procedures have not been standardized.  Some24

important uncertainties have been identified and accounted for, while work remains25

for others.  The process and tools are entirely congruent with FIFRA and the EPA's26

Framework.27

• The tools developed need to have reasonable scientific certainty and be capable of28

being validated in a reasonable time frame.  Probabilistic techniques should use29

existing fate and effects data where possible.  However, it may be necessary to30

modify or discontinue current tests or develop new ones.  The tools developed are31

expected to have reasonable certainty and validation is the next step in the process.32
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The Workgroup carefully reviewed the utility of all current fate and effects tests and1

recommended how these could be used.  Similarly, recommendations were made for2

how to modify current tests so that they will be more useful for probabilistic3

assessments.4

• Methods developed for risk estimates should reflect a solid foundation in5

environmental toxicology and should account for species sensitivity, environmental6

fate, and other variables.  The type of pesticide formulation, application techniques,7

habitat types, and species associated with these habitats need to be considered.  The8

translation of residue estimates into exposure estimates and routes of exposure9

should be incorporated into the methodology.  The several key concepts (see 7.1.2)10

provide a solid foundation in for future development of probabilistic assessments.11

The Workgroup proposed methods to account for species sensitivity, environmental12

fate, habitat types, and species associated with the agro-ecosystem.  Methods were13

also proposed for translating residue estimates into exposure estimates, another key14

concept.  Work on other dermal and inhalation routes of exposure needs to be done.15

• Methods should be specific enough to allow different risk assessors supplied with16

the same information to estimate similar values of risk.  The rationale for the17

choice of scenarios needs to be clearly stated.  Assumptions and extrapolations18

need to be specified and explained so the significance of the ecological risk19

estimates is easily understood.  The Workgroup stated the rationale for choices of20

exposure and agro-ecosystem scenarios.  Many unstated assumptions and21

extrapolations inherent in the screening level assessments were explicated.  It remains22

to be seen if the methods are specific enough to allow different risk assessors supplied23

with the same information to estimate similar values of risk.24

• The Workgroups are asked to define any additional developmental or validation25

efforts that are needed for the probabilistic methods developed.  These efforts are26

detailed in sections 7.2 through 7.5.27

28

The science of probabilistic risk assessment for pesticides is still in its infancy with years29

of development before it.  This document should not be misconstrued as the final word on30

future direction for probabilistic risk assessments of pesticides.  The methods proposed31

here represent what the Workgroup thought would be the best directions to take.  These32
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directions were limited by the data currently available and what we foresaw as the best1

data we could obtain in the future.  Undoubtedly these methods will undergo2

modification as the EPA and outside parties apply probabilistic risk assessment procedure3

to everyday problems.4

5

The efforts of the Workgroup should begin the process of providing probabilistic risk6

assessments to the risk manager.  The result will be predictions of the probability and7

magnitude of the ecological effects resulting from pesticide application.  However, the8

evolution of probabilistic risk assessment cannot occur in the absence of input from the9

risk manager.  It is now critical that risk managers provide the risk assessors direction in10

developing methodology to supply the most useful information for making risk11

management decisions.  ECOFRAM strongly recommends that EPA establish a formal12

method for risk assessors and managers to jointly review of risk assessment inputs and13

outputs for their usefulness to risk management decisions.  To start the development of14

this formal method, risk managers should be full participants in the proof of concept15

exercises.16

17

18

19

20
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APPENDIX A11

Sixteen Guiding Principles for Probabilistic Risk  Assessments2

The following 16 guiding principles has been developed by the Environmental Protection Agency3

to help ensure good scientific practices in the development of probabilistic risk assessment4

(USEPA 1997). While the focus of the general framework and broad set of principles is on Monte5

Carlo Analysis the principles apply equally to the various techniques for conducting probabilistic6

risk assessment.7

Selecting Input Data and Distributions for Use in Monte Carlo Analysis8

1. Conduct preliminary sensitivity analyses or numerical experiments to9

identify model structures, exposure pathways, and model input assumptions10

and parameters that make important contributions to the assessment11

endpoint and its overall variability and/or uncertainty.12

The capabilities of current desktop computers allow for a number of "what if"13

scenarios to be examined to provide insight into the effects on the analysis of selecting a14

particular model, including or excluding specific exposure pathways, and making certain15

assumptions with respect to model input parameters.  The output of an analysis may be16

sensitive to the structure of the exposure model.  Alternative plausible models should be17

examined to determine if structural differences have important effects on the output18

distribution (in both the region of central tendency and in the tails).19

Numerical experiments or sensitivity analysis also should be used to identify exposure20

pathways that contribute significantly to or even dominate total exposure.  Resources21

might be saved by excluding unimportant exposure pathways (e.g., those that do not22
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contribute appreciably to the total exposure) from full probabilistic analyses or from1

further analyses altogether.  For important pathways, the model input parameters that2

contribute the most to overall variability and uncertainty should be identified.  Again,3

unimportant parameters may be excluded from full probabilistic treatment.  For important4

parameters, empirical distributions or parametric distributions may be used.  Once again,5

numerical experiments should be conducted to determine the sensitivity of  the output to6

different assumptions with respect to the distributional forms of the input parameters. 7

Identifying important pathways and parameters where assumptions about distributional8

form contribute significantly to overall uncertainty may aid in focusing data gathering9

efforts.10

Dependencies or correlations between model parameters also may have a significant11

influence on the outcome of the analysis.  The sensitivity of the analysis to various12

assumptions about known or suspected dependencies should be examined.  Those13

dependencies or correlations identified as having a significant effect must be accounted for14

in later analyses.15

Conducting a systematic sensitivity study may not be a trivial undertaking, involving16

significant effort on the part of the risk assessor.  Risk assessors should exercise great care17

not to prematurely or unjustifiably eliminate pathways or parameters from full probabilistic18

treatment.  Any parameter or pathway eliminated from full probabilistic treatment should19

be identified and the reasons for its elimination thoroughly discussed.20
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2.  Restrict the use of probabilistic assessment to significant pathways and1

parameters.  2

3

Although specifying distributions for all or most variables in a Monte Carlo analysis is4

useful for exploring and characterizing the full range of variability and uncertainty, it is5

often unnecessary and not cost effective.  If a systematic preliminary sensitivity analysis6

(that includes examining the effects of various assumptions about distributions) was7

undertaken and documented, and exposure pathways and parameters that contribute little8

to the assessment endpoint and its overall uncertainty and variability were identified, the9

risk assessor may simplify the Monte Carlo analysis by focusing on those pathways and10

parameters identified as significant.  From a computational standpoint, a Monte Carlo11

analysis can include a mix of point estimates and distributions for the input parameters to12

the exposure model.  However, the risk assessor and risk manager should continually13

review the basis for "fixing" certain parameters as point values to avoid the perception that14

these are indeed constants that are not subject to change.15

 3.  Use data to inform the choice of input distributions for model parameters.16

The choice of input distribution should always be based on all information (both17

qualitative and quantitative) available for a parameter.  In selecting a distributional form,18

the risk assessor should consider the quality of the information in the database and ask a19

series of questions including (but not limited to): 20

C Is there any mechanistic basis for choosing a distributional family?  21

C Is the shape of the distribution likely to be dictated by physical or biological22

properties or other mechanisms?23

C Is the variable discrete or continuous? 24
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C What are the bounds of the variable? 1

C Is the distribution skewed or symmetric?  2

C If the distribution is thought to be skewed, in which direction?  3

C What other aspects of the shape of the distribution are known?  4

When data for an important parameter are limited, it may be useful to define plausible5

alternative scenarios to incorporate some information on the impact of that variable in the6

overall assessment (as done in the sensitivity analysis).  In doing this, the risk assessor7

should select the widest distributional family consistent with the state of  knowledge and8

should, for important parameters, test the sensitivity of the findings and conclusions to9

changes in distributional shape. 10

4. Surrogate data can be used to develop distributions when they can be11

appropriately justified.12

  13

The risk assessor should always seek representative data of the highest quality14

available.  However, the question of how representative the available data are is often a15

serious issue.  Many times, the available data do not represent conditions (e.g., temporal16

and spatial scales) in the population being assessed.  The assessor should identify and17

evaluate the factors that introduce uncertainty into the assessment.  In particular, attention18

should be given to potential biases that may exist in surrogate data and their implications19

for the representativeness of the fitted distributions.20

When alternative surrogate data sets are available, care must be taken when selecting21

or combining sets.  The risk assessor should use accepted statistical practices and22
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techniques when combining data, consulting with the appropriate experts as needed.1

Whenever possible, collect site or case specific data (even in limited quantities) to help2

justify the use of the distribution based on surrogate data.  The use of surrogate data to3

develop distributions can be made more defensible when case-specific data are obtained to4

check the reasonableness of the distribution.5

5. When obtaining empirical data to develop input distributions for exposure6

model parameters, the basic tenets of environmental sampling should be7

followed.  Further, particular attention should be given to the quality of8

information at the tails of the distribution.9

As a general rule, the development of data for use in distributions should be carried10

out using the basic principles employed for exposure assessments.  For example, 11

C Receptor-based sampling in which data are obtained on the receptor or on the12

exposure fields relative to the receptor;13

C Sampling at appropriate spatial or temporal scales using an appropriate14

stratified random sampling methodology;15

C Using two-stage sampling to determine and evaluate the degree of error,16

statistical power, and subsequent sampling needs; and17

C Establishing data quality objectives.18

In addition, the quality of information at the tails of input distributions often is not as19

good as the central values.  The assessor should pay particular attention to this issue when20

devising data collection strategies.21



1  According to NCRP (1996), an expert has (1) training and experience in the subject area resulting in
superior knowledge in the field, (2) access to relevant information, (3) an ability to process and effectively use the
information, and (4) is recognized by his or her peers or those conducting the study as qualified to provide
judgments about assumptions, models, and model parameters at the level of detail required.
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6. Depending on the objectives of the assessment, expert1 judgment can be included1

either within the computational analysis by developing distributions using2

various methods or by using judgments to select and separately analyze3

alternate, but plausible, scenarios.  When expert judgment is employed, the4

analyst should be very explicit about its use.5

Expert judgment is used, to some extent, throughout all exposure assessments. 6

However, debatable issues arise when applying expert opinions to input distributions for7

Monte Carlo analyses.  Using expert judgment to derive a distribution for an input8

parameter can reflect bounds on the state of knowledge and provide insights into the9

overall uncertainty.  This may be particularly useful during the sensitivity analysis to help10

identify important variables for which additional data may be needed.  However,11

distributions based exclusively or primarily on expert judgment reflect the opinion of12

individuals or groups and, therefore, may be subject to considerable bias.  Further, without13

explicit documentation of the use of expert opinions, the distributions based on these14

judgments might be erroneously viewed as equivalent to those based on hard data.  When15

distributions based on expert judgement have an appreciable effect on the outcome of an16

analysis, it is critical to highlight this in the uncertainty characterization.17

Evaluating Variability and Uncertainty18

7. The concepts of variability and uncertainty are distinct.  They can be tracked19

and evaluated separately during an analysis, or they can be analyzed within the20

same computational framework.  Separating variability and uncertainty is21

necessary to provide greater accountability and transparency.  The decision22

about how to track them separately must be made on a case-by-case basis for23
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each variable.1

Variability represents the true heterogeneity or diversity inherent in a well-2

characterized population.  As such, it is not reducible through further study.  Uncertainty3

represents a lack of knowledge about the population.  It is sometimes reducible through4

further study.  Therefore, separating variability and uncertainty during the analysis is5

necessary to identify parameters for which additional data are needed. There can be6

uncertainty about the variability within a population.  For example, if only a subset of the7

population is measured or if the population is otherwise under-sampled, the resulting8

measure of variability may differ from the true population variability.  This situation may9

also indicate the need for additional data collection.10

8. There are methodological differences regarding how variability and uncertainty11

are addressed in a Monte Carlo analysis.12

There are formal approaches for distinguishing between and evaluating variability and13

uncertainty.  When deciding on methods for evaluating variability and uncertainty, the14

assessor should consider the following issues.15

C Variability depends on the averaging time, averaging space, or other dimensions16

in which the data are aggregated.17

C Standard data analysis tends to understate uncertainty by focusing solely on18

random error within a data set.  Conversely, standard data analysis tends to19

overstate variability by implicitly including measurement errors.20

C Various types of model errors can represent important sources of uncertainty. 21

Alternative conceptual or mathematical models are a potentially important source22

of uncertainty. A major threat to the accuracy of a variability analysis is a lack of23
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representativeness of the data.1

9. Methods should investigate the numerical stability of the moments and the tails2

of the distributions.3

For the purposes of these principles, numerical stability refers to observed numerical4

changes in the characteristics (i.e., mean, variance, percentiles) of the Monte Carlo5

simulation output distribution as the number of simulations increases.  Depending on the6

algebraic structure of the model and the exact distributional forms used to characterize the7

input parameters, some outputs will stabilize quickly, that is, the output mean and variance8

tend to reach more or less constant values after relatively few sampling iterations and9

exhibit only relatively minor fluctuations as the number of simulations increases.  On the10

other hand, some model outputs may take longer to stabilize.  The risk assessor should11

take care to be aware of these behaviors.  Risk assessors should always use more12

simulations than they think necessary.  Ideally, Monte Carlo simulations should be13

repeated using several non-overlapping subsequences to check for stability and14

repeatability.  Random number seeds should always be recorded. In cases where the tails15

of the output distribution do not stabilize, the assessor should consider the quality of16

information in the tails of the input distributions.  Typically, the analyst has the least17

information about the input tails.  This suggests two points.18

C Data gathering efforts should be structured to provide adequate coverage at the19

tails of the input distributions.20

C The assessment should include a narrative and qualitative discussion of the21

quality of information at the tails of the input distributions.22

10. There are limits to the assessor's ability to account for and characterize all23

sources of uncertainty.  The analyst should identify areas of uncertainty and24
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include them in the analysis, either quantitatively or qualitatively.1

Accounting for the important sources of uncertainty should be a key objective in2

Monte Carlo analysis.  However, it is not possible to characterize all the uncertainties3

associated with the models and data.  The analyst should attempt to identify the full range4

of types of uncertainty impinging on an analysis and clearly disclose what set of5

uncertainties the analysis attempts to represent and what it does not. Qualitative6

evaluations of uncertainty including relative ranking of the sources of uncertainty may be7

an acceptable approach to uncertainty evaluation, especially when objective quantitative8

measures are not available.  Bayesian methods may sometimes be useful for incorporating9

subjective information into variability and uncertainty analyses in a manner that is10

consistent with distinguishing variability from uncertainty.11

Presenting the Results of a Monte Carlo Analysis12

11. Provide a complete and thorough description of the exposure model and its13

equations (including a discussion of the limitations of the methods and the14

results). 15

Consistent with the Exposure Assessment Guidelines, Model Selection Guidance, and16

other relevant Agency guidance, provide a detailed discussion of the exposure model(s)17

and pathways selected to address specific assessment endpoints.  Show all the formulas18

used.  Define all terms.  Provide complete references.  If external modeling was necessary19

(e.g., fate and transport modeling used to provide estimates of the distribution of20

environmental concentrations), identify the model (including version) and its input21

parameters.  Qualitatively describe the major advantages and limitations of the models22

used.23

The objectives are transparency and reproducibility - to provide a complete enough24
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description so that the assessment might be independently duplicated and verified.1

12. Provide detailed information on the input distributions selected.  This2

information should identify whether the input represents largely variability,3

largely uncertainty, or some combination of both.  Further, information on4

goodness-of-fit statistics should be discussed.5

It is important to document thoroughly and convey critical data and methods that6

provide an important context for understanding and interpreting the results of the7

assessment.  This detailed information should distinguish between variability and8

uncertainty and should include graphs and charts to visually convey written information.9

The probability density function (PDF) and cumulative distribution function (CDF) graphs 10

provide different, but equally important insights.  A plot of a PDF shows possible values11

of a random variable on the horizontal axis and their respective probabilities (technically,12

their densities) on the vertical axis.  This plot is useful for displaying:13

C the relative probability of values;14

C the most likely values (e.g., modes);15

C the shape of the distribution (e.g., skewness, kurtosis); and16

C small changes in probability density.17

A plot of the cumulative distribution function shows the probability that the value of a18

random variable is less than a specific value.  These plots are good for displaying:19

C fractiles, including the median;20
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C probability intervals, including confidence intervals;1

C stochastic dominance; and2

C mixed, continuous, and discrete distributions.3

Goodness-of-fit tests are formal statistical tests of the hypothesis that a specific set of4

sampled observations are an independent sample from the assumed distribution.  Common5

tests include the chi-square test, the Kolmogorov-Smirnov test, and the Anderson-Darling6

test. Goodness-of-fit tests for normality and lognormality include Lilliefors' test, the7

Shapiro-Wilks' test, and  D'Agostino's test.8

Risk assessors should never depend solely on the results of goodness-of-fit tests to9

select the analytic form for a distribution. Goodness-of-fit tests have low discriminatory10

power and are generally best for rejecting poor distribution fits rather than for identifying11

good fits.  For small to medium sample sizes, goodness-of-fit tests are not very sensitive12

to small differences between the observed and fitted distributions.  On the other hand, for13

large data sets, even small and unimportant differences between the observed and fitted14

distributions may lead to rejection of the null hypothesis.  For small to medium sample15

sizes, goodness-of-fit tests should best be viewed as a systematic approach to detecting16

gross differences.  The risk assessor should never let differences in goodness-of-fit test17

results be the sole factor for determining the analytic form of a distribution. 18

Graphical methods for assessing fit provide visual comparisons between the19

experimental data and the fitted distribution.  Despite the fact that they are non-20

quantitative, graphical methods often can be most persuasive in supporting the selection of21

a particular distribution or in rejecting the fit of a distribution.  This persuasive power22

derives from the inherent weaknesses in numerical goodness-of-fit tests.  Such graphical23

methods as probability-probability (P-P) and quantile-quantile (Q-Q) plots can provide24
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clear and intuitive indications of goodness-of-fit.1

Having selected and justified the selection of specific distributions, the assessor should2

provide plots of both the PDF and CDF, with one above the other on the same page and3

using identical horizontal scales.  The location of the mean should be clearly indicated on4

both curves [See Figure 1]. These graphs should be accompanied by a summary table of5

the relevant data.6

13. Provide detailed information and graphs for each output distribution.7

In a fashion similar to that for the input distributions, the risk assessor should provide8

plots of both the PDF and CDF for each output distribution, with one above the other on9

the same page, using identical horizontal scales.  The location of the mean should clearly10

be indicated on both curves.   Graphs should be accompanied by a summary table of the11

relevant data.12

14. Discuss the presence or absence of dependencies and correlations.13

Covariance among the input variables can significantly affect the analysis output.  It is14

important to consider covariance among the model's most sensitive variables.  It is15

particularly important to consider covariance when the focus of the analysis is on the high16

end (i.e., upper end) of the distribution.  17

When covariance among specific parameters is suspected but cannot be determined due to18

lack of data, the sensitivity of the findings to a range of different assumed dependencies19

should be evaluated and reported.20

15. Calculate and present point estimates.21

Traditional deterministic (point) estimates should be calculated using established22
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protocols.  Clearly identify the mathematical model used as well as the values used for1

each input parameter in this calculation.  Indicate in the discussion (and graphically) where2

the point estimate falls on the distribution generated by the Monte Carlo analysis.  Discuss3

the model and parameter assumptions that have the most influence on the point estimate's4

position in the distribution.  The most important issue in comparing point estimates and5

Monte Carlo results is whether the data and exposure methods employed in the two are6

comparable.  Usually, when a major difference between point estimates and Monte Carlo7

results is observed, there has been a fundamental change in data or methods.  Comparisons8

need to call attention to such differences and determine their impact.9

In some cases, additional point estimates could be calculated to address specific risk10

management questions or to meet the information needs of the audience for the11

assessment.  Point estimates can often assist in communicating assessment results to12

certain groups by providing a scenario-based perspective.  For example, if point estimates13

are prepared for scenarios with which the audience can identify, the significance of14

presented distributions may become clearer.  This may also be a way to help the audience15

identify important risks.16

16. A tiered presentation style, in which briefing materials are assembled at various17

levels of detail, may be helpful.  Presentations should be tailored to address the18

questions and information needs of the audience.19

Entirely different types of reports are needed for scientific and nonscientific audiences. 20

Scientists generally will want more detail than non-scientists.  Risk managers may need21

more detail than the public.  Reports for the scientific community are usually very detailed. 22

Descriptive, less detailed summary presentations and key statistics with their uncertainty23

intervals (e.g., box and whisker plots) are generally more appropriate for non-scientists.  24

To handle the different levels of sophistication and detail needed for different audiences, it 25

may be useful to design a presentation in a tiered format where the level of detail increases26
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with each successive tier.  For example, the first tier could be a one-page summary that1

might include a graph or other numerical presentation as well as a couple of paragraphs2

outlining what was done.  This tier alone might be sufficient for some audiences.  The next3

tier could be an executive summary, and the third tier could be a full detailed report.  For4

further information consult Bloom et al., 1993.5

Graphical techniques can play an indispensable role in communicating the findings6

from a Monte Carlo analysis.  It is important that the risk assessor select a clear and7

uncluttered graphical style in an easily understood format.  Equally important is deciding8

which information to display.  Displaying too much data or inappropriate data will weaken9

the effectiveness of the effort.  Having decided which information to display, the risk10

assessor should carefully tailor a graphical presentation to the informational needs and11

sophistication of specific audiences.  The performance of a graphical display of12

quantitative information depends on the information the risk assessor is trying to convey13

to the audience and on how well the graph is constructed (Cleveland, 1994). The14

following are some recommendations that may prove useful for effective graphic15

presentation:16

• Avoid excessively complicated graphs.  Keep graphs intended for a glance (e.g.,17

overhead or slide presentations) relatively simple and uncluttered.  Graphs18

intended for publication can include more complexity. 19

• Avoid pie charts, perspective charts (3-dimensional bar and pie charts, ribbon20

charts), pseudo-perspective charts (2-dimensional bar or line charts).21

• Color and shading can create visual biases and are very difficult to use effectively. 22

Use color or shading only when necessary and then, only very carefully.  Consult23

references on the use of color and shading in graphics.24



A1-15

• When possible in publications and reports, graphs should be accompanied by a1

table of the relevant data. 2

• If probability density or cumulative probability plots are presented, present both,3

with one above the other on the same page, with identical horizontal scales and4

with the location of the mean clearly indicated on both curves with a solid point.5

• Do not depend on the audience to correctly interpret any visual display of data. 6

Always provide a narrative in the report interpreting the important aspects of the7

graph.8

• Descriptive statistics and box plots generally serve the less technically-oriented9

audience well.  Probability density and cumulative probability plots are generally10

more meaningful to risk assessors and uncertainty analysts.11
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APPENDIX A21

 Description of  Pesticide Agro-eco Risk Evaluation Tool (PARET)2

A demonstration computer model written in Fortran was completed as a first phase in3

implementation of the ideas developed in the ECOFRAM terrestrial exposure and terrestrial4

effects work groups. The model was written as an interim step between the concept5

development stage and full development of the official model to be used by EPA and the6

pesticide registration community in assessment of the risk of pesticide application to birds and7

mammals. It was designed to be as consistent as possible with the other portions of this report.8

The model has a number of Monte Carlo components and a number of parameters of the9

model are generated randomly from selected distributions. 10

There are two possibilities for development of the final official terrestrial model. The11

less complex option is to develop a model such as PARET in which hydrologic parameters and12

events would be represented by typical or average values. This would mean assuming default13

values for parameters such as rainfall amount and frequency, runoff volume, soil moisture,14

temperature, plant growth rates, infiltration rates, etc. The more complex option is to base the15

terrestrial risk assessment model around a hydrologic computer model in which hydrologic16

events are simulated one at a time and runoff, infiltration, plant growth and soil moisture are17

updated based upon these events. In this case, the model could be based around an existing18

hydrologic model such as the USEPA PRZM3 model or the USDA AnnAGNPS model. The19

later model is new and not yet well known but has the advantage of using a grid to represent20

hydrologic processes and might be well suited to a variable spatial representation of exposure.21

In the PARET model, the exposure and effects portions of the model are integrated on22

an individual-by-individual basis within the program. The model user first chooses the agro-23

ecosystem scenario, (eg. Iowa corn, Louisiana cotton, Washington apples) which he/she24
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wishes to simulate. He/she then chooses one or more bird or mammalian species within that1

scenario on which to assess the potential pesticide impact. Data (e.g. size of home range,2

typical diet, typical weight etc.) for number of avian and mammalian species are available3

within the model for each scenario.4

A. Modeling of Pesticide Effects5

Pesticide effects are modeled for each individual bird or mammal by randomly6

generating a lethal dose amount based upon laboratory toxicity data. The model user is given a7

choice between  entering the raw LD50 test result data and having the program calculate the8

LD50 and the slope of the dose response curve or entering the LD50  and dose/response slope9

values directly. The model also calculates a sub-lethal reproductive dose which is also based10

upon laboratory data entered by the user.11

The lethal dose for each successive individual bird or mammal is calculated by the12

following formula:13

LDi = LD50 * 10.0 (Z/m)14

where: 15

LDi = Dose Lethal to the ith individual feeding in the agro-ecosystem,16

LD50 = Dose lethal to 50% of the individuals in the laboratory test,17

Z = Unit normal random variate (mean of 0.0, standard deviation of 1.0), and18

m = Slope of the dose/response curve from the laboratory LD50 test.19
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This is the method used to represent intra-species variability in pesticide effect. This1

generated lethal effect value is compared to an exposure value which is calculated later in the2

program (as described later in this section) to determine whether the individual is killed,3

survives in a reproductively impaired state or is unaffected. Overall sums for these three4

groups are tallied to determine the impact of the pesticide in this agro-ecosystem under the5

conditions tested.6

B. Modeling of Pesticide Exposure7

Pesticide exposure for each individual of each species in the selected agro-ecosystem is8

also estimated by the model. The exposure portion of the model is more complex in structure9

than the effects portion described in section A above. In the exposure sections of the model,10

each individual bird or mammal is exposed to variable and dissipating pesticide residues as it11

feeds over a period of days to weeks in a spatially variable landscape. The pesticide which has12

been ingested is, at the same time, being metabolized or otherwise depurated from the body of13

the bird or animal. As soon as the accumulated body burden in the bird or mammal exceeds14

the generated effects value, it is assumed to die. If it survives, it continues to feed on items15

which have continually dissipating pesticide residues. If the average body burden during this16

longer, user-specified period exceeds the reproductive effects level, it is considered to be17

reproductively impaired.18

i. Spatial variability19

Spatial variability of the pesticide within the agro-ecosystem and of feeding is20

represented by assuming that the agro-ecosystem is a grid of fields. Some of the fields are21

planted into the defining crop, some into other crops and some are non-crop land. In addition,22

not all of the land planted into the defining crop may receive the pesticide application. There23

are therefore four categories of land:24
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(1) Land in the defining crop which has been treated,1

(2) Land in the defining crop which has not been treated,2

(3) Land in another crop which has not been treated, but which may or may not receive3

spray drift, and4

(4) Land which is not cropped and which may or may not receive spray drift from5

adjacent treated land.6

The model user designs the agro-ecosystem by selecting the percent of land in each of7

these four land use categories. This selection is made based upon time budget, behavioral8

studies for each species being modeled. This is generally derived from telemetry or9

observational study data.10

The model develops a ten-by-ten grid of fields which contains land in one or more of11

the above categories. The number of fields in the program grid in which the individual feeds is12

a function of the median size of field in the local area relative to the local range of that13

species. Each individual will have feeding access only to the number of fields located within14

its home range and each will have access to different fields. The program allows the user to15

determine the daily allocation of time between land planted to the defining crop, land planted16

to any other crop, and any other non-crop land to which the bird or mammal has access.  The17

model then sums the pesticide residue on a daily basis across each field to which the individual18

has access based on the time allocated to each land use.19

ii. Temporal Variability20

Temporal variability is built into the model through the daily time step. This time step21

is used within the model in several ways. First it is used in terms of the variable application22

window in which the chemical is applied to those of the fields which are treated. The model23

user specifies the time period over which the first annual application is made. The actual24

application date within the selected window is generated randomly by the program. Secondly,25
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it is used to calculate the pesticide residue remaining on avian or mammalian food items as the1

chemical dissipates (as a function of the assumption of a first order degradation process.)2

Thirdly, it functions through depuration, by which chemical is eliminated from the body of the3

bird or mammal as the summation of several natural  first order processes acting4

simultaneously.5

iii. Timing of Pesticide Application6

The program user selects the length of the window over which the first applications are7

made. The actual application dates are selected randomly within that window. Each date within8

the selected window is equally likely. The bird or mammal feeding the grid of fields may9

therefore feed the first day in a group of fields which includes a cropped, treated field on the10

day of application, a cropped, untreated field which has received spray drift, an unplanted11

field with no pesticide residue and a field to which pesticide will be applied on a subsequent12

day. The following day he will feed on the same group of fields, but residues will have13

degraded on those fields which had residues on the previous day and the field which was14

untreated may have been treated by then.15

iv. Application rate and interval16

The mean application rate, the number of applications, and the interval in days between17

successive applications is taken from the pesticide label. This rate may be used without18

variation on each field to which the chemical is applied or the rate can be varied by the user.19

To simulate a variable application rate, the user may choose between bounded uniform, normal20

and log-normal distributions of rates. Note: Each field is consider to have a uniform rate21

across it. The generated variability is among fields.22

v. Spray drift23
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Drift onto adjacent, down-wind fields is simulated through inclusion of a subroutine1

developed by the Spray Drift Task Force (SDTF) and represents upper 90th percentile spray2

drift percentage for aerial, ground and orchard air blast applications. Birds or mammals3

feeding on fields immediately down-wind from application fields are assumed to ingest4

pesticide at a level proportional to the percent of spray drift on that field. The user chooses5

between aerial, ground and airblast application methods and between varying droplet size6

distributions and specialized applications within each of these three methods.7

vi. Routes of Exposure8

The model considers five routes of exposure. These are through the ingestion of the9

bird’s or mammal’s normal food items contaminated with pesticide spray, ingestion of whole10

pesticide granules incidently or as grit, ingestion of pesticide in contaminated drinking water,11

direct inhalation of pesticide spray and dermally through direct body contact with a12

contaminated item. The basic exposure equation is as follows:13

DTD =  (DDD + DDDg + DWD + DCD + DID) , 14

where:15

DTD = Daily Total Dose (mg/kg/day),16

DDD = Daily Dietary Dose from ingestion of contaminated food (mg/kg/day),17

DDDg = Daily Dietary Dose from ingestion of granules (mg/kg/day),18

DWD = Daily drinking Water Dose (mg/kg/day), 19

DCD = Daily dermal Contact Dose (mg/kg/day),20



A2-7

DID = Daily Inhalation Dose (mg/kg/day), and1

PTD = Et (DDD + DDDg + DWD + DCD + DID) * (1 - e-kt), 2

where:3

PTD = Period Total Dose (mg/kg/day),4

Et = Cumulative Dose Over a Period of ‘t’ Days, and5

k = first order depuration rate constant.6

a. Dietary intake - DDD7

Dietary exposure is simulated through the Pastorok Equation as follows:8

DDD = EFIR * PD * PT * C * FDR / WT,  where9

DDD = daily dietary dose (mg/kg/day) summed across each food type,10

FIR = food ingestion rate (kg dry weight/day),11

PD = proportion of each food type in the diet,12

PT = proportion of food type eaten in the contaminated area,13

C = concentration of pesticide in each food type (mg pest/kg food),14

FDR = fresh weight to dry weight ratio for each food type (dimensionless), 15

WT = body weight of the bird or mammal (kilograms).16

1. FIR. The program assumes that the mean daily quantity of food17
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consumed by each bird (FIR in the Pastorok equation) can be calculated using the following1

formula (Nagy, 1998):2

FIR = 0.490 * WT exp(0.720),  3

and for each herbivorous mammal by (Nagy, 1987)4

FIR = 0.576 * WT exp(0.727),  where5

FIR = food ingestion rate (kg dry weight/day),6

WT = body weight of the bird or mammal (kg), and7

EXP signifies an exponent.8

2. PD. To input the proportion of each food type in the diet, the model user can select a9

default diet of measured values or select his/her own percentages based on specific local10

knowledge. The model user is supplied with default literature values which can be used or11

local values may be chosen if available and more appropriate. The model user chooses12

percentages among short grass, long grass, fruits, insects, broadleaf plants, seeds and worms.13

3. PT. The proportion of the food type eaten in the contaminated area is assumed to be the14

same as the proportion of time spent in the contaminated area and is an input value. It is the15

same as the percent of the area planted to the defining crop which is treated  with the pesticide.16

See section on spatial variability.17

4. C. The concentration of the pesticide residue contained in each food type is expressed in18

milligrams of pesticide per kilogram of the food type consumed. It is calculated as the product19

of the actual label application rate (or generated variant) times the mean of ten randomly20

generated, day-zero concentration values drawn from a distribution of food type specific,21

concentration values. Distributions of concentration values are provided either from22



A2-9

Kenaga/Fletcher data or from other measured data sources. In notation, for the first field, this1

is as follows:2

C1 = Rp * E1
10 Ci / 10, where: 3

C1 = average residue concentration on ten food items in field one, and4

Rp = rate of pesticide application (pounds/acre) on field one and5

E1
10 Ci / 10 = average of ten concentration values generated from Kenega/Fletcher or6

other distributions.7

5. FDR. The dimensionless fresh weight to dry weight ratio for each food type is taken from8

published literature values. Values used in the program are:9

Grasses = 10

Broadleaf plants =11

Fruits =12

Insects = 3.85 (@ 74% water)13

Seeds = 6.67 (@ 85% water) to 1.18 (@ 15% water)14

Worms =15

6. WT. The mean body weights of the bird or mammal modeled are taken from published16

literature values. Default values are provided within the program or the model user can17

selected his/her own values based upon specific local conditions.18

b. Granular intake - DDDg19

The program includes a very simplistic granular model. Other granular models which20
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have been presented to ECOFRAM are more rigorous and account for more processes. The1

granular model calculates pesticide intake through the following equation:2

DDDg = E   MSgi * Ci * PT / WTsp, where3

DDDg = daily dietary dose of pesticide in granules (mg/kg/day),4

E = summation across all ‘n’ granules ingested,5

MSgi = mass of the ith  granule (mg),6

Ci = conc of pesticide in the ith granule (mg pest/mg granule),7

PT = proportion of the granules consumed in the treated area, and8

WTsp = body weight of the bird or mammal species (kg)9

The number of granules, n, is calculated by the Dixon formula:10

n = INT (-1.0 * GRµ * log (Z)), where11

INT represents an integer value or whole number12

GRµ = mean number of granules per day consumed on a species   basis from the13

following table (Dixon):14

Omnivores:                   Mean Granules Per Day       15

Ring-necked Pheasant 19.9216

Horned Lark 1.4517

Indigo Bunting 4.6218

Vesper Sparrow 1.5819

Red-winged Blackbird 2.2420
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Insectivores:1

Killdeer 1.062

Vermivores                                               3

American Robin 1.584

Granivores5

Mourning Dove 1.31, and 6

Z = Unit normal random variate (mean of 0.0, standard deviation of 1.0).7

c. Pesticide Intake Through Drinking Water - DWD8

The program assumes that all drinking water comes from one or more of three sources:9

from perennial ponds and streams, from continuous puddles remaining from rainstorms and10

from morning dew remaining on leaf surfaces. The assumption is also made that all three11

sources are always available and that the choice is up to the bird or animal as represented by12

the model user. The following paragraphs describe the methods by which PARET models the13

pesticide concentration in these drinking water sources.14

Pesticide concentrations in ponds and streams in the PARET model are simulated using15

the same method that the Office of Pesticide Programs (OPP) uses to simulate surface water16

for aquatic risk assessment. The program assumes a one hectare static ‘standard’ pond which17

receives pesticide in storm runoff water and from spray drift from an adjacent, ten-hectare,18

treated field. The resulting initial dissolved concentration in the pond ranges from one percent19

to ten percent of the applied chemical as a function of partitioning estimated by the organic20

carbon partition coefficient (Koc) of the chemical. The concentration values on days subsequent21

to the first are calculated assuming first order degradation with a combined half-life that22

includes metabolic, hydrolytic and photolytic processes. 23
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Puddles are modeled assuming either direct application or direct spray drift to standing1

puddles. The dissolved concentration is calculated based upon Koc partitioning in the puddle. It2

is assumed that the puddle has a continuous depth of 10.0 centimeters.  As with the pond, the3

concentration in the puddle on subsequent days is calculated assuming first order degradation4

with a combined half-life that includes metabolic, hydrolytic and photolytic processes. 5

The pesticide concentration in dew drops on leafy surfaces is modeled based upon a one6

milliliter fixed droplet volume on a leaf and partitioning from the leaf surface into the water7

droplet as a function of the Koc value. It is assumed that all droplets are either consumed or8

evaporate each day. The concentration in dew drops is however lower each day due to9

degradation on the leaf surface from which the pesticide partitions. Degradation is assumed to10

take place at the first order rate at which is degrades on the leaf surface.11

d. Dermal Exposure - DCD12

Pesticide exposure due to dermal contact is not yet implemented in the program.13

e. Inhalation - DID14

Pesticide exposure due direct inhalation of pesticide after a spray event or of volatilized15

pesticide is not yet implemented in the program. 16

C. Modeling of Pesticide Risk17

PARET addresses the risk posed by use of a pesticide within an agro-eco system in two18

ways. First, a simple comparison of exposure and effect is made on an individual-by-19

individual basis. If the  lethal exposure value is higher than the lethal effect value, the20

individual is considered to be dead. If the reproductive exposure value is higher than the21

sublethal or reproductive effect value, the individual is considered to be reproductively22
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impaired. If neither of these happens then there is no impact. In this case, a simple summing is1

carried out for each of the three categories: those that are dead and those that are2

reproductively impaired those that are not impacted. Simple percentages are calculated for3

each.4

The second method of assessment which is carried out concurrently with the first is to5

calculate a simple risk quotient for each of the individuals in the agro-ecosystem and to6

develope a mean and standard deviation for these risk quotients.7

D. Tiering vs. Smoothly Varying Levels of Complexity8

PARET is written in such a way as to enable many levels of complexity in an9

assessment using the same model. At the simplest level, conservative, single valued inputs can10

be used to complete a classic, pre-ECOFRAM, deterministic risk assessment. To estimate a11

lethal effect value, an LD50 value can be entered without considering the variability implied by12

the slope of the dose/response curve to provide a single effects estimate for all individuals. To13

estimate exposure at this level, the user assumes 100% of the area is cropped, 100% of the14

crop is treated, all of the crop is treated on the same day and 100% of the birds eat short grass15

having a residue level of  240 ppm. The result is the current risk quotient.16

At the other end of the spectrum, the user may generate varying effects values for each17

individual from the intra-species variability data and select values from available distributions18

to fully describe exposure in a spatially and temporally variable agro-ecosystem. The result is a19

fully  temporal and spatial assessment to the extent that the availability of distributional input20

data for the model allows.21

The model may be run at any level of complexity to take full advantage of  the22

quantity, quality and distributions of the available input data. Tiers can be chosen that allow23

use of the model at any desired level. Cost and complexity of developing input values can then24
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be the criteria that  are used to select the levels at which the tiers are set. At lower tiers, more1

processes may be represented by single valued inputs with distributions used for a few simple2

parameters. At successively higher levels, more and more processes are represented by values3

selected randomly from distributions when it is felt that the expense to collect additional input4

values is worth the added cost.5
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APPENDIX A31

AN INDIVIDUAL-BASED MODEL OF PESTICIDE INGESTION AND MORTALITY IN2

AVIAN SPECIES3

(Dixon Model)4

Introduction5

Mathematical models and computer simulation can be used to link pesticide exposure concentrations6

with effects such as mortality.  We developed an individual-based mathematical model to predict the7

effects of pesticide ingestion on the populations of avian species with different feeding habits in and8

around agricultural fields.  9

Conceptual Model10

The model consists of two parts: (1) a calculation of the body concentration, or dose, for each11

individual in the population, and (2) a calculation of the probability of mortality for the current dose.12

Population survival is estimated by determining the mortality of many individuals of a given species13

in a population.  Each part of the model is stochastic in that it contains random variables.  The14

random variables in the first part (dose calculation) are the ingestion rate of granules and the residues15

in other diet components.  The random variable in the second part (mortality estimation) is the16

probability of mortality.  These random variables provide the capability to conduct stochastic17

simulations.18

Structure19

The change in body concentration of a pesticide in an individual bird between time t and time t+1 can20

be described by the difference equation:21
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Ii, t '
piCivi

Wt
(2)

Ci '

0.398Wt 0.850 passerines

0.301Wt 0.751 non&passerines

(3)

where1

Qt = pesticide body burden at time t, mg@kg -12

Q t+1 = pesticide body burden at time t+1, mg@kg -13

I i,t = ingestion rate of pesticide in granules or food item I at time t, mg@kg -1@day -14

" i,t = proportion of total diet contributed by item I at time t5

8 = elimination rate constant, day -16

Ingestion7

The weight-specific mass ingestion rate of pesticide, I i,t, (mg@kg -1@day -1) may be written as8

where9

pi = proportion of food item, I, consumed that is contaminated10

Ci = consumption rate of granules or food item I , g@day -111

vi = pesticide concentration in granules or food item I , mg@kg -112

Wt = consumer body weight, g13

Food consumption rates. The amount of food consumed in grams (dry matter) per day, C I, was14

estimated using the power functions (Nagy 1987, USEPA 1993) that describe consumption as a15

function of body weight:16

Body weights were obtained from Dunning (1993).17



A3-3

f (x) '

1
$

e
&

x
$ if x$0

0 otherwise

(4)

F(x) '

1 & e
&

x
$ if x$0

0 otherwise

(5)

Consumption of pesticide granules. Consumption of pesticide granules was assumed to be a1

random variable.  The number of granules actually consumed in a given day of the simulation was2

randomly selected from an exponential probability distribution.  The distribution was based on a3

frequency histogram of granule counts in gizzards.   Data from both the study on Iowa cornfields by4

Fischer and Best (1995) and the study of mostly Midwestern states by Gionfriddo and Best (1996)5

were used.   Estimates of the mean of the exponential density function were calculated by two6

different methods.  The first method used the mean gizzard grit count from Gionfriddo and Best7

(1996) and adjusted it by the conversion factor of 4.2 granules consumed per day per each granule8

detected in the gizzards, and then adjusted for the difference between ingestion of clay and silica9

granules.  The consumption rate of silica granules was greater than that of clay granules by a factor10

of 6.  The second method was based on the study of ingestion of clay granules in house sparrows by11

Best and Gionfriddo (1994).  The estimate for each of the focus species was calculated by taking the12

mean value for house sparrows and multiplying it by the ratio of gizzard grit count in the focus13

species to that of the house sparrow.  The greater of the estimates from the two methods then was14

used in the simulations.  A probability density function was obtained by fitting an exponential function15

to the data using the nonlinear regression procedure in PRISM (GraphPad 1994-1995):16

where $ is the mean of the distribution.  The actual number of pesticide granules consumed is treated17

as a random variate that is generated from the distribution function for equation (4):18

The inverse-transform method was used to obtain the random variate for granule consumption, X19

(Law and Kelton 1991).  To find F-1, we set u = F(x) and solve for x to obtain20
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F &1 (u) ' &$ ln(1 & u) (6)

CA ' CA o e &(k1%k3)t (7)

To generate the random variate X we first generate a random variate U from a uniform distribution1

U(0,1).  The second step is to return X = - $ ln (1 - U). 2

Pesticide granule degradation. The integrated material balance equations for the degradation3

of pesticide from the granules, developed by Cryer and Laskowski (1994), were incorporated into4

the model.  The amount of pesticide in the granule at time t, CA, is dissipated by diffusion into the soil5

and volatilization into the atmosphere:6

where k1 = the rate constant for release of pesticide into the soil, and7

k3 = the rate constant for volatilization.8

Proportion of components in diet. The two focus species can be characterized, in terms of their9

feeding habits as omnivores .  The percentage of the diet that is plant food is reported in Martin, et10

al. (1951).  The percentage in the summer diet was used because that is most representative of the11

exposure period from spray applications.  These percentages were used to provide the proportion of12

plant material, "i, in the diets of the two species (Table A3-1).  The balance of the diet consists of13

animal components.  In the case of bobwhites and red-winged blackbirds, data on grasshoppers were14

used. 15

Time spent in treated areas16

The proportion of consumed food items that are contaminated with pesticide, pi , will depend upon17

the relative time spent in treated areas compared to untreated areas.  The untreated areas include both18

untreated areas surrounding treated agricultural fields and, in the case of banded applications, the19
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areas between bands.  The proportion of food items contaminated,  pi, then is the product of the1

proportion of time feeding in a treated field, pf, and the proportion of time feeding in treated areas2

within the field given that the bird is feeding in the field, pw.3

Edge vs. field. The time spent feeding within a field and adjacent to the field can be estimated4

from observations of the number of birds feeding in each area.  Assuming that the location of feeding5

over a period of time is a random process, the proportion of time spent feeding in a field will be equal6

to the proportion of the total number of birds observed in the field.  Data from Iowa and Illinois7

cornfield studies (Best, et al 1990) were used to obtain estimates of pf.  The highest reported field-use8

percentage was used.9

Band vs. non-band. Pesticide granules are applied in bands approximately 18.0 cm wide and 76.210

cm apart.  On an area basis, the proportion of time spent in a treated area is 0.19.  For the estimates11

of granule consumption based on data from Fischer and Best (1995) in which birds were observed12
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Ct'C0 e &k t (8)

Table A3-1. Parameters used in the model for two avian focus species.1

Species

Parameter2 Northern Bobwhite Red-winged Blackbird

Proportion of plant food in diet, "i  3

Source: Martin, et al. 19514 .73 .50

Body weight, Wt, in grams5

Source: Dunning 19936 178 53

Proportion of food items that are7

contaminated,  pf8

Source: Best, et al. 19909 .01 0.16

 over an entire field, a value of  pw of 1.0  was used for granule consumption.  For the estimates of10

granule consumption based on data from Gionfriddo and Best (1996), a value of pw of 0.19 was used.11

Although spray treatments sometimes are applied in bands, a continuous coverage was assumed;12

therefore,  pw  also was 1.0 for other food items.13

Residues in diet components14

Dietary components. The concentration of pesticide in the plant component  (parameter, vi) was15

taken from data on seed  residues.  For the insect component of the diet, residue data were obtained16

on invertebrates collected from corn fields.  Each residue value was treated as a normally distributed17

random variable.  The random variates N(0,1) were generated using the method of Box and Muller18

(1958) (See Law and Kelton 1991:491).19

Dissipation from diet components following application. Pesticides dissipate  from plant20

surfaces following spraying.  Assuming an exponential decay function, the estimated rate constant21

can be estimated from the equation:22
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8 '
&log(a (1 & p))

t
(10)

fi'
1

1&pH2O
(8)

Dry Weight to Wet Weight Conversion Factor. Because fonofos residues are based on mg of1

fonofos per kg (wet weight) of tissue and food consumption is based on dry weight, a factor to2

convert dry weight to wet weight is needed.  The conversion factor, fi, is a function of water content:3

where pH2O is the proportion of water in the food item.  The water content of the three food items4

used in the model were 0.10, 0.50, and 0.90 for seeds, insects, and earthworms respectively.5

Avian Loss Rates6

The primary mechanisms of pesticide removal from avian species are excretion and metabolism of7

absorbed pesticide and voiding of the pesticide granules.  A single compartment elimination model8

was used to obtain elimination rate constants, 8, in equation (1):9

where a is the fraction of excreta that is pesticide (# 0.5), p is the fraction of dose excreted, and t is10

time between dosing and final sampling of excreta.  Elimination of pesticide granules from gizzards11

(Fischer and Best 1995) also showed a negative exponential decrease to a plateau in both house12

sparrows and red-winged blackbirds.13

Mortality14

Mortality response function. The probability of mortality occurring in an individual is determined15

by a dose-response function in which mortality probability is a logistic function of dose or body16

concentration, Q (Brown 1978, Finney 1964).  The following form of the logistic function was used:17
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F(Q)'
P1

1%e
(2.2/P3)(P2&Q) (11)

where1

F(Q) = probability of mortality at dose Q2

P1 = maximum probability of mortality3

P2 = LD504

P3 = difference between LD10 and LD505

Q  = dose or body concentration6

The parameter P2 is exactly the LD 50 value.  There is a one-to-one relationship between the slope and7

the parameter P3.  As the slope increases, toxicity increases and the range between LD50 and LD108

decreases.  The parameter P3 has to be less than P2 and should define the dose response curve at the9

point (0,0).  In other words, there has to be zero mortality probability at a zero dose.  As P210

decreases, the value of P3 also decreases.  The P3 value then was adjusted until the estimated11

mortality probability was 0.001 at zero dose.12

Mortality probability function. To determine the quantal response (i.e., whether or not mortality13

occurs),  a random number generator was used to obtain a sample from a uniform distribution,14

U(0,1).  If the value of the random variable is less than or equal to P(Q), mortality is assigned to the15

individual.  A population response is obtained by simulating many individuals.16

Examples with fonofos17

Granular Applications18

Simulations were run for each of the focus species in Table A3-1, with dose (body burden) and19

survival as state variables.  In other words, both dose and survival were followed over time.20
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Although the model captures the essence of what is known about avian feeding behavior in and1

around cornfields, several conservative assumptions were made that assured that these simulations2

produced estimates of population mortality which were not likely to be exceeded in field situations:3

1) Where data were missing for a given species, a conservative estimate based on values for4

other avian species was used,5

2) The process contributing to the greatest rate of fonofos degradation on the granule, advection6

during rainfall events, was not used in the model,7

3) The elimination rate from birds was based on the lowest reported value of percentage8

reduction in body burden,9

4) The possible behavior of avoiding fonofos granules was not included in the model.10

The exposure scenario for all simulations was that the start time of the simulation was the application11

date of fonofos granules at plant.  Model parameters for each species are presented in Table A3-2.12

Species13

Simulations were run for two focus species: the northern bobwhite, and red-winged blackbird.14

Predicted dose15

For each focus species, Monte Carlo simulations of 100 individuals were run to obtain a population16

mean and 95 percent confidence interval of dose (Figure 1a-b).17

Northern bobwhite18

The predicted dose was relatively low, with a peak of about 0.015 mg/kg, primarily a result of the19

low percentage of time spent in the field (0.01%).  The peak occurred about six days following20

application as fonofos accumulated in the body.  Elimination was fairly rapid, declining to less than21

ten percent of the maximum dose within fifty days post application.22
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Table A3-2. Parameters used for simulation of fonofos granular applications.1

Species

Parameter2 Northern Bobwhite Red-winged Blackbird

Mean number of granules3

consumed per day Source: (See4

text)5

3.31 2.24

Excretion rate constant, 86

Source: Bauriedel 19867 0.5116 0.5116

LD50, p2, in mg/kg,8

Source: (See footnotes)9 12.0a 10.0b

LD50-LD10, p3, in mg/kg10

Source: (See text)11 4.0 3.3
a Source: Hill and Camardese 1984.12
b Source: Schafer and Brunton 1979.13

Red-winged blackbird14

The pattern of the predicted dose was similar to that of the bobwhite, although the maximum dose15

is significantly higher.  This resulted from a lower body weight and greater amount of time spent in16

the field (16%).  The peak dose of 0.54 mg/kg again was about six days following application.  The17

elimination to ten percent of the maximum also took about fifty days.18

Predicted mortality19

Each simulation also predicted mortality for each dose trace.  Mortality was subtracted from the20

population of 100 individuals to estimate probability of survival.  The model predicted zero mortality21

for all species  even with the conservative assumptions included in the model.   Comparing the peak22

doses in Figure A3-1, a-b, with the LD50 values in Table A3-2 suggests that the dose is not great23

enough to cause mortality in these focus species.24
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Sprayable Applications1

Simulations were run for each of the focus species in Table 1, with dose (body burden) and survival2

as state variables as with the granular application simulations.   Although the model captures the3

essence of what is known about avian feeding behavior in and around cornfields, several conservative4

assumptions were made that assured that these simulations produced estimates of population5

mortality which were not likely to be exceeded in field situations:6

1) Where data were missing for a given species, a conservative estimate based on values for7

other avian species was used,8

2) The maximum mean values of fonofos residues were used for the parameter vi,9

3) The elimination rate from birds was based on the lowest reported value of percentage10

reduction in body burden.11

12

The exposure scenario for all simulations was that the start time of the simulation was the application13

date of fonofos.  Model parameters for each species are presented in Table A3- 3.  Other model14

parameters are as in Tables A3-1 and A3-2.15

Table A3-3. Values used in the model for residues in the diets of the two avian focus species.16

Parameter17 Mean Standard Deviation

Residues on plant food in diet18 33.3 3.33

Residues on insect food in diet19 15.0 1.50

20

21
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Figure A3-1. Predicted dose in mg/kg for two avian species (a) northern bobwhite and (b) red-2

winged blackbird from granular application of fonofos. 3
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Species1

Simulations were run for two focus species: the northern bobwhite, and red-winged blackbird.2

Predicted dose3

For each focus species, Monte Carlo simulations of 100 individuals were run to obtain a population4

mean and 95 percent confidence interval of dose (Figure A3-2,a-b).5

Northern bobwhite6

The predicted dose was relatively higher compared to the granular dose, with a peak of about 0.087

mg/kg, primarily a result of the higher fonofos ingestion from diet residues.  The peak occurred about8

four days following application as fonofos accumulated in the body.  Elimination was fairly rapid,9

declining to less than ten percent of the maximum dose within 25 days post application.10

Red-winged blackbird11

The pattern of the predicted dose was similar to that of the bobwhite, although the maximum dose12

is significantly higher.  This resulted from a lower body weight and greater amount of time spent in13

the field (16%).  The peak dose of 1.48 mg/kg again was about four days following application.  The14

elimination to ten percent of the maximum took about 34 days.15

Predicted mortality16

Each simulation also predicted mortality for each dose trace.  Mortality was subtracted from the17

population of 100 individuals to estimate probability of survival.  The model predicted zero mortality18

for both species  even with the conservative assumptions included in the model.   Comparing the peak19

doses in Figure A3-2a-b with the LD50 values in Table A3-2 suggests that the dose is not great20

enough to cause mortality in these focus species.21
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Interpretation of Results1

There is much uncertainty associated with the model parameters.  An analysis of model sensitivity2

showed that parameters P2 and P3 had the greatest effect on the model predictions.  It is necessary3

to have both LD50 and slope values on the same species.  This lends support for the reporting of both4

values in the publication of research.  Given sufficient data, the model can provide  improved5

estimates of dose and survival in avian species exposed to applications of insecticides in agricultural6

crops.  The model predicts that the dose from sprayable applications is greater than that from granular7

applications.  This results from the fonofos concentrations of the residues in diet components (Table8

3).  Lower residue concentrations could reduce the predicted dose to that of granular applications.9

The model simulations and post-simulation analysis predict no mortality will occur in the two focus10

species from either granular or sprayable applications.  Given  the conservative assumptions used in11

the model, it is unlikely that significant and widespread mortality in avian populations in Midwestern12

corn agroecosystems will occur from normal fonofos use.13
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APPENDIX B11

PROBLEM FORMULATION2

There are three major phases to the ecological risk assessment process as set forth by the Framework3

for Ecological Risk Assessment (1992).  These phases are Problem Formulation, Analysis, and Risk4

Characterization.  The first phase, Problem Formulation, includes preliminary characterization of5

exposure and effects, examination of scientific data and data needs, policy and regulatory issues, and6

site-specific factors to define the feasibility, scope, and objectives of the risk assessment (EPA 1992).7

Successful completion of this phase will result in: assessment endpoints that adequately reflect8

management goals and the ecosystem they represent; conceptual models that describe key9

relationships between a stressor and assessment endpoint; and an analysis plan (EPA 1996).10

The problem formulation phase appears to have received relatively little explicit attention in the11

pesticide registration process.  This circumstance has likely occurred for at least two reasons.  First,12

it has only been recently that formalization of the ecological risk assessment process and subsequent13

guidance have been in place (EPA 1992, 1996).  Second, historically, the typical screening14

assessment for pesticides has been primarily a hazard assessment.  Moving past the current initial15

hazard assessment to a risk assessment is part of the ECOFRAM process.  Hence, an important16

outcome from the ECOFRAM process should be recommendation for inclusion of an explicit Problem17

Formulation phase in ecological risk assessments under FIFRA.  There should also be provisions that18

Problem Formulation may be carried out for the various levels of refinement outlined in Chapter 6.19

OBJECTIVE20

The general objectives of the initial Problem Formulation phase, i.e., a preliminary characterization21

of exposure and effects, examination of scientific data and data needs, identifying policy and22

regulatory issues, and definition of the feasibility, scope, and objectives of the risk assessment apply23

to all registration or reregistration actions under FIFRA.  For some registration or reregistration24
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actions, the resulting assessment endpoints, conceptual models, and analysis plan will be adequate to1

allow a regulatory decision.  For other registration or reregistration actions, there will be2

unacceptable uncertainties and a regulatory decision will not be possible.  Higher levels of refinement3

of the  assessment will be needed to support a regulatory decision.4

Ecological risk assessment was, from the outset, contemplated to be an iterative process (see EPA5

1992).  Therefore, the more refine probabilistic assessments should include a refined Problem6

Formulation phase.  It is hoped that there will be few, if any, changes in the assessment endpoints to7

be addressed by the refined assessment.  Assuming this to be the case, therefore, efforts in  Problem8

Formulations will center on refined characterizations of exposure, effects, or both, gathering and9

evaluation of new data, refined conceptual models, and new analysis plans.  The relative emphasis on10

each of these activities will take place on a case-by-case basis and depend greatly on the crop11

protection product and use in question.12

It should be evident from the above discussion that the Problem Formulation phase will remain an13

essential component of the refined ecological risk assessment.  With the refinements based on14

previous assessments and additional data and analyses, the identified uncertainties from the lower15

assessments should be reduced.  As ECOFRAM procedures are introduced and implemented, it will16

be essential for regulators and registrants to agree on the major sources of uncertainty and the most17

efficient ways to reduce them to acceptable levels.  Again, the most efficient course for reducing18

uncertainties will depend to a great extent on the crop protection product and use in question.19

To provide some more concrete information on what might be included in a refined Problem20

Formulation table B1-1 is provided.21
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Table B1-1. Examples of Components of the Problem Formulation Phase1

Stressor Characteristics2 Summary of Physical and Chemical Characteristics

General Information on Use Pattern

Physical and Chemical Properties and Fate in the Environ-

ment

Mode of Action

Overview of Toxicity to Vertebrates

Metabolism in and Excretion from Biological Systems: 

Potential for Biomagnification and Bioaccumulation

Ecosystem Potentially at3

Risk4

The Crop Agroenvironment

Cultural Practices in the Crop Agroenvironment

Field Borders

Assessment Endpoints for5

Avian Risk6

Individual Birds, Local Bird Populations, Regional Bird

Populations

Measurements Endpoints7

for Avian Risk8

Individual Birds, Local Bird Populations, Regional Bird

Populations

Ecological Effects9

Conceptual Model10 Potential Pathways and Routes of Avian Exposure

General Partitioning  into Air, Soil, Plants and Other Possi-

ble Food Items, and Water

Physical and Chemical Properties

Spatial and Temporal Aspects of Exposure

Analysis Plan for This Risk11

Assessment12

ASSESSMENT AND MEASUREMENT ENDPOINTS13

The scope of the ECOFRAM’s assignment includes designing probabilistic risk assessment guidelines14

for all current and future pesticides, including all application methods, crops, in all environments15

throughout the United States.  Clearly this task is too broad to define specific assessment endpoints16

for each agroecosystem.  The ecological entity of concern in Florida avocado fields treated with foliar17
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insecticides will be different from that in a California strawberry field treated with a soil fumigant and1

the risk assessment must be tailored for each unique situation.   However, generalized assessment2

endpoints and measures of effects (measurement endpoint) can be drawn which are applicable to all3

pesticide risk assessments.4

ASSESSMENT ENDPOINTS FOR RISK TO TERRESTRIAL VERTEBRATES5

According to the EPA Framework, assessment endpoints are explicit expressions of the actual6

environmental value that is to be protected which are directly related to a characteristic of an7

ecological component that may be affected by exposure to a stressor (EPA 1992 -- Framework).8

There are several criteria for selecting assessment endpoints.  These criteria include ecological9

relevance, susceptibility to the stressor, and the relationship of the assessment endpoints to10

management goals and societal value.11

Each assessment endpoint must contain two elements: the valued ecological entity and the12

characteristic of that entity which is potentially at risk and which is important to protect (EPA 1996).13

It is suggested that the valued ecological entity is the terrestrial vertebrate species associated with the14

crop agro-ecosystem defined above.  Endpoints are established for three levels of biological15

organization of the valued ecological entity: the individual, the population and the commu-16

nity/ecosystem (Chapter 2).  The population level of organization can be further subdivided into the17

local population (i.e., terrestrial vertebrates associated with a single crop agro-ecosystem – and the18

regional population (i.e., terrestrial vertebrates in a county or larger unit).  It is clear that this use of19

the term “population” could be debated.  The 2 or 3 pairs of, for example, songbirds inhabiting the20

border around a crop field are not a population in the strictest sense.  Such a small number of pairs21

of birds would be highly subject to the vagaries of weather and predators, and might easily become22

“extinct”.  Nonetheless, because the field is the basic management unit, as well as the likely23

experimental unit, some term needs to be used to describe the birds associated with individual units24

of the agro-ecosystem.25

At the individual level, reductions in survival and reproduction due to direct effects of are suggested26
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as primary assessment endpoints.  However, it is recognized, growth, development and morbidity of1

the valued ecological entity are also important considerations in assessing the impact of pesticides,2

however, their empirical relationship to the survival of an individual is more difficult to assess.   At3

the local and regional population level, change in population size due to changes in survival or4

reproduction and the persistence of the population are suggested as assessment endpoints.  It is5

recognized that the demographics of a population provide invaluable information on the health of a6

population, but assessing a population in such detail might only occur at the highest and most refined7

probabilistic risk assessment.  At the community/ecosystem level, patterns of taxonomic and8

functional diversity are suggested as endpoints while recognizing the importance of nutrient cycling9

and energetics.  The assessment endpoints selected are for direct effects, not secondary or10

“cascading” effects (EPA 1996).  Indirect effects and sublethal effects will have to be dealt with based11

on refinements in current testing procedures.12

The assessment endpoints selected clearly have ecological relevance, and are potentially susceptible13

ta stressor.  Furthermore, both the valued ecological entity and the characteristic to be protected are14

identified.  The major shortcoming of the assessment endpoints selected is that they are not measured15

directly under the current FIFRA Pesticide Assessment Guideline requirements for testing.  Therefore,16

it will be necessary to use measurement endpoints that are different from the assessment endpoints.17

Some uncertainty may be introduced into the assessment because of this difference.  However, these18

assessment endpoints can be represented by variables that are possible to measure, monitor, or model19

with reasonable confidence.20

The relationship between assessment endpoints and measures of effect (measurement endpoint) must21

be well defined and directed so that the collected information provides the ability to draw clear22

conclusions on the assessment endpoints.  It would be ideal if assessment endpoints could be23

measured directly and thereby serve also as measurement endpoints (EPA 1998 -- Guidelines).  Such24

a direct relationship would reduce the uncertainty in the assessment.25
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MEASURES OF EFFECT (MEASUREMENT ENDPOINTS) FOR TERRESTRIAL1

VERTEBRATE RISK2

As defined in 1992 Framework document, measurement endpoints are measurable responses to a3

stressor that are related to the valued characteristics identified by the assessment endpoints (EPA4

1992).  There are several considerations for selecting measurement endpoints.  These considerations5

include: relevance to the assessment endpoint; consideration of indirect effects; sensitivity and6

response time; signal-to-noise ratio; consistency with assessment endpoint exposure scenarios;7

diagnostic ability, and practicality (EPA 1992).8

Since the 1992 Framework document, the EPA has issued a guidance document for ecological risk9

assessment (1998).  In this guidance document, the term “measurement endpoint” was replaced with10

the term “measure of effect” and subsequently supplemented by two other categories of measures,11

“measures of exposure” and “measures of ecosystem and receptor characteristics.”  Measures of12

effect are measures used to evaluate the response of the assessment endpoint or a surrogate when13

exposed to the stressor.  Measures of exposure are measures of how exposure may be occurring,14

including how a stressor moves through the environment and how it may co-occur with an assessment15

endpoint.  Measures of ecosystem and receptor characteristics include ecosystem characteristics that16

influence the behavior and location of ecological entities of the assessment endpoints, the distribution17

of a stressor, and life history characteristics of the assessment endpoint that may affect exposure or18

response to a stressor.  In fact, all of these measures are inter-related to some extent.19

Some general observations about the approach taken in deciding upon the measures used in this20

assessment are in order.  The assessment endpoints selected are not measured in the standard testing21

battery required by the current Pesticide Assessment Guidelines.  Therefore, it may be necessary to22

employ a suite of measures and a weight-of-the-evidence approach rather than relying on a single23

index or measure.  An advantage of endpoints at different levels of biological organization is that the24

likelihood of effects at one level can be inferred from the likelihood of effects at lower levels.  The25

use of a suite of measures at different levels of biological organization can build greater confidence26
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in the conclusions of the assessment (EPA 1992).  While this approach may not make regulatory1

decision making easy, because it does not necessarily provide point estimates that indicate risk or lack2

of risk, it does provide the risk manager with a wealth of information with which to evaluate relative3

risks and to recommend effective risk mitigation measures.4

As noted above, the various measures – effects, exposure, ecosystem and receptor characteristics –5

are, by their nature, inter-related.  The same statement holds true for all levels of biological6

organization.  It is somewhat artificial to draw a sharp distinction between survival and reproduction7

of individual terrestrial vertebrates versus survival and reproduction of local or regional populations8

of terrestrial vertebrates.  Nonetheless, it is also clear that risk managers have questions about9

potential effects of a stressor at the different levels of biological organization.  In an attempt to10

address these questions, the various parts of a stressor’s data base will have to be relied on11

differentially for the different levels of biological organization.  Again, this is a somewhat artificial12

distinction, because in a sense the entire data base relates to all  levels of biological organization.13

Although the distinctions being drawn are somewhat artificial, they provide a major advantage in a14

refined assessment compared to a traditional assessment.  In a traditional assessment, which relies15

primarily on  risk quotients derived from published residue levels, it is difficult to integrate16

information on other measures, such as measures of ecosystem and receptor characteristics.17

Individual Terrestrial Vertebrates18

Protection of individual terrestrial vertebrates is a valid risk management objective, especially for19

threatened or endangered species.  The current risk assessment methodology provides the risk20

manager with a certain degree of comfort knowing the degree of safety built into this method.21

However, simply combining toxicity information obtained from the standard laboratory toxicity tests22

under Subdivision E and the “Hoerger and Kenaga” (1972), estimates of residues on certain terrestrial23

vertebrate food items may not be adequate when a more complete picture of risk is required.  Toxicity24

information in and of itself may be an indicator of effects only when a terrestrial vertebrate receives25

a dose.  Current risk assessment methodology does not take into consideration the vagaries of26
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terrestrial vertebrate feeding behavior (see Section on Test Suitability) which greatly affects the dose1

an animal may receive.2

The measure of effect used for individual terrestrial vertebrates is suggested to be the general toxicity3

profile for the stressor.  These measures include information currently collected such as lethal dose4

estimates and should include dose estimates sufficient to elicit subtle yet significant responses (see5

Section on Test Suitability). The measure of exposure used will be the general partitioning and6

degradation of the stressor in the environment.  Measures of ecosystem and receptor characteristics7

could include: state lists of terrestrial vertebrates in crop agro-ecosystem regions, along with8

information on their habitat preferences, seasonal occurrence, and feeding and breeding habits; data9

from terrestrial vertebrate censuses in and around crop agro-ecosystems across the area a crop is10

grown; terrestrial vertebrate field study information, and estimates of the food base for terrestrial11

vertebrates in crop agro-ecosystems and associated non-crop habitats.  This latter estimate can be12

made from the entomological literature and the scouting guides published by state Extension Services.13

Local Terrestrial Vertebrate Populations14

In the context of this discussion, local terrestrial vertebrate populations are defined as those15

populations inhabiting individual crop agro-ecosystems.  It should be clear that the information used16

to assess risk to individual terrestrial vertebrates is also applicable at this higher level of biological17

organization.  The information for individual terrestrial vertebrates helps to focus the assessment on18

the terrestrial vertebrates most likely to be exposed and identifies species at risk. Also, the19

conclusions for risk to individual terrestrial vertebrates will be important in evaluating risk to local20

terrestrial vertebrates populations.21

The measures of effect used for local populations will be the numerical results of the standard22

laboratory toxicity tests under Subdivision E, i.e., LD50, LC50, 28-day feeding, and avian23

reproduction study results, and similar non-guideline toxicity studies.  The measures of exposure used24

could be the results of field studies that provide residue levels, and their decline over time, in relevant25

food items.  The measures of ecosystem and receptor characteristics could be incorporated by26
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selecting terrestrial vertebrate species that are likely to be exposed to the stressor due to their feeding1

habits and the times they use the crop agroecosystem.2

Regional Terrestrial Vertebrate Populations3

In the context of this discussion, regional terrestrial vertebrate populations are defined as those4

populations inhabiting the crop agroecosystems in convenient politically-based units such as counties5

and states, or biologically-based ecoregions.  It should be clear that the information used to assess6

risk to individual terrestrial vertebrates and local population is also applicable to this level of7

biological organization.  Also, the conclusions for risk to local terrestrial vertebrates populations will8

be important in evaluating risk to regional terrestrial vertebrate populations.9

At the regional population level of organization, the measure of effect could again be the general10

toxicity profile for the stressor.  The measure of exposure will be the general partitioning and11

degradation of the stressor in the environment.  Measures of ecosystem and receptor characteristics12

could include information on the borders of the crop agro-ecosystem, information on the13

extensiveness of applications of the stressor, and information on the extensiveness of crop production.14

The suites of measures selected and the different levels of biological organization assume applicable15

exposure scenarios, are likely to be susceptible to the stressor on the same time scale as the16

assessment endpoints, and are practical to measure.  It is assumed that they have acceptable signal-to-17

noise ratios.  The measures do not relate particularly well to indirect or sublethal effects, as explained18

above.  However, minor changes to current test methodology and interpretation could allow these19

effects to be considered in risk assessments.20
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Table B1-2.  Analysis Plan Outline – Data to be Considered and How they will be Used1
Level of Biological2

Organization/3

Assessment End-4

points5

Measure of Effect Measure of

Exposure

Measure of Ecosystem and

Receptor Characteristics

Type of Risk Esti-

mate

Individuals and Threatened and Endangered Species6
Survival of valued7

ecological entity *8

LD50 /LC50 /NOEC with 95% CL (slope

of dose response curve; time to death);

EC25 or EC50 with 95% CL (visual

phytotoxicity: % germination; emergence)

Progeny Survival/average longevity; Em-

bryonic viability/death; Number of dead

organisms in the 'field'

General parti-

tioning and

degradation in

the environ-

ment

Terrestrial vertebrates in the

crop’s range.  Terrestrial ver-

tebrates actually using the

crop (censuses).  Timing of

applications.  Suitability of the

crop as terrestrial vertebrate

habitat (e.g., insect biomass in

the crop and environs).  Field

study results

Qualitative

Deterministic
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Level of Biological

Organization/

Assessment End-

points

Measure of Effect Measure of

Exposure

Measure of Ecosystem and

Receptor Characteristics

Type of Risk Esti-

mate
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Reproduction of1

valued ecological2

entity *3

Clutch Size; Clutch Characteristics (No.

eggs cracked, egg shell thickness or

strength); Progeny Characteristics (Nor-

mal offspring, weight at time ‘X’); 

Embryonic viability/death; No. Females

showing signs of abortion/Pregnant fe-

males; 

Length of gestation period; No. Corpus

lutea/Live fetus/dead fetus/ time to death

in utero; No. Normal fetuses and litters

with normal fetuses; No. Still pups

born/Progeny survival; Male fertility; Pa-

rental behavior
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Level of Biological

Organization/

Assessment End-

points

Measure of Effect Measure of

Exposure

Measure of Ecosystem and

Receptor Characteristics

Type of Risk Esti-

mate
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Growth and devel-1

opment of ecologi-2

cal entity3

Food consumption; Growth rate/Body

weight

Age at first breeding; Fluctuating Asym-

metry; Fledgling or weanling weight/Post

fledgling/weaning survival; Plant

height/dry weight/root dry weight, length,

mass

Morbidity of val-4

ued ecological en-5

tity6

Incidence of abnormality in physiological

response/internal morphology/behavior;

Body load/Parasite load/incidence of dis-

ease;  Immuno-suppression; Biomarkers;

Genetic damage
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Level of Biological

Organization/

Assessment End-

points

Measure of Effect Measure of

Exposure

Measure of Ecosystem and

Receptor Characteristics

Type of Risk Esti-

mate
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Population-Level Assessment Endpoints- Local Populations1
Population size2

and persistence of3

valued ecological4

entity *5

Numerical results of the standard labora-

tory toxicity tests under Subdivision E,

i.e., LD50, LC50, 28-day feeding, and

avian reproduction study results, and sim-

ilar non-guideline toxicity studies

Measured lev-

els of residues

of the stressor

and their de-

cline in rele-

vant food items

Terrestrial vertebrate species

likely to be exposed to the

stressor

Quantitative (RQs)

Deterministic or

probabilistic

Demographics of6

valued ecological7

entity8

Sex ratio; Age structure; Longevity; Pro-

portion of reproductive females; Fecun-

dity, fertility; Recruitment; Sustained

yield;  Immigration/Emigration; Age spe-

cific survivorship
Population-Level Assessment Endpoints- Regional Populations9

Population size10

and persistence of11

valued ecological12

entity *13

Numerical results of the standard labora-

tory toxicity tests under Subdivision E,

i.e., LD50, LC50, 28-day feeding, and

avian reproduction study results, and sim-

ilar non-guideline toxicity studies

General parti-

tioning and

degradation in

the environ-

ment

Crop agro-ecosystem borders,

extent of area treated, extent

of area in the crop
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Level of Biological

Organization/

Assessment End-

points

Measure of Effect Measure of

Exposure

Measure of Ecosystem and

Receptor Characteristics

Type of Risk Esti-

mate
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Demographics of1

valued ecological2

entity3

Sex ratio; Age structure; Longevity; Pro-

portion of reproductive females; Fecun-

dity, fertility; Recruitment; Sustained

yield;  Immigration/Emigration; Age spe-

cific survivorship

Semi-quantitative

Deterministic or

probabilistic

Community and System Assessment Endpoints4

Patterns of taxo-5

nomic and func-6

tional diversity7

Species richness/diversity General parti-

tioning and

degradation in

the environ-

ment

Semi-quantitative

Deterministic or

probabilistic

Nutrient cycling8 Soil carbon metabolism and nitrogen fixa-

tion

Changes in9

compositional in-10

tegrity11

Energetics12

* Primary assessment endpoints considered by ECOFRAM13
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1

APPENDIX B22

3

EXAMPLES OF AGRO-ECOLOGICAL SCENARIOS4

5

Iowa Corn6

7

Delineating the agro-ecological scenario as corn crops in Iowa will establish a regional range of8

vegetative types, wildlife species, rainfall, temperatures, soils, etc..  This is probably adequately9

definitive to establish the boundaries of the risk assessment.  These defining ranges of10

characteristics may be relaxed by expanding the agro-ecological scenario to encompass all corn in11

the Midwestern corn belt states, or it may be made more restrictive by concentrating on a smaller,12

more homogeneous geographic region such as corn in south-central Iowa.  Since south-central13

Iowa is characterized by rolling terrain with a relatively high amount of non-crop habitat14

distributed among the corn crops, and supports greater wildlife density and diversity than most15

other parts of the state, the region may maximize the potential for wildlife and pesticide16

interaction and, therefore, may be an ideal agro-ecological scenario for wildlife risk assessment for17

corn.  On the other hand, in areas where little non-crop habitat exists, those species found utilizing18

corn crops may be more dependent on the corn and spend more time foraging or nesting in the19

crop.  Corn is usually not grown under irrigation in Iowa nor in most of the Midwestern corn belt.20

 However, it is grown under irrigation in many of the western and southwestern states.  A risk21

assessment conducted for an Iowa or Midwestern corn scenario may not be representative of corn22

grown in irrigated semi-arid conditions since the wildlife species and crop-use behavior may be23

quite different between the two conditions.  Therefore, they may need to be defined as separate24

agro-ecological scenarios.  Assessments of wildlife numbers and species using these two corn25

growing situations can provide insight into whether the two are substantially different and26

whether or not they should be considered separate agro-ecological scenarios. 27

28
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1

Apple Orchards in Pennsylvania and Washington2

3

Apple orchards in Pennsylvania and Washington are examples of agro-ecological scenarios that4

are distinctly separate because of geographic and meteorological variables.  Both areas are major5

apple producing regions of the U.S., but the similarities essentially end with that distinction. 6

Apple trees are common throughout the northeastern U.S. where they are one species of7

deciduous tree among many species in a region characterized by mixed deciduous forests.  When8

cultured as an agricultural crop, they are typically planted in monocultured  blocks which are9

often bordered by mixed deciduous forest and they are typically not grown under irrigation. 10

Thus, they are a block of deciduous trees in a deciduous tree environment.  Therefore, the species11

that inhabit the orchards usually also inhabit other non-apple deciduous forest.  Such species12

would be present in the region in the absence of apple orchards, even though orchards may be13

more attractive as habitat to some species than to others.14

15

In Washington, the vast majority of apple orchards are grown on the eastern foothills of the16

Cascade Range.  This is a semi-arid, high desert environment characterized by coniferous trees17

and desert shrubs such as sagebrush and bitterbrush.  Deciduous trees are uncommon in this18

environment.  Apples are grown here under intense irrigation, without which they would not19

persist.  Many of the bird species that inhabit these orchards inhabit this region only because of20

the large blocks of irrigated apple trees present.  If the orchards were removed, many of these21

species would disappear from the region.  Thus, not only are the apples tenuously maintained by22

an artificial moisture regime, but many of the avian populations inhabiting the orchards are also23

tenuously maintained by the same system.  At the same time, there are native species that live in24

natural habitats adjacent to the orchards and which, in some cases, have incorporated the orchards25

into their habitat use patterns.  These species may be enhanced by the irrigation and other aspects26

of orchard culture, but they also become susceptible to pesticide exposure as a result of being27

attracted to the placement of the apple irrigated orchards into an otherwise semi-arid region.  A28

major difference in toxicological risk assessments between these regions may be the selection of29
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assessment endpoints� what values (species) are most important to protect in an essentially native1

environment, versus an artificially maintained environment?2

3

Cotton Crops in Southern and Western U.S.4

.5

Cotton, although a crop grown in many states, can be evaluated on the basis of two general agro-6

ecological scenarios: cotton grown in the Southeastern U.S. and cotton grown in the western7

U.S.  The southeastern cotton region extends from the eastern high planes of Texas, through8

Louisiana, Mississippi, Alabama, Georgia, Tennessee, Arkansas, South Carolina, and North9

Carolina.  The western cotton region includes the remainder of Texas, Arizona and California. 10

The southeastern cotton is grown under similar agricultural practices and among similar non-11

cotton habitats that maintain similar avian fauna.  This region receives enough rainfall such that12

cotton crops are usually not irrigated until mid-way through the growing season.  Then it is used13

on an �as needed� basis.  Risk assessment conducted in any area within this region would14

probably provide information germane to the entire region.  Soil differences might produce15

different result for soil run-off, ground water and surface water assessment.  However, these16

variables could likely be evaluated using existing models.17

18

The western cotton region is generally semi-arid and cotton is usually grown exclusively under19

irrigation.  Similar to the non-irrigated apple orchard scenario, the southeastern cotton scenario is20

characterized by an avifauna that would be present in the region regardless of the presence of the21

cotton crops.  On the other hand, the avifauna representative of the western cotton region may be22

the result of the presence of irrigation, in the absence of which many of the species would not be23

present or there would be fewer individuals.  The constant summer water source associated with24

irrigation often attracts and concentrates wildlife in and around the cotton crops.  Irrigation25

practices also influence run off, leaching and the hydraulic distribution of pesticides.26

27
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Golf Course Turf1

2

Golf courses have been established in practically every habitat type that exists in the U.S. from3

ocean front sand dunes in South Carolina to the rain forests of the Olympic Peninsula in4

Washington and from southern deserts to Alaska.  Golf courses, regardless of their setting,5

usually have two factors in common: 1)They have intensely managed turf habitat and 2) they are6

maintained under a consistent  irrigation regime.  The intense management practices include heavy7

use of pesticides and maintenance of waterways and non-fairway areas (�roughs�) that, along8

with the turf, provide habitats that are highly attractive to a diverse array of wildlife species.  Golf9

courses often provide increased edge habitat, waterways and a variety of vegetation types, often10

introduced ornamentals, and structures.  Golf courses in arid regions usually attract and maintain11

abnormally high wildlife density and diversity.  Even with all the different ecological settings, the12

turf habitats of golf courses can be remarkably similar.  It provides excellent foraging habitat for13

ground-feeding birds and is usually the area on a golf course that receives the greatest chemical14

inputs.  Wildlife populations may vary tremendously among golf courses depending on their15

location and ecological setting.  Within this variation, however, there are often species16

represented that have similar feeding habits and other life history characteristics (e.g.  shrub17

nesting, ground feeder that primarily gleans turf for crawling or flying insects) that would be18

found on golf courses in other geographic areas.  In this case the geographic area that would be19

included in one risk assessment could be maximized if appropriate �key species� were selected20

(see nest section) on which to focus the assessment.  Such an approach is useful in many agro-21

ecological scenarios.22

23



B3-1

APPENDIX B31

 KEY SPECIES SELECTION2

RECOMMENDED CRITERIA FOR THE SCREENING-LEVEL, HYPOTHETICAL 3

BIRD AND MAMMALS.4

Birds5

1) Passerine granivore -6

a. Weight:  20 g 7

b. Forage technique:  ground gleaning8

c. Food preference:  100 percent seeds9

d. Proportion of diet from treated field:  100 percent10

e. Proportion of time spent on treated field:  100 percent11

f. Sensitivity to pesticide:  use oral acute and dietary laboratory toxicity tests for quail12

or mallard or representative passerine if available.13

2) Passerine insectivore 14

a. Weight:  20 g 15

b. Forage technique:  ground and crop foliage gleaning16

c. Food preference:  100 percent insects17

d. Proportion of diet from treated fields:  100 percent18

e. Proportion of time spent on treated fields:  100 percent19

f. Sensitivity to pesticide:  use oral acute and dietary laboratory toxicity tests for quail20

or mallard or representative passerine if available.21

3) Raptor22

a. Weight:  110g23

b. Forage technique:  hawking24

c. Food preference:   50 percent small birds, 50 percent small mammals25

d. Proportion of diet from treated fields:  100 percent26
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e. Proportion of time spent on treated fields:  100 percent1

f. Sensitivity to pesticide:  use oral acute and dietary laboratory toxicity tests for quail2

or mallard or representative passerine if available.3

Mammals4

1) Small herbivore/granivore5

a. Weight: 25g6

b. Forage technique:  opportunistic vegetarian  7

c. Food preference:  100 percent seeds or herbaceous plant material8

d. Proportion of diet from treated field:  100 percent9

e. Proportion of time spent on treated fields:  100 percent10

f. Sensitivity to pesticide:  use acute and chronic toxicity test results for lab mice.11

2) Insectivore12

a)Weight 25 g13

b) Forage technique:  opportunistic predation of invertebrates.14

c) Food preference:  100 percent insects15

d) Proportion of diet from treated fields:  100 percent16

e) Proportion of time spent on treated fields:  100 percent17

f. Sensitivity to pesticide:  use acute and chronic toxicity test results for lab mice.18

EXAMPLES FOR SELECTING KEY SPECIES19

To provide examples of key species selection and an example of grouping of species for risk20

assessment, we used three field studies, one in canola agro-ecological scenario in Saskatchewan,21

Canada (Tank et al. 1997) and two in an apple orchard scenarios in Washington an Pennsylvania22

(Brewer et al, 1999).  The canola study provided an example of grouping species censused on the23

study areas by three variables: 1) taxonomic organization, 2) foraging technique and 3) body size. 24

Table B3-1 provides the basic groupings used in evaluating risk.  The last group in Table B3-1,25

Sparrows/Towhees/etc., demonstrates a large grouping with the primary emphasis being on26
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foraging technique and body size.  While this example emphasizes foraging technique within the1

taxonomic scheme, it would certainly be feasible, and at times preferable, to base the grouping on2

feeding guilds.  A useful reference on bird feeding guilds is Foraging Guilds of North American3

Birds by R.M. DeGraaf, N.G. Tilghman, and S.H. Anderson, 1985 in Environmental4

Management 9:493-536, 5

The apple orchard studies provided the following types of data: 1) bird species present in and near6

apple orchards, 2) relative frequency and abundance by species, 3) number of bird nests in and7

near the orchards by species, and  4) the percentage of live-trapped birds, by species, that8

demonstrated exposure to the test chemical as determined from blood plasma cholinesterase9

analysis and from the presence of alkyl phosphate leaving groups in fecal-urate samples.  From10

these data we developed a table to rank those species most likely to be present in the orchards or11

most likely to be at risk of exposure to a pesticide application or both (Tables B3-2 and B3-3). 12

Pesticide incident reports indicated grazing geese and ducks (e.g. Canada geese and American13

widgeon) are susceptible to exposure pesticides and sensitive to the effects of the test chemical. 14

Additionally, several grazing Canada geese died from exposure to diazinon during the conduct of15

the study on one orchard in Washington.  Therefore, we added Canada geese to the list of key16

species even though little other information was available relative to apple orchards.  One17

objective was to have the list of key species represent as many different groups as practicable, and18

have just one representative of each group.  Tables B3-2 and B3-3 list the species selected based19

on this multivariate selection process.  These are not the only acceptable selection criteria.  The20

approach may vary with different scenarios depending on how much empirical data is available in21

each case.22

In most avian risk assessments, it is practical and effective to utilize this key species approach. 23

The basis on which the key species are selected should always be fully detailed and if an obvious24

species is not selected its elimination from consideration should be explained.  Threatened and25

endangered species associated with the scenario under evaluation should be given strong26

consideration for inclusion in the key species list.27
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Table B3-1. Example of Taxonomically Based Bird Grouping Which Emphasizes1

Foraging Technique, Body Size and Primary Food Items, for Those Birds2

Actually Censused in a Canola Agro-Ecosystem Scenario3

GROUP4 FORAGING

TECHNIQUE

FOOD(S)

GEESE/PUDDLE DUCKS5

Mallard6 dabble greens; seeds; aquatic inverts; insects

Canada Geese 7 graze and

dabble

Aquatic and non-aquatic vegetation, turf grass,

herbs, seeds (grain crops).

LONG-LEGGED WADING BIRDS8

Great egret9 stalk and strike fish; sm. vertebrates; aquatic invertebrates; also

insects, lower vertebrates, sm birds

FOWL-LIKE BIRDS10

California quail11 ground glean seeds, leaves; plant shoots, some fruit; few

insects

Northern bobwhite12 ground glean greens; seeds; insects

NON-PASSERINE LAND BIRDS13

PIGEONS/DOVES14

White-winged dove15 ground glean;

foliage glean

seeds; fruit; (shrubs, herbaceous) waste grain,

cactus fruit, berries, acorns

Mourning dove16 ground glean;

foliage glean

seeds; grain (herbaceous)

CUCKOOS AND ALLIES17

Yellow-billed cuckoo18 foliage glean;

hover & glean;

hawks

insects, esp. caterpillars; few eggs, lizards,

frogs; berries, fruit

HUMMINGBIRDS19

Ruby-throated20 hover; foliage

glean

(herbaceous,

shrubs)

nectar; also spiders.

SWIFTS21

Chimney swift22 aerial forage flying insects

WOODPECKERS23



Table B3-1. Example of Taxonomically Based Bird Grouping Which Emphasizes

Foraging Technique, Body Size and Primary Food Items, for Those Birds

Actually Censused in a Canola Agro-Ecosystem Scenario

GROUP FORAGING

TECHNIQUE

FOOD(S)

B3-5

Red-bellied1

woodpecker 2

foliage glean

(trees); hawks

insects; nuts; fruits; seeds

Downy woodpecker3 bark glean insects; some fruit, seeds, sap

PASSERINES4

FLYCATCHERS5

Scissor-tailed6

flycatcher7

foliage glean

(trees, shrubs);

hawks; ground

glean

insects; few berries 

Eastern kingbird8 hawks; hover

and glean

insects

LARKS9

Horned lark10 ground glean seeds; insects; also spider, snails

SWALLOWS11

Barn swallow12 aerial foraging insects

Cliff swallow13 aerial foraging insects; occasional berries

Purple martin14 aerial foraging insects

CROWS/RAVENS/JAYS15

Blue jay16 ground glean;

hawk

omnivore

American crow17 ground glean omnivore

TITMICE, CHICKADEES, VERDINS18

Carolina chickadee19 foliage glean;

(tree, shrub)

bark glean

insects; conifer seeds; fruit

Verdin20

21

foliage

glean;(tree,

shrub)bark

glean

insects; fruit; seeds

WRENS22
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Foraging Technique, Body Size and Primary Food Items, for Those Birds

Actually Censused in a Canola Agro-Ecosystem Scenario

GROUP FORAGING

TECHNIQUE

FOOD(S)
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Carolina wren1

2

ground glean;

bark glean;

foliage glean

(Tree, shrub)

insects; invertebrates; sm. vertebrates; few 

seeds

GNATCATCHERS, KINGLETS3

Blue-gray gnatcatcher4 foliage glean;

(tree,

shrub)hawks

hover and glean

insects

MIMIC THRUSHES5

Brown thrasher6 ground glean;

foliage glean

(shrubs)

insects; fruit

Northern mockingbird7 ground glean insects; fruit; also crayfish, sow bugs, snails

EMBERIZIDS8

WOOD WARBLERS9

Common yellowthroat10 foliage glean;

(tree, shrub)

bark glean;

hawk; hover

and glean

insects, including spiders

BLACKBIRDS/ORIOLE11

Brown-headed12

cowbird13

ground glean insects; seeds

Red-winged blackbird14 ground glean;

hawk; foliage

glean (shrub,

herbaceous)

insects; seeds

Common grackle15 ground glean;

hawk

omnivore



Table B3-1. Example of Taxonomically Based Bird Grouping Which Emphasizes

Foraging Technique, Body Size and Primary Food Items, for Those Birds

Actually Censused in a Canola Agro-Ecosystem Scenario

GROUP FORAGING

TECHNIQUE

FOOD(S)

B3-7

SPARROWS/TOWHEES/JUNCOS/GROSBEAKS/BUNTINGS1

Lark sparrow2 ground glean seeds; insects

Abert's towhee3 ground glean seeds; insects

Rufous-sided towhee4

(Spotted towhee)5

ground glean insects; seeds; fruit

Northern cardinal6 ground glean insects; seeds; fruit

Blue grosbeak7 ground glean; insects; seeds; foliage glean, also snails; occ.

fruit

Indigo bunting8 foliage glean; insects; seeds; ground glean; fruits

Painted bunting9 ground glean;

foliage glean

seeds; insects

Note:  All North American species are not accounted for in this example.10

Source:  Tank et al. 1997.11
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Table B3-2.  Key Species Ranking and Selection Criteria for Pennsylvania Apple Orchards1

Species2 Group  percent

Relative

Abundance

 percent Relative

Frequency

Number of Nests Percent Exposed

American Robin3 Thrushes 21 24 94 33

Mourning Dove4 Columbiforme 15 14 23 26

Common Grackle5 Blackbirds & Orioles 18 9 9 22

Chipping Sparrow6 Sparrow/towhees/ 11 12 30 No Data

Gold Finches7 Finches 5 6 0 No Data

House wren18 Wrens No Data No Data 24 No Data

1 Wren was selected because of the number of nests found in the apple orchards.  They were censused but frequency and9

abundance data was provided for only those 10 species censused most frequently.10

Source:  Brewer et al. 1990.11
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Table B3-3 Key Species Ranking and Selection Criteria for Eastern Washington Apple Orchards1

Species2 Group  percent

Relative

Abundance

 percent Relative

Frequency

Number of Nests Percent Exposed

American Robin3 Thrushes 16 18 84 28

Gold Finch4 Finches 11 14 15 No Data

Mourning Doves5 Columbiformes 6 6 64 4

Califonia Quail6 Galiformes 6 5 21 14

Canada Goose17 Waterfowl (grazer) No Data No Data No Data 100

1 Canada goose chosen because of mortality incident on one orchard and mortality incidence records elsewhere relative to8

Diazinon applications.9

Source:  Brewer et al. 1990.10
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RECOMMENDATIONS1

1) For initial assessments, use generic birds and mammals as provided above.2

2) For refined assessments, identify key species which represent those most at risk for3

selected agro-ecological scenarios.  Identify they selection criteria, using specific data for4

exposure coupled with standard toxicity test results scaled to the species of interest.5

3) For refined risk assessments use the criteria provided above or other well defined criteria6

for selection of key species.  In all cases clearly define the criteria used.7
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APPENDIX  C11

2

PT - PROPORTION OF DIET OBTAINED IN TREATED AREA3

4

Animals which obtain all their food from within the treated area are likely to ingest a larger dose5

of pesticide than those which obtain a proportion of their diet elsewhere.  This is represented by6

PT in the model for dietary exposure (Equation 3.6-6).  Current approaches tend to assume PT =7

1, at least in the screening stages of risk assessment.8

9

Actual values of PT may be close to one in situations where there is little non-crop habitat and10

large areas are treated with the same pesticides at the same time.  This may apply, for example to11

horned larks in corn; robins, goldfinches and wrens in large orchards; and starlings and localised12

populations of Canada geese on golf course turf.13

14

Often, however, animals will obtain a significant proportion of their diet from non-crop areas, or15

from adjacent non-treated crops of the same or different types.  In these cases, setting PT = 116

substantially overestimates exposure. Setting PT = 1 remains reasonable as a conservative, worst -17

case assumption for the screening stages of the assessment.  However, predicting the magnitude18

and frequency of exposure will require information on the distribution of PT for relevant species19

in relevant habitats. Note that PT may vary widely between species (see examples cited below).20

21

This Appendix, therefore, considers possible approaches to estimating PT. First, we consider ways22

of estimating PT as the proportion of the diet overall which is obtained in the treated area.  Then23

we consider ways of estimating PT as the proportion of time animals spend in the treated area, or24

from information on home range sizes.  We also consider the estimation of PT at larger spatial25

scales, to take account of landscape structure. Finally, we consider how these approaches might26

be used at different levels of refinement, in a sequential or tiered approach to exposure27

assessment.  The examples which are given refer to birds, but the same principles apply to28

mammals.29

30
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ESTIMATING PT BY MONITORING THE DIET1

2

Ideally, one would measure the proportion by weight of the diet which is obtained from treated3

areas.  This is very difficult to measure directly.4

5

It may sometimes be possible to make visual observations of individual animals foraging in treated6

and untreated areas, identify the food items collected, and estimate their weights.  However, this7

will be possible only in open habitat where visual contact can be maintained over long periods8

from cover without disturbing the animal’s behavior.9

10

Another possibility is to sample the diet, for example by examining stomach contents or fecal11

material, or by using techniques such as emetics or esophageal constriction (Mellott and Woods,12

1993) or by filming parent birds entering the nest with food in their bills.  The difficulty in these13

cases is with identifying the source of the food items, which is necessary to estimate PT.  If the14

study is conducted in conjunction with an actual pesticide application and the food items can be15

retrieved (e.g. using  esophageal constriction) it would be possible to analyse them for the16

presence of pesticide residues.  However, this would be difficult to interpret due to  the diluting17

factor of food from untreated areas18

19

ESTIMATING PT FROM TIME BUDGETS20

21

An alternative to measuring PT as proportions of the diet may be to measure the proportions of22

time that the animal spends in treated and untreated areas.  This is simpler but can only be used as23

a measure of PT if the amount of time spent in each area is proportional to the amount of food24

obtained there.  This will not be true if some parts of the habitat are used primarily for foraging,25

and others primarily for other activities such as resting; or if feeding rate is higher in some parts of26

the habitat than others due to differences in food availability.  The two main approaches to27

estimating PT for time are visual observations and telemetry (radio-tracking).28

29
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The suitability of visual observations for estimating PT depends on the extent to which individual1

animals are identifiable.  Counts of unmarked animals in treated and untreated areas provide a2

measure of the overall level of use of each area by the species. However, in most situations they3

are of little help in estimating PT because it is not possible to determine (a) whether successive4

counts in the same area are the same animals or different ones, (b) whether the individuals seen in5

one area are the same or different as those seen in adjacent areas.  Strongly territorial animals6

(e.g. some birds in the breeding season) may be identified from their location and behaviour.7

Even so, records of their use of treated and untreated parts of their territories are likely to be8

biased in favour of those habitats where they are most easily observed (e.g. more open habitats).9

10

These difficulties may be overcome if the same individual can be observed continuously as it11

moves between treated and untreated habitats.  However, this is only possible for animals in very12

open habitats.  More often, only part of the animal’s foraging activity can be observed.  For13

example, Brewer et al. (1992) watched unmarked birds during the breeding season on 37 urban14

lawns which were separated by enough distance to limit the chance of observing any bird on more15

than one site. When a bird left the study site, observations continued with the next bird, changing16

species if possible to reduce double counting on any given day and site.  The results provided a17

detailed time budget of activities on the lawns which were observed, but it is not known what the18

birds were doing elsewhere.  These data are therefore insufficient for estimating the proportion of19

their overall diet which birds obtained from the observed lawns, or from lawns in general.20

21

In some situations individuals can be identified by association with their territory or nest. An22

example of this is provided by a study of tree sparrows in the UK (Hart, 1990), although in this23

case the male and female members of each pair were not distinguished.  The birds were rearing24

young in nest boxes in hedgerows with a wheat field on one side and other habitats (pasture or25

woodland) on the other.  Observers watched birds leaving the nest and recorded whether they26

flew into the wheat field.  However, it was only possible to identify the initial destination of each27

trip because birds were lost to view on entering the crop.  Also, the destination of birds not28

entering the field under observation was usually unknown, and could have included other29
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(potentially treated) crops in nearby fields.  Such limitations make it difficult to obtain a reliable1

estimate of PT from observations of this type.2

3

A more reliable record of individual behaviour can be obtained if the individuals are marked, for4

example with coloured tags or dyes, or if they can be identified by their natural markings.  Even5

then, however, continuous observations are difficult to obtain, and foraging records are likely to6

be biased in favour of those habitats where animals are most easily observed (e.g. more open7

habitats).8

9

In principle, these limitations can be overcome using radio-tracking techniques.  Manual tracking10

(where the radio-tagged animal is followed by observers on foot or in vehicles) and automatic11

tracking (where fixed receiver stations automatically record signal information from which the12

animal’s location can be calculated) are compared in Table 1.  For birds in the breeding season,13

either manual or automatic tracking could be combined with automatic filming of parents14

returning to the nest, in order to determine which types of food are obtained in different areas.  It15

is important to note that high resolution will be particularly important when animals are foraging16

near the field edge, as the potential for exposure will change sharply between the crop and the17

unsprayed margin.18

19

Table C1-1.  Comparison of manual and automatic methods of radio-tracking.20

21

Manual tracking Automatic tracking

Low equipment cost High equipment cost
High manpower cost Low manpower cost
Track one/few animals per observer Can track many animals at once
Risk of observer disturbing subjects No disturbance
Can obtain visual observations of feeding etc. No visual record of behavior
Resolution high when subject visible Resolution depends on sophistication of system
Resolution poor when subject not visible Virtually continuous record of locations

22

23

An example of manual tracking specifically designed to measure PT is provided by recent studies24

in UK apple orchards (Crocker et al., in prep.).  Tracking schedules were organised to obtain25
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about one day’s data for each individual, spread evenly over the daylight hours.  Observers1

recorded location, whether the bird was active or inactive, and (when visible) behavior.  The2

results showed that different species had different patterns of use of the orchard environment, and3

that the potential for exposure to pesticides varied widely between individuals.  Blackbirds and4

robins tended to spend a greater proportion of time in orchards, but mostly along the perimeter5

hedgerows which are not directly sprayed with pesticides.  Chaffinches spend less time in the6

orchard but tend to visit the orchard center, where spray deposition is highest. An example of the7

results is shown in Figure C1-1, for blackbirds.  Most individuals spent less than 10% of their time8

in the orchard center, but a few individuals spent up to 70% of their time there.  None of the9

individuals tracked spent 100% of their time in the center.10

11
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Figure C1-1.  Distribution of time spent in the central (sprayed) areas of UK apple orchards by13

European blackbirds, obtained by radio-tracking. See text for details.14

15

Distributions such as that shown in Figure C1-1 could be used for a probabilistic analysis of PT.16

(See APPENDIX C10) However, careful interpretation is essential.  First, the subjects were17

clearly a biased sample of the local population, as they were caught by mist-netting inside the18

orchards.  Those individuals which use the orchards most may be more likely to be caught and19
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tagged.  It might be possible to correct for this by weighting the observations by the inverse of the1

time spent in the orchard.  The effect of this on Figure C1-1 would be to skew the distribution still2

more strongly towards the left.  Second, the proportion of time spent in the orchard may not be a3

good measure of the proportion of food obtained there.  In this case, blackbirds were significantly4

more likely to be recorded as ‘active’ when they were in the central part of the orchard than when5

they were in hedges or outside the orchard. In this case it would be prudent to use only ‘active’6

time in estimating PT, to avoid under-estimating exposure. Third, it is important to consider7

whether the data are representative of orchards in general.  In this case, the study included a large8

number of orchards, selected to include a representative range (differing tree ages and9

management practices, differing adjacent habitats).  This study thus illustrates both the potential10

and the complications of using telemetry to estimate PT.11

12

ESTIMATING PT USING INFORMATION ON HOME RANGE13

14

A third approach to estimating PT might be to use existing information on home ranges. For15

example, if the average home range for a species was smaller than the area of a typical treated16

field, then at least some individuals may have their home range entirely contained within a single17

treated field.  This at least would show that the worst-case situation (PT = 1) is a reasonable18

upper limit for the species in question.  However, it is more difficult to estimate the distribution of19

exposures by this approach.  This would require data on the spatial and temporal distribution of20

pesticide applications, and a means of defining the central point of each home range (e.g. for tree-21

nesting birds in the breeding season this would probably be in the hedgerows or adjacent22

woodlands, and not in the treated crop).  Many other complications are possible: for example23

home range may vary within species according to habitat, season and region; and the area of the24

home range which is treated may be a poor guide to the proportion of the diet obtained there (i.e.25

foraging may be concentrated in only part of the home range).26

27

These factors suggest that obtaining a reliable quantitative estimate of PT using home range is28

unlikely.  However, if interpreted by suitable experts, data of this sort may be adequate to make29

semi-objective assessments of the upper limit to PT for a particular species and, perhaps, to guess30
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at ‘typical’ values.  This would not be reliable enough for a final assessment of exposure but might1

be helpful at intermediate levels of assessment, in deciding whether PT is sufficiently important to2

warrant measuring in the field.3

4

TAKING ACCOUNT OF THE DRIFT ZONE AND ADDITIONAL TREATED FIELDS5

6

So far, this section has implied that the world comprises just two types of habitat, treated and7

untreated, as assumed in Equation 3.6-6. In reality the situation is more complex. For example,8

some species might spend very little time in the treated crop itself, but obtain nearly all its food in9

the drift zone immediately around the crop. For example, in the study described earlier, most10

European blackbirds spent very little time in the orchard center, but about twice as much time11

(average about 35%) in hedgerows and scrub immediately adjacent to sprayed areas. To assess12

the contribution of these drift zone habitats to overall exposure would require estimates of PT for13

the drift zone as well as the treated area. It would also require estimates of pesticide residues in14

the drift zone, which will generally be much lower than in the treated area itself. These might be15

obtained by field measurements, or perhaps using models of spray drift to estimate the proportion16

of the application rate which is received by the drift zone. This approach could be accommodated17

in the full model (Equation 3.6-5), where PT is replaced by PF, by using the subscript j to18

distinguish the drift zone from the treated and untreated areas.19

20

The full model could also be used to distinguish between different types of treated areas, if21

sufficiently detailed data on PF were available. For example, it might be desirable to distinguish22

fields with different crops, or fields treated with the same pesticide applied at different times or23

different dose rates. In the real world, animals may encounter several different pesticides which24

may have additive or synergistic effects, but it is currently very rare to rake account of this in risk25

assessment and it has not been considered by ECOFRAM.26

27
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TAKING ACCOUNT OF LANDSCAPE STRUCTURE1

2

The sections above refer to treated areas, untreated areas and drift zones without considering3

their spatial and temporal distribution. In reality, pesticide applications are clumped in time and4

space, not random, and the same is true of animals and their foraging activities. If pesticide5

applications and animal foraging were both randomly distributed in space, every individual would6

have the same chance of encountering a treated field. If pesticide applications and animal foraging7

were very strongly clumped, most individuals might never encounter a treated field, while a few8

might find their whole foraging range treated. Real exposure scenarios lie somewhere between9

these extremes, depending on the degree of clumping which is present. Ignoring clumping in10

situations where it is important will tend to under-estimate exposure for the most-exposed part of11

the population. The effects of clumping can be assessed using models of exposure which take12

account of spatial patterns.13

14

For example, consider a species of birds which nest in hedgerows between agricultural fields.  For15

any individual bird, the two fields may be of the same crop, or different crops.   One, both or16

neither of the fields may be treated with a given pesticide.  If both are treated, the two17

applications may be done on the same day or a number of days apart.  If only one is treated, the18

other may receive some pesticide input due to drift, but the extent of this will depend on wind19

direction and other factors. Consequently, the spatial and temporal distribution of treated crops20

and drift zones combine with animal movements to generate a different pattern of exposure over21

time for each individual.22

23

This has important implications for the use of visual or telemetry data to estimate PT.  For24

example, if PT is measured in a field study in which only one or a few fields are treated, then the25

data may under-estimate the exposures which would occur if adjacent fields were also treated. A26

conservative solution is to measure the proportion of time spent in all fields of a particular crop27

type (as in the orchard study described above). Using this as the estimate of PT would in effect28

assume that all fields of that crop type were treated, and would therefore often over-estimate29

exposure. A third possibility is to multiply the latter estimate of PT with an estimate of the30
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proportion of fields which are treated (e.g. from USDA pesticide use surveys or infestation1

statistics). However, this assumes that the proportion of fields treated is the same for every2

individual, so it would not reveal the upper and lower ends of the range of actual exposures. This3

again emphasises the importance of examining the underlying assumptions when using field data4

to estimate PT.5

6

An alternative approach is make models of exposure which are spatially explicit, for example by7

using the techniques of Geographic Information Systems (GIS).  The components of such a8

system are illustrated in FigureC1-2.  First, the model landscape would be defined.  This could be9

a hypothetical landscape, or an actual one (e.g. based on maps or satellite imagery), but would10

need to be broadly representative of the type of landscapes relevant to the risk assessment.11

Residue distributions in the landscape could be simulated using information on spatial and12

temporal patterns of pesticide use within the landscape, and by modelling transfers between13

treated and untreated areas and degradation over time.  The species present would be identified,14

for example from local surveys or information on national distributions.  Animal movement15

patterns within the landscape would be defined using information on habitat preferences, home16

ranges and behavior, which could include visual observations or telemetry data of the types17

discussed earlier.  This needs to be repeated for each of the species under consideration.  Finally,18

exposure estimates could be obtained by simulating the movements of each individual and19

recording its intake of pesticide as it moves through the landscape.  Using Monte Carlo20

techniques this could be repeated for many individuals (and perhaps landscapes), producing a set21

of dose/time curves to show the range of variation in the population.22

23
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define representative landscape

define agro-ecosystem of interest

simulate pesticide use
over time

model pesticide fate
and environmental 
concentrations

simulate habitat use 
for each key species

output = distribution of dose/time curves for each key species

identify species
present

1
Figure C1-2.  Illustration of a spatially explicit approach to modelling wildlife exposure to2

pesticides.  See text for explanation.3

4

5



C1-11
-

Technology has advanced to a state where this type of approach is beginning to be feasible.  An1

example of a model using standardised hypothetical landscapes, with simple rules for animal2

movements through the landscape, is provided by Freshman and Menzie (1996). Another example3

is the PARET model which has been developed as part of the ECOFRAM project (see Sections 24

and 5.5, and Appendix A2). Examples of GIS approaches using data on real landscapes and5

behavior are provided by Henriques and Dixon (1996) and Banton et al. (1996).  This type of6

approach is much more costly to develop, and is only likely to be considered in cases where7

spatial factors are thought to make a critical difference to the outcome of the risk assessment.8

9

CONCLUSIONS10

11

It is concluded that PT is likely to be an important and highly variable parameter influencing12

exposure, but is difficult and costly to measure reliably in many agricultural habitats.  A sequential13

approach is therefore recommended, as outlined below, to ensure that effort is only expended on14

estimating or measuring PT in those cases where it is important to the outcome of the risk15

assessment.16

17

It is recommended that these approaches be evaluated by means of case studies, using scenarios18

for which relevant data are already available.  If it appears that assessment at Level 3 may be19

required often then there would be opportunity for sharing the cost of collecting much of the data,20

as they are not specific to individual pesticides.21

22

For screening assessments, it will generally be appropriate to assume PT = 1. To refine the23

assessment, estimated lower and upper limits for PT could be developed using expert judgement24

and existing information on:25

• foraging ecology and behavior of key species, including time budgets, habitat use (including26

the drift zone) and home ranges;27

• the spatial distribution of habitat types and crops;28

• the spatial and temporal distribution of pesticide applications.29

30
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If the data are good enough, they can be used to construct a hypothetical distribution for PT. If1

exposure in the drift zone is likely to be significant, the simple model (3.6-6) can be expanded to2

distinguish it from the treated and untreated areas. The proportion of food obtained in the drift3

zone can then be estimated as well as PT, and used to estimate the relative contributions of the4

drift zone and treated area to overall exposure.5

6

If it appears (e.g. from sensitivity analysis) that PT has a critical influence on exposure, it may be7

worth attempting to measure it in field studies, or using a landscape model to examine spatial8

effects. Depending on the field scenario, visual observations or telemetry may be used to quantify9

distributions of PT in the field, for appropriate species in a representative range of conditions10

relevant to the risk assessment. If it appears that the spatial distribution of treated areas may have11

a critical influence on the risk outcome, it can be accounted for in spatially-explicit models or GIS12

approaches.13

14
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APPENDIX  C21

2

AV  - AVOIDANCE3

4

There are many examples of animals responding to the presence of noxious chemicals in their5

food by reducing consumption.  Chemicals which induce this response include a wide range of6

plant secondary compounds which provide plants with a defense against herbivores (e.g.7

Buchsbaum et al. 1984).  Similarly, some insects contain chemicals which are repellent to birds8

(e.g. Brower and Fink 1985).  Many pesticides also induce reductions in consumption, as can be9

seen in the results of standard avian dietary toxicity tests (see data in Hill and Camardese 1986) as10

well as research studies (e.g. Grue 1982).11

12

These responses clearly have the potential to reduce the exposure of birds and mammals to13

pesticides in their food.  A key question is whether these responses are effective in the wild as14

well as in laboratory tests: this has been confirmed for two pesticides.  First, a large number of15

field studies have demonstrated that, when used as an avian repellent, methiocarb can reduce the16

losses of fruit crops to predation by birds (Dolbeer et al. 1994), which implies that the ingestion of17

methiocarb by individual birds must be reduced to some extent.  Second, surveys of fields sown18

with winter wheat in the UK have demonstrated significantly lower numbers of feeding19

woodpigeons on fields where the seed is treated with fonofos, compared to untreated fields20

(McKay et al., in press).  Furthermore, it can be presumed that plants and insects would not have21

evolved defensive chemicals unless they were effective.  It is concluded that avoidance can be22

important in reducing exposure, and hence should be given consideration in avian risk assessment23

(OECD 1996).24

25

There are a number of contrasting mechanisms by which avoidance can operate:26

• primary repellency - due to inherently aversive properties of the chemical which are detected27

immediately upon ingestion, e.g. repellent taste or texture.28

• secondary repellency - where animals reduce consumption due to intrinsic reactions which29

develop after ingestion, e.g. post-ingestional illness leading to reductions in feeding in general30



C2-2

(sometimes referred to as pesticide-induced anorexia, Grue 1982) or reductions in activity in1

general (lethargy, ataxia, e.g. Hudson et al. 1984).2

• learned avoidance - where animals learn to associate particular foods with the aversive3

experiences due to primary or secondary repellency, and consequently show stronger or more4

rapid avoidance on successive exposures.5

It would be difficult to determine, for any particular chemical, the extent to which each6

mechanism contributes to the overall avoidance response.  However, for the purpose of7

characterizing exposure it is not necessary to do this: it is sufficient to quantify the extent to8

which the combined mechanisms reduce exposure.  Therefore no attempt is made to distinguish9

them here, and they are referred to collectively as ‘avoidance’.  It is true that, while all these10

mechanisms are beneficial to the extent that they reduce exposure, some of them may also have11

adverse consequences for the animal: for example lethargy may increase the risk of predation or12

impair care for young, while anorexia may increase the risk of starvation or hypothermia.  These13

issues need to be addressed as part of the characterization of effects: here we are concerned with14

the potential for avoidance to reduce exposure.15

16

Methods for assessing avian avoidance have been developed over a long period, both for the17

purposes of pesticide risk assessment (BBA 1993, INRA 1990) and to assess the efficacy of avian18

repellents (Mason et al. 1989).  Work to develop an OECD guideline for avoidance testing began19

at a SETAC/OECD workshop in December 1994 (OECD 1996), and has since been continued20

through a series of informal meetings at SETAC conferences.  The approaches described below21

are based on those discussions.22

23

The principal difficulty in assessing the effect of avoidance on exposure is that the avoidance24

response is highly variable, and is influenced by many factors (OECD, 1996).  Furthermore,25

avoidance may break down under some conditions (see below). The mechanisms involved are26

sufficiently complex that it is unlikely to be possible to model them reliably.  Instead, assessment27

must be aimed at quantifying the variation in avoidance which is expected in the wild.  This is a28

difficult task which is likely to be reserved for the later stages of risk assessment.  In earlier stages29
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of assessment, attention will focus on determining whether there is sufficient evidence of1

avoidance to be worth detailed investigation.2

3

REPRESENTATION OF AVOIDANCE IN THE DIETARY DOSE EQUATION4

5

The effect of avoidance is represented as AV in the model for dietary exposure (Equation 3.6-6).6

However, it is essential to remember that AV is a function of C, because the extent of the7

avoidance response generally increases with increasing concentration of pesticide in the food.  AV8

takes values between 0 (no avoidance) and 1 (complete avoidance of contaminated food).9

10

By representing avoidance simply as AV, no presumption is made as to the form the response will11

take in the wild.  Possible responses include selecting less contaminated food within the treated12

area, leaving the treated area to feed elsewhere, switching to different food types, or simply eating13

less food. These could be represented by making PTij, PDijk and TFIRi functions of Cijk, as14

mentioned in Section 3.6.1. In detailed assessments of avoidance, it may be necessary to15

distinguish these responses and consider the availability of alternative feeding areas (see below).16

17

INITIAL ASSESSMENT18

19

In the initial assessment of risk, and in cases where no information on avoidance is available, it20

should be assumed that no avoidance occurs (conservative worst case).  AV should therefore be21

set to 0.22

23

SCREENING FOR AVOIDANCE24

25

A detailed assessment of avoidance requires non-standard data (see below), which may be costly26

to obtain.  It is therefore desirable to have a simple method of screening pesticides, to determine27

whether they show sufficient signs of avoidance to make detailed assessment worthwhile.28

29
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For birds, the avian dietary test provides a convenient means of screening for avoidance. AV can1

be estimated for each test concentration by dividing the food consumption of the test group by2

that of the control group.   Figure C2-1 illustrates this for fonofos using data from Hill and3

Camardese (1986).  The concentrations used in the test are unlikely to correspond to those4

predicted in the wild.  In Figure C2-1 AV is obtained for intermedate concentrations by linear5

interpolation. This implies assuming the dose-response relationship for avoidance is linear, which6

is unlikely. If consumption data are available for a sufficient number of different concentrations, it7

may be possible to fit a non-linear relationship such as the threshold concentration model assumed8

by Luttik (1998).9

10

Note that in Figure C2-1 the calculation is made using consumption on the first day of exposure:11

this may be considered as representing the response of a bird on the first day it encounters a12

treated field.  This is more conservative than taking data from later days, when the avoidance13

response is often stronger.  In some studies consumption may only have been measured over14

longer periods, in which case the first such period should be used.  Caution is required to ensure15

that the consumption data are not biased by the effects of food spillage, which can be substantial16

(especially with mallards).17

18

Estimates of AV obtained from the avian dietary test are likely to represent something19

approaching a worst case (i.e. minimum avoidance), due to the lack of untreated food.   It might20

be thought that avoidance should always be stronger than this in the field, where at least some21

untreated food is likely to be available.  However, this depends on the timescale of exposure.  It22

may be true when food consumption and exposure are considered over periods of a day or more,23
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Figure C2-1. Preliminary estimation of AV for screening purposes, using data from the avian6

dietary toxicity test.  AV is estimated as the reduction in consumption on the first day with treated7

diet, compared to consumption by control groups fed untreated diet.  Data is for fonofos, from8

Hill and Camardese (1986).  In this example, values of AV for intermediate concentrations are9

approximated by linear interpolation.  Ci = concentration in test diet, ppm.10
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1

2

as this will usually (though perhaps not always) give animals time to find alternative foods.3

However, the standard avian dietary test may be unconservative for short-term exposures over4

minutes or hours, for situations where animals are gorging on an easily-available food.  This5

appears to be the explanation for the examples of diazinon (Mineau et al, 1994) and fonofos (Hart6

et al., in press).  Both pesticides are strongly avoided in the avian dietary test, yet have caused7

poisoning of birds in the wild.  Mineau et al. suggested that these mortalities were due to wild8

birds feeding faster than birds in the dietary test, and therefore consuming a lethal dose before the9

avoidance response set in.  This mechanism has since been confirmed experimentally for pigeons10

feeding on fonofos-treated wheat (Hart et al., in press).  Consequently, values of AV estimated11

from the avian dietary test should not be regarded as worst case for short-term exposures.12

13

AV may be estimated for mammals in the same way as for birds, if suitable dietary studies are14

available.15

16

Note that if a dietary toxicity study is used to estimate AV and is also used to characterize17

toxicity, it is important to ensure the avoidance effect is not double-counted.  To avoid this18

consumption data should be used to express toxicity in terms of actual dose ingested per unit time19

(as proposed by ECOFRAM) and not in terms of dietary concentration.  This is preferred to the20

alternative solution of omitting AV and using dietary toxicity unadjusted for consumption as that21

would conceal the avoidance effect, making it more difficult to assess how it might vary in the22

wild.23

24

Some test protocols measure the consumption of animals given access to untreated food as well25

as the test diet (e.g. INRA 1990, Mason et al. 1989).  If such studies are available they can be26

used to provide an alternative estimate of AVCi, dividing the consumption of treated food by total27

consumption on the first day of testing.  This estimate is likely to represent a ‘best case’ situation28

(maximum avoidance), especially if the animals can readily detect which food is treated (e.g. if the29

foods differ in appearance and/or are presented in separate containers).30

31
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Estimates of AVCi obtained from tests with and without alternative food may therefore be used1

for screening purposes, to assess the potential contribution of avoidance to reducing risk.  If they2

indicate that avoidance may be important in reducing risk below level of concern, then further3

studies are likely to be needed to confirm whether the response will be effective in the wild.  The4

types of studies which are appropriate differ for short-term and long-term exposures.  For short-5

term exposures, no-choice feeding studies are appropriate and attention is centered on the rate at6

which animals feed.  For longer term exposures, attention centers on the availability of alternative7

foods and the ease with which the animal can distinguish contaminated and uncontaminated foods,8

so feeding studies with an element of choice may be appropriate.  These issues are discussed in9

more detail below.10

11

DETAILED ASSESSMENT FOR SHORT-TERM EXPOSURES (MINUTES TO HOURS)12

13

Poisonings of pigeons by fonofos-treated wheat in the UK have been shown to be caused by very14

short-term exposures in which birds feed very rapidly, taking the majority of their daily15

requirement in a few minutes (Hart et al., in press).  In this situation, they ingest a lethal dose16

before the avoidance response intervenes.  As already stated, a similar mechanism has been17

suggested for some poisonings of waterfowl by diazinon (Mineau et al. 1994).  If risk assessment18

is to be successful in predicting such mortalities it must give separate consideration to short-term19

exposures and take account of the dependence of AV on feeding rate.20

21

In the case of fonofos-treated wheat, a direct relationship was found between feeding rate of22

captive feral pigeons, the amount of pesticide ingested before feeding stopped, and mortality.23

Data was also available on the distribution of feeding rates for Woodpigeons feeding on wheat24

seed in the wild.  By combining these two types of data (and assuming similar responses between25

species of pigeon) it was possible to predict how often wild pigeons feed fast enough to cause26

mortality.  The results showed that Woodpigeons do feed fast enough to cause mortality, but only27

in less than 1% of  observations.  This conclusion agrees very well with the very low frequency of28

fonofos poisoning for Woodpigeons in the UK (Hart et al. in press).29

30
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The approach developed for fonofos-treated seed should in principle be applicable to other treated1

seeds and other formulations where the pesticide is concentrated on an attractive food item (e.g.2

baits).  Two things are required: data on the distribution of feeding rates of relevant species in the3

wild (from field studies); and quantification of the relationship between feeding rate and AV (from4

lab studies in which birds are trained to feed at different rates and then exposed to treated food for5

up to one day, without access to untreated food).  Combining these data provides a distribution of6

AV for the concentrations tested.  Further research is underway to develop a draft guideline for7

an avian avoidance test based on this approach, and to test whether results for one species can be8

extrapolated to others.  To extend the approach to other formulations (sprays and granulars) and9

to mammals would require additional research.10

11

The approach described above is the only one which has been developed specifically to address12

avoidance in short-term exposures, taking account of the influence of feeding rate. It also has the13

advantage of providing a distribution for AV, rather than a point estimate.  Other existing test14

designs do not examine the influence of feeding rate, and generally include a choice of treated and15

untreated foods; they are therefore more relevant to longer-term exposures (see below).16

17

DETAILED ASSESSMENT OF LONGER-TERM EXPOSURES (HOURS TO DAYS)18

19

In the very short-term exposures considered above, attention centered on how much the animal20

would ingest of a contaminated food source before the avoidance response set in.  In longer-term21

exposures, it is necessary to consider what the animal does after the avoidance response sets in.22

This depends on whether alternative foods are available.23

24

If there is no alternative food source whatsoever, the animal may continue eating the25

contaminated food at a reduced rate.  Whether it survives will depend on whether it can eat26

enough of the contaminated food to avoid starvation, without accumulating a lethal body burden27

of the pesticide (this depends on whether the rate at which the pesticide is ingested exceeds the28

rate at which it is metabolized and excreted).  This situation is addressed by the avian dietary test,29

in which birds are exposed to treated food for 5 days without access to untreated food.30
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1

If uncontaminated food sources are present, or if the degree of contamination varies between food2

items, the extent to which the animal can avoid the pesticide will depend on how well it can3

distinguish between foods containing different levels of pesticide residues.  This in turn depends4

on whether the animal can detect the presence of the pesticide itself (e.g. by taste, colour or5

smell), and whether there are any other cues to the presence of the pesticide (e.g. if some types of6

food are contaminated but not others).  The relative attractiveness and availability of the various7

food types may also influence the degree of avoidance.  All of these factors are complex and vary8

widely in the wild.  It seems unlikely that there is any single underlying variable which determines9

their influence on AV and can be measured in both lab and field, as is the case for feeding rate in10

short-term exposures.  If this is true, then the only option for assessing avoidance in this situation11

(long-term exposure with access to uncontaminated foods) is to conduct tests in conditions which12

simulate the choice of contaminated and uncontaminated foods in the wild.  The problem is that13

conditions in the wild vary widely, in ways that will affect the ease of discriminating contaminated14

and uncontaminated foods.  This potential variation is recognised in the German protocol (BBA15

1993) which provides two test designs referred to as the ‘A’ and ‘B’ tests.  Both provide animals16

with a choice of treated material and untreated standard diet, mixed together and spread on a17

sandy surface.  In the ‘A’ test, representing ‘rigorous’ conditions, the ratio of treated to untreated18

food is 75:25, whereas in the ‘B’ test representing ‘normal’ conditions it is 10:90.  In the wild, of19

course, a distribution of other ratios occurs.  Furthermore, in the wild the most important20

alternative foods may be located at a distance from the contaminated foods: e.g. in an adjacent21

field or non-crop habitat.  This situation can also be simulated with captive birds, as in the flight22

pen experiments of Avery et al. (1994).  Measurements of consumption in tests like these can be23

used to obtain point estimates of AV for particular sets of conditions.  However, it is impractical24

to test all possible conditions, and difficult to extrapolate from conditions which are tested to25

those which are not tested.  It will therefore be difficult to arrive at a distribution for AV.  Instead,26

the most practical solution may be to obtain point estimates for AV under conditions which are27

realistic for the assessment scenario but tending towards the worst case.  The range of issues to be28

considered in test design are discussed in more detail in OECD (1996).29

30
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Another approach might be to investigate the influence of avoidance on exposure and effects in1

the field.  However, this is unlikely to be realistic for regulatory studies.  Field studies of pigeons2

and fonofos (referred to earlier) shows that bird foraging behavior is so variable that it is difficult3

to detect avoidance of treated areas, even when it is contributing significantly to reducing4

exposure (McKay et al. in press).  Furthermore, the conditions under which avoidance breaks5

down and causes mortality may be relatively rare, and would be unlikely to appear in field studies6

unless they were repeated on a large number of sites.  Thus field studies are unlikely to be7

effective either in demonstrating avoidance, or in determining how reliable it is.8

9

CONCLUSIONS10

11

1. Initial assessments should assume no avoidance (set AVCi equal to 0).12

 13

2. If the initial assessment indicates the potential for significant exposure, then data on food14

consumption in dietary toxicity tests may be used to provide screening estimates of AV.15

These can be used for both short-term and longer-term exposures.  However, they should be16

used solely to indicate whether there is potential for avoidance to reduce exposure, and should17

not be relied upon in a definitive assessment of risk.18

 19

3. If the screening assessment indicates potential for avoidance to significantly reduce exposure,20

then a detailed assessment is required.  Ideally this should aim to quantify the distribution of21

AV in the wild.  For short-term exposures (minutes to hours), it may be possible to do this by22

combining data on the distribution of feeding rates in the wild with laboratory tests of the23

degree of avoidance at different feeding rates.  For longer-term exposures, it may not be24

practical to obtain a distribution for AV as it depends on the ability of animals to discriminate25

between contaminated and uncontaminated foods.  Instead the best solution may be to obtain26

point estimates for AV under realistic conditions but tending towards the worst case.27

 28

4. Further research is required to refine and validate approaches to assessing avoidance.29

30
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APPENDIX C31

GRANULE EXPOSURE MODEL (GEM) FOR BIRDS2

C.1  OVERVIEW3

A Monte Carlo model called GEM (Granule Exposure Model) was developed from the4

conceptual model of exposure of birds to granular pesticides that was presented in section 3.55

(Fig. 3.5-1).  GEM has been developed as a computer spreadsheet program that uses the Monte6

Carlo add-in programs Crystal Ball (Decisioneering, Inc., Denver, Colorado) or @RISK (Palisade7

Corp., Newfield, New York) to perform probabilistic analysis.  The goal of GEM is to estimate8

the probability distribution of the dose of pesticide ingested as a result of the consumption of9

granules for birds living in association with agricultural fields receiving applications of a granular10

pesticide.  For example, we wish to be able to make a statement about exposure such as “In a11

simulation of 1000 horned larks associated with cornfields treated with Product X in the Central12

Plains, 50% received no pesticide exposure, while 20% and 5% received peak day exposures > 113

and 10 mg/kg BW, respectively.”  The output exposure distribution might then be integrated with14

effects distributions (dose-response information) to develop probabilistic estimates of risk of15

mortality or other adverse effects.  16

 17

GEM simulates the grit ingestion behavior of individual birds and determines how many granules18

they ingest each day during a 10-day period.  Each of these birds is assumed to be living in the19

vicinity of and potentially foraging at an agricultural field where a granular pesticide has been20

applied.  The scheme GEM follows to model granule ingestion behavior is depicted in Fig. C-1.  21

Each bird is randomly assigned a daily grit “appetite” from a large database of grit use22

measurements for the species being considered.  This defines the number of medium- and coarse-23

sized particles (i.e., particles in the same size range as pesticide granules) that the individual will24

ingest each day of the simulation.  25
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Fig 3.5-1.  Conceptual Model of Bird
Exposure via Ingestion of Granules
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Figure 3.5-1 is reproduced here for ease of reference. See also discussion in section 3.5
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Each granular application site is randomly assigned a soil texture (e.g., Silt-Loam) with a1

likelihood equal to that texture’s fraction of the total specific crop-capable acreage within a region2

of interest.  The data base currently built into the model is set up for corn (which is grown in a3

variety of soils), but it could be modified for any crop type of interest.  The user also has the4

option of focusing the assessment on a single surface soil texture.  This allows one to compare5

results from simulations with different textures and determine how exposure levels change.  Once6

the soil texture category is assigned, the application site is then randomly assigned a specific soil7

particle size profile (% of soil mass represented by various particle size categories) from a large8

soils data base of actual measurements.  This defines the levels of medium- and coarse-sized sand9

particles available as grit.  10

The user defines the application scenario (pesticide product, method of application, rate of11

application, etc.) bird species, region of interest and the number of iterations (individual birds and12

sites) included in the simulation.  The choice of product defines the relative numbers of medium-13

and coarse-sized granules applied.  The application scenario determines the spatial placement of14

these granules and the number that is assumed to be available as a source of grit to birds.  The15

choice of species influences the amount of grit ingested and assumptions built into the model16

regarding use of the application site.   17

Each time a bird using the application site ingests a grit particle, the particle may be either a18

granule or a piece of natural grit.  The default assumption of the model is that birds forage for grit19

within a given size range randomly, and therefore the probability p of selecting a granule is equal20

to the relative availability of granules in comparison to natural particles of the same size. 21

However birds may select grit particles non-randomly and show preference for some types of22

particles over others (Best and Gionfriddo 1994, Best et al., 1996).  The user has the option to23

input the relative preference birds have for selecting granules in comparison to natural grit.  If this24

factor is inputted, GEM modifies the estimate of p (probability of ingesting a granule)25

accordingly.   Once p is defined, the number of granules ingested on a given day is determined by26

randomly sampling from a binomial distribution defined by N (number of particles ingested that27
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could be either ganules or natural sand) and p.  This calculation is made separately for medium-1

and coarse-sized granules, and for spatial zones of the field which differ from one another in either2

the relative availability of granules or relative use by birds.  The number of particles the bird3

obtains from a given zone (N) is estimated from the zone’s relative size and use by birds.  4

If the model indicates a bird has ingested a granule,  then the pesticide loading on the granule on5

that day is added to the dose the bird receives.  The dissipation of the active ingredient from the6

granule is accounted for by a first-order decline function.  Once the dose has been calculated for7

an individual for each of the 10 days of the simulation, a new bird is carried through the same8

process, with new values selected by Crystal Ball or @RISK for daily grit use, soil texture, mass9

fractions of sand sizes, use of field zones and preferences for granules vs. grit.  This can continue10

for a sampling of a thousand or more birds to build a probabilistic distribution of dose obtained11

through the ingestion of granules.12

Underlying methodology for this approach was developed by Abt Associates Inc. under contract13

to EPA (Abt, 1996).  Implementation here differs from that in the original Abt effort since this14

implementation uses larger databases and provides greater detail and more supporting15

information.  It also includes a working model developed in a linked set of Microsoft Excel16

workbooks, employing Crystal Ball and /or @RISK probabilistic functionality.    17

Sections following this overview present the methodology and data needed for implementation. 18

Information is presented for each input so by the end the reader can assemble all of the data19

needed to perform a probabilistic state-of-the-art assessment of exposure to birds by pesticides20

formulated as granules.21
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C.2   ESTIMATION OF GRANULE:GRIT RATIO (GGR)1

The Granule:Grit Ratio (GGR) determines the likelihood a bird will choose either a granule or a2

piece of grit with each peck a bird makes in search of grit if it selects particles at random.  Data3

and methodology for estimation of GGR are presented in the following sections; each subheading4

provides guidance on how to arrive at the various data components that influence GGR, as5

outlined in Section 1 of  Figure 3.5-1.6

C.2.1   Available Granules (AvlGnl)7

Granules available on the soil surface (AvlGnl) are calculated from the application rate (App) of8

formulated product, the fraction of granules remaining on the surface on day 0 (Sur), the fraction9

of granules remaining on the surface at later times (SurTime), the weight of an individual granule10

(GnlWt), and the section the field where the bird feeds (see section C.2.5, below).  For this11

implementation granules are categorized into coarse (1.0-0.5 mm) and medium-sized (0.5-0.2512

mm) granules to correspond with the natural grit ranges for coarse sand and medium sand, which13

are discussed later.  For estimation of numbers of each, one must characterize the formulation in14

terms of the fraction that each size category occupies, as well as a single granule’s weight within a15

size category and the availability of granules for the particular section of the field.  If data are16

available the information could be treated as a distribution, but for sake of computational17

efficiency this implementation uses average values for fraction and particle weight.18

[eq. C-1]19 AvlGnl
App Sur SurTime

fM MGnlWt fC CGnlWt
=

× × ×
× + ×

106

( ) ( )

where:20
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AvlGnl =  Granules available on soil surface per unit area in a particular1
part of the field 2

App =  Rate of formulation application (kg ai/ha)3

Sur =  Fraction of granules applied remaining on soil surface at day 04

SurTime =  Fraction of “Sur” granules remaining on surface at time “t”5
(default  = 1.0)6

fM =  Average fractional number of medium-sized granules in the7
formulation (0.5-0.25 mm)8

MGnlWt =  Average weight (mg) of medium-sized granule in formulation9

fC =  Average fractional number of coarse-sized granules in the 10
formulation (1.0-0.5 mm)11

CGnlWt =  Average weight (mg) of coarse-sized granule in formulation12

106 =  Conversion from kg to mg13

The number of medium and coarse-sized granules can then be calculated in the following manner:14

[eq. C-2]15 MGnl fM AvlGnl= ×

[eq. C-3]16 CGnl fC AvlGnl= ×

where:17

MGnl =  Number of available medium-sized granules per unit area18

(hectare)19

CGnl =  Number of available coarse-sized granules per unit area (hectare)20

Information on incorporation efficiency and loss of granules from the soil surface with time after21

application are presented in the next two sections.  22
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C.2.2   Application Incorporation Efficiency (Sur)1

Several researchers studied granule incorporation efficiency during the application of granular2

insecticide formulations to corn (Erbach and Tollefson, 1983; Hummel et al., 1992; Idema et al.,3

1993; Fischer and Best, 1995; Tollner and Cryer, 1997). Collectively, they characterized  granule4

placement with a variety of corn planters using band, T-band, and in-furrow application methods5

with/without further incorporation.  Their work is summarized in Table C-1.6

The work by Hummel et al. (1992) involved application of Furadan 10G granules to synthetic soil7

(10 parts fireclay:1 part mineral oil) similar to a damp, coarse, silt soil and which was contained in8

a large soil bin.  Three planter configurations were used:  the John Deere Max-Emerge, the J. D.9

Max-Emerge with spring-tooth incorporation tines, and the J.D. Model 71 Flexi-planter.  Each10

configuration was mounted interchangeably on a drive carriage assembly used to drive the planter11

in the synthetic soil bin.  Granules coated with dye were applied at 30-60 times normal rates, and12

numbers of granules remaining on the surface were determined by photography of  the soil surface13

in ultraviolet light after completion of a run.  Granule numbers were determined by counting them14

in the photographs and comparing the counts to total number applied as calculated from15

application rate and weight of a known quantity of granules.  Results (Table C-1) showed variable16

amounts of incorporation depending on the planter and incorporation method.  It was also noted17

that more granules remained on the surface at the higher ground speeds when no spring-tooth18

incorporation tines were used.19

Tollner and Cryer (1997) carried out their experiments in the field with Lorsban 15G applied at20

normal rates to natural soil by a John Deere Max-Emerge planter.  The 15G granules were coated21

with lead powder prior to application so they could be detected by x-ray Computed Tomography22

scanning of soil cores extracted from within a planter row.  Variables evaluated in the study were23

tillage effects (conventional-till, minimum-till, no-till), effects of slope, and dry vs wet soil24
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conditions. Percentages of the applied number of granules remaining on the surface are given in1

Table C-1.  None of the variables had statistically significant (5 % level) impact on the number2

granules remaining on the surface after application.  3

Erbach and Tollefson (1983) also performed experiments in the field at normal application rates of 4

Furadan 10G and Lorsban 15G.  They used International Harvester Model 400 and John Deere5

Model 7000 planters to evaluate T-banding and banding with and without additional6

incorporation (includes application before or after the press wheel, with or without spring tines or7

drag chain).  Quantitation of granules remaining on the surface was by the same dye/U.V.8

photographic methodology used by Hummel and coworkers described above.  Results from these9

tests as reported in Erbach and Tollefson (1983) are included in Table C-1.10
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Table C-1.  Percentage of granules remaining on soil surface after application of granular1

rootworm insecticide to corn by a variety of planters and application methods.2

Type of Method of % of Applied
Formulation3 Planter1,3 Placement2 Incorporation Tillage3 on Surface Reference
Furadan 10G4 JD M-E T-Band Press Wheel CT 31.0 Hummel et al., 1992
Furadan 10G5 JD M-E T-Band Press Wheel CT 23.8 Hummel et al., 1992
Furadan 10G6 JD M-E T-Band Press Wheel CT 18.1 Hummel et al., 1992

Fur 10G/Lors 15G7 JD M71/JD M7000 T-Band Press Wheel CT 14.7 Erbach & Tollefson, 1983
Aztec 2G8 ? T-Band Press Wheel CT 11.3 Idema et al., 1993

Silica Granule9 ? Band/T-Band Press Wheel CT 10.2 Fischer & Best, 1995
Silica Granule10 ? Band/T-Band Press Wheel CT 8.8 Fischer & Best, 1995
Silica Granule11 ? Band/T-Band Press Wheel CT 7.4 Fischer & Best, 1995
Silica Granule12 ? Band/T-Band Press Wheel CT 7.1 Fischer & Best, 1995
Silica Granule13 ? Band/T-Band Press Wheel CT 6.2 Fischer & Best, 1995
Lorsban 15G14 JD M-E T-Band Press Wheel CT 6 Tollner & Cryer, 1997

Aztec 2G15 ? T-Band Press Wheel 5.4 Idema et al., 1993
Silica Granule16 ? Band/T-Band Press Wheel CT 4.6 Fischer & Best, 1995

Aztec 2G17 ? T-Band Press Wheel 4.3 Idema et al., 1993
Silica Granule18 ? Band/T-Band Press Wheel CT 4.2 Fischer & Best, 1995
Lorsban 15G19 JD M-E T-Band Press Wheel CT 4 Tollner & Cryer, 1997
Lorsban 15G20 JD M-E T-Band Press Wheel NT 4 Tollner & Cryer, 1997

Aztec 2G21 ? T-Band Press Wheel 3.8 Idema et al., 1993
Silica Granule22 ? Band/T-Band Press Wheel CT 3.3 Fischer & Best, 1995
Lorsban 15G23 JD M-E T-Band Press Wheel ? 3 Tollner & Cryer, 1997
Lorsban 15G24 JD M-E T-Band Press Wheel MT 2 Tollner & Cryer, 1997
Lorsban 15G25 JD M-E T-Band Press Wheel ? 2 Tollner & Cryer, 1997
Lorsban 15G26 JD M-E T-Band Press Wheel ? 1.7 Tollner & Cryer, 1997
Lorsban 15G27 JD M-E T-Band Press Wheel ? 1.6 Tollner & Cryer, 1997
Lorsban 15G28 JD M-E T-Band Press Wheel NT 1 Tollner & Cryer, 1997
Lorsban 15G29 JD M-E T-Band Press Wheel MT 0 Tollner & Cryer, 1997

Mean 7.3
Median 4.5

Fur 10G/Lors 15G30 JD M71/JD M7000 T-Band Drag Chain CT 7.9 Erbach & Tollefson, 1983
Furadan 10G31 JD M-E T-Band Tines CT 6.8 Hummel et al., 1992

Fur 10G/Lors 15G32 JD M71/JD M7000 T-Band Tines CT 5.8 Erbach & Tollefson, 1983
Furadan 10G33 JD M-E T-Band Tines CT 4.9 Hummel et al., 1992
Furadan 10G34 JD M-E T-Band Tines CT 3.7 Hummel et al., 1992

Mean 5.8

Fur 10G/Lors 15G35 JD M71/JD M7000 BandR Drag Chain CT 16.0 Erbach & Tollefson, 1983
Fur 10G/Lors 15G36 JD M71/JD M7000 BandR Tines CT 7.4 Erbach & Tollefson, 1983

Mean 11.7

Fur 10G/Lors 15G37 JD M71/JD M7000 BandR Press Wheel CT 40.2 Erbach & Tollefson, 1983

Furadan 10G38 JD M71-F In-Furrow Press Wheel CT 0.8 Hummel et al., 1992
Furadan 10G39 JD M71-F In-Furrow Press Wheel CT 0.4 Hummel et al., 1992
Furadan 10G40 JD M71-F In-Furrow Press Wheel CT 0.5 Hummel et al., 1992

Mean 0.57

1 JD M-E = John Deere Max-Emerge;  JD  M71, M71-F = John Deere Model 71 Flexi-planter;  JD M7000 =41
John Deere Model 700042
2 For purposes of this table the following definitions are used.  T-Band = granules applied with a bander centered43
over the open seed furrow and producing a band of granules about 6 inches wide in front of a press wheel that44
followed.  In-furrow = granules applied into open seed furrow in front of a press wheel, with no bander in place. 45
Band = band application in front of press wheel.  BandR = band application behind press wheel.46
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3 CT = Conventional Tillage;  MT = Minimum Tillage;  NT = No Tillage;  ? = Not stated1

The final sets of experiments were conducted  by Fischer and Best (1995) and Idema et al. (1993). 2

They, too, conducted studies in a series of fields under normal agricultural practices by having3

corn growers apply blank silica granules the size of natural grit or Aztec 2G granules by means of4

the growers’ own corn-planting equipment.  Percentages of the total numbers of applied silica or5

Aztec granules remaining on the soil surface immediately after application were determined by6

direct counting of the numbers of visible granules in a square foot of surface area centered over7

the corn row.  Measurements were replicated five to six times at midfield points; fields were8

separated from each other by 400 m to >2 km.  Table C-1 presents the data from each of the9

twelve fields.10

Table C-2 summarizes the data from Table C-1 according to method of application and the11

presence or absence of an incorporation device included as part of the corn planter.  Table C-112

can be used directly as model input if the intent is to express incorporation efficiency as a13

distribution of values, or Table C-2 can be used as a source of single point estimates of14

incorporation efficiency.15

Table C-2.  Percentage of corn rootworm formulation granules remaining on the soil16

surface after application by a variety of methods.  Data are summarized from Table C-1.17

% of Applied on Surface
Method of Application18 Mean1 Median Number of Values

Band/T-Band + press wheel19 7.3±7.3 4.4 26

T-Band + press wheel + tines/chains20 5.8±1.6 -- 5

In-furrow + press wheel 21 0.57±0.2 -- 3

Band behind press wheel22 40.2 -- 1

Band behind press wheel + tines/chains23 11.7±6.1 -- 2
1Plus/minus values are the standard deviation of the mean.24
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C.2.3   Effect of Time on Granule Availability (SurTime)1

Granules can be lost from a soil’s surface through their disintegration or by being covered with2

soil during rainfall or erosion of soil by wind.  This is a part of the calculation of Granule:Grit3

Ratio (GGR) as shown in Figure 3.5-1,  and the input variable SurTime adjusts the GGR to reflect4

this change in granule availability at the soil’s surface with time.  SurTime is implemented as an5

lumped first-order decline process.6

Fischer and Best (1995) evaluated the disappearance of granules from the soil’s surface by7

performing a recount eleven days after application of granules to each of their eight fields8

described in the previous section.  The data are summarized in Table C-3 for both midfield and9

endrow sampling locations, and show that by day 11 the numbers of granules still visible on the10

soil surface at midfield had decreased to 0.9 - 12.0 % of their original numbers (mean of 5.4 %). 11

Endrow spills had 0.6 to 1.9 % ( mean of 1.2 %) of their original numbers still visible.12

Table C-3.  Numbers of granules on the soil surface at 0 and 11 days after application13

(Fischer and Best, 1995).14

Midfield Counts, granules/sq ft15 Endrow Counts, granules/sq ft
Day 016 Day 11 %1 Day 0 Day 11 %1 Endrow:Midfield

2

40.017 4.8 12.0 1033.6 19.6 1.9 25.8
44.418 3.8 8.6 1723.8 10.6 0.6 38.8
30.819 2.6 8.4 669.8 7.6 1.1 21.8

104.420 4.6 4.4 458.2 4.6 1.0 4.4
142.221 6.0 4.2 2512.6 45.4 1.8 17.7
53.422 1.6 3.0 356.0 3.0 0.8 6.7
65.423 1.2 1.8 487.0 4.8 1.0 7.5
64.824 0.6 0.9 68.2 1.0 1.5 1.1

Mean 5.4±±3.93 1.2±±0.473 15.5±±12.93

1 The percentage of granules counted at day 11 in comparison to granules at day zero.25
2Endrow:midfield ratio of granules at day zero.26
3Plus/minus values are standard deviation of the mean.27
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The authors attributed loss of granules from the soil surface mainly to a series of rainfall events1

that occurred between the 0 and 11-day measurements.  Counts were not conducted after each2

rain event, and so it is not possible to correlate quantitatively the change in granule availability3

with the rain events.  Therefore, without further study of the relationship between rainfall and loss4

of granules from the soil surface, granule availability cannot be adjusted quantitatively by the5

decrease that does occur after application of granules.6

If granules are stable entities and do not disintegrate readily when wet, exposure assessors are7

advised to assign a value of 1.0 to this modification factor until additional experimentation8

provides a more quantitative understanding of granule disappearance from the soil surface over9

time.  Assignment of 1.0 may err on the side of conservatism in the exposure assessment since it is10

assumed that granule availability remains constant during the assessment of exposure to birds.  11

However, the model also assumes that availability of natural grit remains constant, yet it seems12

reasonable to expect that natural grit particles may be physically incorporated into the soil by13

rainfall events in the same way that the granules studied by Fischer and Best were.  Unless it can14

be shown that the availability of granules decreases at a greater rate than the availability of natural15

grit, a SurTime value of 1.0 is recommended.16

C.2.4   Available Granules Endrow and Endrow Spill Preference (EAvlGnl, HsIF)17

Corn endrows tend to have greater numbers of granules exposed on the soil surface due to spills18

and the turning of equipment.  Endrow granule counts from Fischer and Best (1995) are included19

in Table C-3.  These counts were taken within a 1 square foot area centered on the largest visible20

spill at the end of randomly selected rows.  Comparison to midfield counts indicate endrow spill21

areas provide approximately 15 (mean = 15.5±12.9) times the number of granules at midfield. 22

Thus, available granules per unit area at endrows (EAvlGnl) can be estimated by multiplication of23

granules at midfield (AvlGnl) by the average value of of 15x or, alternatively, calculated from24
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each ratio in Table C-3 in a Monte Carlo fashion.  Besides being more numerous, the1

concentrated granules at the endrows may be more attractive as a grit source for some species,2

which is accounted for by the HsIF (Hot Spot Ingestion Factor) factor in the model.  Data to3

define this factor are scarce, however, a study performed by researchers at Iowa State University4

found that house sparrows ingested 2-5 times more granules when identical numbers of granules5

were presented in an aviary setting as spills rather than as six-inch wide bands (Fischer, D. L.,6

Best, L. B. and J. P. Gionfriddo, 1993, platform presentation to SETAC 14th Annual Meeting,7

Houston, TX).  Based on these results, the model has a default assumption of 5x greater use of8

spill zones in comparison to the “regular” application band.9

C.2.5  Preferential Feeding Patterns (PT, FMuF)10

Although a great many species of birds have been observed to utilize agricultural fields for habitat, 11

they will not spend all of their grit-foraging time within a field.  The relative time spent foraging a12

accounted for by a the simple fractional multiplier PT.  Even when the bird is on the field, it will13

not feed randomly across the entire field; for example, a great number of species are likely to14

preferentially use the edges of the fields (Best et al., 1990), perhaps to reduce their vulnerability15

to predators.  The behavior is accounted for by a simple ratio expressed as a Field Margin16

Utilization Factor (FMuF).17

C.2.6  Relative Field Areas18

In the banded application scenarios most commonly employed for granular, at-plant insecticides,19

the granules are not spread evenly throughout the field, an assumption often made in simpler20

exposure models.  Indeed, the purpose of banded application rigs is to direct a more concentrated21

application of granules to the planted rows themselves.  In addition, as alluded to in section C.2.4,22

the rows do not extend all the way to the ends of the field.  These factors can be accounted for by23

the size/geometry of the field and the application bands to define specific field zones (e.g., within24
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the pesticide band, between pesticide bands, within a spill area) and calculate the fraction of the1

total field area of composed of each zone, along with their corresponding granule availabilities.2

C.2.7   Available Grit  (AvlGrt)3

Available natural grit in a corn field is a function of soil texture, correlating directly to sand4

content; the more sandy the soil, the greater the numbers of natural grit particles available to5

birds.  Best (1992) indicated that the size range of granules for the five insecticide formulations6

most frequently used in cornfields was 0.2 to1.6 mm in diameter.  Therefore, it is the number of7

available grit particles in this size range that impacts whether a bird will select a granule or natural8

grit particle.  The granular exposure model estimates the number of natural grit particles in this9

size range that are present in soils of different texture and sand content.  To make these10

estimations, distributions of surface soil textures within areas of the continental United States are11

developed first, and this is followed by estimations of numbers of grit particles within the 0.2 to12

1.6 mm size range for soils of different textures.13

Texture distributions for soils capable of growing corn were developed from the publicly available14

NRCS State Soil Geographic Data Base (STATSGO; NRCS, 1994).  STATSGO contains soils15

information at the generalized soil phase level.  It can be implemented as a database of 1516

relational tables for each state in any relational database management system (RDBMS); the17

implementation used here was in the Oracle7 RDBMS.  This database is queried by geographic18

area to determine the area-weighted distribution of soil textures within an area of interest.  The19

area of interest can be delineated by political boundary (by state, for example) or by visual20

delineation within a GIS system.  Refinement of the soils in the area of interest was performed21

using a Structured Query Language (SQL) query in the Oracle7 RDBMS.  Table C-4 shows the22

soil texture distribution for corn-capable soils in the Central Plain region, defined by Abt (Abt,23

1996) as the states of Kansas and Nebraska.  Other regions delineated by Abt and used in this24

model are listed in Table C-5.  Information on the distribution of soil textures for each region is25
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stored in the model as the worksheet “texture distribution.xls”, and it is available in the form of a1

lookup table that allows selection of any of the regions for analysis of exposure.2

Table C-4.  Distribution of soil texture for corn-capable soils of the Central Plains Region defined3
as the states of Kansas and Nebraska.4

Texture5 Acres Percent of Area
SIL6  33,755,916 52.9606%

SICL7  11,128,261 17.4594%
LFS8    4,119,460 6.4631%

L9    3,913,144 6.1394%
FSL10    3,791,989 5.9494%
CL11    1,899,530 2.9802%
FS12    1,279,564 2.0075%
SIC13    1,157,672 1.8163%
SL14       599,386 0.9404%
LS15       597,473 0.9374%

VFSL16       563,189 0.8836%
C17       533,387 0.8368%

LVFS18       376,685 0.5910%
S19        21,548 0.0338%

LCOS20             646 0.0010%
(Total Acres)21  63,737,851 

Table C-5.  Geographic regions of the continental U.S. as defined by Abt (Abt, 1996).22

Region23 States

Appalachian24 KY, TN, WV, VA, NC

Central Plains25 KS, NE

Corn Belt26 MO, IA, IL, IN, OH

Lake27 MN, WI, MI

Mountain28 CO, WY, MT, ID, UT, NV

Northeast29 New England, NY, PA, NJ, DE, MD

Northern Plains30 ND, SD

Pacific Northwest31 CA, OR, WA

Southeastern32 AR, LA, MS, AL, GA, FL, SC

Southern Plains33 OK, TX, NM, AZ
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Estimation of grit particles for a specific soil texture is achieved in the following manner.  Natural1

particles used by birds are mineral components of soil that fall into the size classification for sands. 2

According to the USDA soil classification scheme, these size ranges are:3

Diameter range (mm) Average diameter (mm)

Very coarse sand4 2.0-1.0 1.5
Coarse sand5 1.0-0.5 0.75

Medium sand6 0.5-0.25 0.375
Fine sand7 0.25-0.10 0.175

Very fine sand8 0.10-0.05 0.075

This delineation of sizes is not contained within the STATSGO database; STATSGO particle size9

characterizations were determined for engineering purposes, according to the American10

Association of State Highway and Transportation Official (AASHTO) scheme.  In the AASHTO11

system, the soil mineral fraction is fractionated at the AASHTO fine sand (0.074-0.4 mm) and12

coarse sand (0.4-2.0 mm) size classes.13

However, the NRCS also publishes (on CD-ROM) the National Soils Characterization database14

(often called the ‘pedon’ database) in relational form, which does contains USDA particle size15

distributions for representative pedons of a large number of soils.  The current product (Sept,16

1997) contains complete sand distribution information for 12,097 soil pedons.  The information17

contained on the CD-ROM was transferred into a Microsoft Access95 database and then moved18

into the Microsoft Excel workbook ‘pedons.xls.’  Using this information, data (expressed as19

weight percentages of the soil mineral fraction) were grouped by sand size classification and soil20

texture to yield medium- and coarse-sized weight percentage distributions for each soil texture. 21

The resultant distribution of weight percentages for the medium-sized sand in Silt Loam soils is22

shown in Figure C-2.  23
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Figure C-2.  Frequency distribution of the mass fractions of medium-sized sand in silt loam soils
from the NRCS soil pedon database
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In order to convert this information into a number of natural grit particles available for ingestion1

per unit area, conversion from the mass fraction to a number of particles is required.  Since the2

sand particles in soil are primarily composed of silica, the mass fraction of the various sand sizes3

was assumed to be equivalent to their volume fractions (i.e., the sand particles all have the same4

density).  Therefore, the mass fraction is related to the volume fraction by a factor of the cube of5

the grit particle radius.  The resulting volume fraction can be reduced to a number of particles per6

unit area by conceptualizing the unit area as follows:7

8

where the circles are sand particles (of three average sizes).  This approach assumes the depth of9

the surface layer is not important; i.e., the unit area of field is viewed from above in two10

dimensions and there is a monolayer of particles available for feeding on the surface (assume layer11

of one mm to work in units of volume).  With this assumption, the number of particles is12

calculated in the following manner:13

[eq. C-4]14 MVol Mr= × ×
4

3
3π

[eq. C-5]15 CVol Cr= × ×
4

3
3π
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1

where:2
MVol =  Average volume of single medium-sized sand particle in mm33

Mr =  Average radius of single medium-sized sand particle in mm.4

CVol =  Average volume of single coarse-sized sand particle in mm35

Cr =  Average radius of single coarse-sized sand particle in mm6
then:7

[eq. C-6]8 1010100 ×=
MVol

MMassfrac

MAvlGrt

[eq. C-7]9 1010100 ×=
CVol

CMassfrac

CAvlGrt

where:10
MAvlGrt =   number of medium-sized sand particles per hectare11

MMassfrac =   mass percentage of mineral fraction occupied by medium-sized12
sand for a given soil pedon13

MVol =   as above14

CAvlGrt =   number of coarse-sized sand particles per hectare15

CMassfrac =   mass percentage of mineral fraction occupied by coarse-sized16
sand for a given soil pedon17

CVol =  as above18

1010 =  conversion from mm3 to hectare19
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The result of these calculations is an estimate of  the number of particles of natural grit similar in1

size to medium- and coarse-sized formulation granules according to actual measurements of sand2

fractions in a soil pedon from the pedon database.  To include variation in mass fraction of the3

sand sizes within a texture classification, Crystal Ball or @RISK is used to sample the Excel soil4

pedon spreadsheet uniformly so that the entire range in mass fraction is included in natural grit5

calculation according to the distribution of values within the pedon database.6

C.3   MODIFICATION OF GGR BY BIRD PREFERENCE7

C.3.1   Grit Size Preference (GSP)8

The size of grit found in bird gizzards is related to the birds' body sizes; the mean grit size9

increases with bird body mass (Best and Gionfriddo 1991, Gionfriddo and Best 1996).  The grit-10

size distribution profiles of most species have definite peaks, with the grit found in gizzards11

declining abruptly on either side of the modal grit size.  Although the mean grit sizes found in12

gizzards of some larger bird species exceed the upper size range of pesticide granules, almost all13

species typically have some grit in their gizzards that overlaps with the particle sizes used for14

granular pesticides (Best and Gionfriddo 1991; Gionfriddo and Best, unpubl. data).   Thus, on the15

basis of grit size, there is the potential for virtually all common farmland birds to consume16

granules for grit.  The probability that granules will be consumed, however, likely depends on the17

overlap in size between the grit naturally consumed and the pesticide granules (Best 1992)--the18

greater the overlap, the more probable the consumption.19

If the size distribution of the granules of a particular pesticide formulation is known, that20

distribution can be compared with the grit size distributions of bird species likely to be exposed to21

the pesticide.  Such overlap can be expressed as a percentage, and that percentage can then be22

used in determining the probability of ingesting granules versus natural grit particles.  The best23

source of data on grit size use by North American birds is that reported in Gionfriddo and Best24

(1996), wherein they present information for 35 bird species.   Although the published account25

reports only a mean grit size for each bird species, information on the grit size distributions within26
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gizzards of individual birds of each species also is obtainable from the original database1

(Gionfriddo and Best, unpubl. data).  2

For purposes of implementation in this model, data from the original database are used to provide3

grit size preference and grit daily ingestion rates for 29 of the 35 species. (Species with less than 54

gizzard samples were excluded from consideration.)  This information is contained in the Excel5

workbook “Grit Data by Species.xls”, which was constructed by  re-grouping the original 0.2-mm6

size fractions of the database into fractions fitting more closely with the USDA groupings, and7

then by recalculation of grit percentage size distributions according to the numbers of grit in each8

new fraction.  Although the fractions in the spreadsheet do not agree completely with the USDA9

classification, they are very close:  fine sand = 0.1-0.2 mm, medium sand = 0.2-0.6 mm, coarse10

sand = 0.6-1.0 mm, and very coarse sand = 1.0-2.0 mm.11

Crystal Ball or @RISK is utilized to sample uniformly the grit percentages for medium- and12

coarse-sized particles from the spreadsheet for a given bird species.  All individual sets of values13

within a species dataset are assumed to be equally probable, and the data do not consider gender14

differences.15

C.3.2   Granule:Grit Preference (GGP)16

When given a choice between naturally occurring grit and particles of a granular pesticide, birds17

may preferentially select one over the other.  Such preferential consumption should be considered18

when estimating granule consumption rates.  Granule:Grit Preference factor (GGP) is a19

dimensionless number that relates the frequency that birds given equal access to granules and20

natural grit particles select granules.  If a bird had no preference or aversion to pesticide granules21

compared to natural grit, GGP = 1, because 1 granule is ingested for every 1 natural grit particle22

ingested.  If a bird preferred granules to natural grit, then GGP would be >1, and if a bird23

preferred natural grit to granules, then GGP would be <1.  For example, if birds were shown24

through empiracle tests to prefer natural grit over granules by a 3:1 margin, then GGP would be25

defined as 0.33.  (0.33 granules selected for every 1 natural grit particle selected).26
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The best documentation for bird preferences for grit versus pesticide granules comes from an1

aviary experiment conducted by Best and Gionfriddo (1994).  House sparrows were given2

pairwise choices between silica granules and five other carrier types.  The silica granules were3

composed of a material (quartz) that birds normally consume for grit and could be considered a4

reasonable surrogate for natural grit.  The five carrier types included heat-treated montmorillonite5

clay, a bentonite form of montmorillonite clay, gypsum, corncob, and cellulose complex. 6

Preference was documented in several ways, which included the number trips birds made to trays7

containing each of the granules types being compared, the number of pecks at particles within the8

trays, and the number of pecks per trip.  In all cases the sparrows preferentially consumed silica9

granules over the alternative granule choices, although the degree of preference differed among10

the carrier types.  The mean number of trips per bird to the trays containing silica granules ranged11

from 2.3 to 21.0 times greater than that to trays containing alternative carrier types, and the mean12

number of pecks per trip was from 5.7 to 36.6 times greater.  The percentage of pecks made to13

ingest silica granules as opposed to the alternatives ranged from 92.8 to 99.9% of all pecks. 14

Results from preference tests, similar to that of Best and Gionfriddo (1994), could be used to15

estimate GGP.  For example, based on the overall number of pecks made to ingest grit, GGP16

values of 0.001 (1 granule per 999 natural grit particles) to 0.077 (7.2 granules per 92.8 natural17

grit particles) could be derived for the five other carrier types.  Bird preferences for granule types18

probably are not constant and may vary under different environmental conditions (e.g.,  Stafford19

et al., 1996; Stafford and Best, 1997).  Caution should be exercised in relying too heavily on the20

results from a single study or protocol.  Furthermore, granule preference tests have been limited21

to only a few granule types, thus other yet untested granule types still need to be evaluated22

relative to their attractiveness to birds.  However, it is clear from the Best and Gionfriddo study23

that GGP may be an important factor in reducing exposure to at least some types of granular24

pesticides.25

Because of the uncertainty in actual patterns of granule:grit preference at this point in time, this26

factor is assigned a default value of 1.0 so that it has no impact on granule selection.  However,27

the user has the option to input a different value.28
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C.4   PARTICLE INGESTION RATE (PIR)1

Counts of grit in bird gizzards have been documented for several avian species.  The most2

extensive database is that of Gionfriddo and Best (1996), where they present gizzard grit count3

information for 35 North American bird species.  The sample sizes vary among the species, but all4

are represented by at least five gizzards.  The data reported include the mean (standard deviation)5

and median grit counts per gizzard, as well as the frequency of occurrence of grit in gizzards.  Of6

the two measures of central tendency, median counts probably reflect overall grit use most7

accurately because mean values can be greatly influenced by a few individual birds with unusually8

high grit counts.9

The original database for the studies cited above was used to develop particle ingestion rate10

distributions for 29 of the original 35 species (Gionfriddo and Best, unpublished data); this is11

presented along with the size preference distributions in the Excel workbook ‘Grit Data by12

Species.xls’ described earlier.  The workbook provides data on total number of birds sampled13

within a species; the number that contained no grit particles in their gizzards; the number of birds14

that had grit, plus the total number of grit particles in a bird’s gizzard.15

These counts of gizzard contents represent static (i.e., point sample) measures of grit use, and as16

such are not a direct assessment of grit consumption rate.  Unfortunately, there is little17

information on the particle ingestion rate (PIR) for birds.  Fischer and Best (1995) conducted an18

experiment with blank silica granules in an attempt to evaluate the relationship between gizzard19

contents and granule consumption rate in house sparrows.  On the basis of their results, gizzard20

granule counts were estimated to represent 24% of the total number of granules consumed per21

day.  The 24% conversion factor, however, should be used with caution for several reasons.  (1)22

The 24% value is based on only one experimental design using only one species.  (2)  In the Fisher23

and Best study the granules were intermixed with dog food and thus the birds consumed them24

"unintentionally"--that is, they did not pick up individual grit particles as is normally the case.  The25

degree to which this might have influenced the grit retention process is unknown.  (3) There was a26

great deal of "scatter" in the data depicting the relationship between granule consumption rates27

and gizzard granule counts (Fischer and Best, unpubl. data), suggesting high variability in the28
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responses of  individual birds.  The scatter is great enough to prevent the establishment of a1

strong relationship between grit particles fed and particles retained within the birds’ gizzards. 2

Despite these limitations, the 24% conversion factor is a place to begin, particularly given that no3

other information on the relationship between grit/granule consumption rates and gizzard contents4

is available. Additional research is needed to validate the general applicability of using a5

conversion factor and to determine the degree to which such a factor might vary among species6

and under different environmental conditions.  In the implementation of this model, PIR (the7

Particle Ingestion Rate) is calculated according to the following:8

[eq. C-8]9 PIR
GrtObsv

GrtTrnovr
=

where:10

PIR =  grit ingestion rate (particles per day)11

GrtObsv =  grit count in bird gizzard12

GrtTrnovr =  correction factor for grit turnover in gizzard (default = 0.24)13

The grit turnover correction factor (GrtTrnovr) in this implementation of the model is defaulted to14

0.24 but can be changed if new information becomes available.  Gizzard count data from the ‘Grit15

Data by Species’ Excel workbook are divided by GrtTrnovr to correct for the continuous16

clearance of grit particles from a bird’s gizzard.17

C.5   GRANULE INGESTION RATE (GIR)18

Granule ingestion rate (GIR) is determined by assuming there is a probability p of a bird choosing19

a granule over a grit particle according to the availability of medium- and coarse-sized granules20

and natural grit particles.  This probability is caculated in the following manner:21

[eq. C-9]22

MAvlGrtMGnlGGP

MGnlGGP
pmedium +

=
)*(

*
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[eq. C-10]1

CAvlGrtCGnlGGP

CGnlGGP
p

coarse +
=

)*(

*

where:2

pmedium = probability a particle ingested is a medium-sized granule3

pcoarse = probability a particle ingested is a coarse-sized granule4

Other =  as defined earlier.5

Once N, the number of particles that will be ingested and p, the probability of a given particle6

ingested will be a granule, have been estimated, The number of granules ingested is determined by7

randomly sampling from a binomial distribution.  This is done for each field zone, and each8

particle size class, as follows. 9

[eq. C-11]10 X Binomial N psijk sijk sj= ( , )

where:11

Xsijk = number of granules of size s ingested by bird i at field zone j on day k12

Nsijk = number of particles of size s ingested by bird i at field zone j on day k13

psj = probability that a particle of size s being ingested in zone j is a granule14

The total number granules ingested by bird i on day k is then determined by summing across field15

zones for medium and coarse granules separately, or 16

[eq. C-12]17 MGIR mediumXik ijk

j

Nj

=
=

∑
1

[eq. C-13]18 CGIR coarseXik ijk

j

Nj

=
=

∑
1
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where:1

MGIRik = number of medium-sized granules ingested by bird i on day k2

CGIRik = number of coarse-sized granules ingested by bird i on day k3

mediumXijk = number of medium-sized granules ingested by bird i in field zone j on day4

k5

coarseXijk = number of coarse-sized granules ingested by bird i in field zone j on day k6

Once the number of granules consumed by a bird has been estimated, the one remaining factor7

needed to calculate the amount of pesticide ingested is the pesticide loading of a single granule as8

a function of time after application of the granule.  This is discussed in the next section.9

C.6   GRANULE LOADINGS OVER TIME (AI)10

Release devices such as granules are designed to maintain some efficacious concentration in11

surrounding soil over a finite time interval.  The chemical mass within a granule is at a maximum12

when first placed into the field and decreases over time as the pesticide is released from the13

granule and into the surrounding environment.  Therefore, the dose a bird may receive from14

ingesting granules is a function of time and is dependent upon the release characteristics of the15

granule, environmental conditions, and the physicochemical properties of the pesticide.16

Release rates can be described as either reservoir systems where the release rate is governed by17

diffusion across a membrane (diffusion equation) or by a monolithic system where the pesticide is18

dispersed or dissolved within the granule and the release rate is given by the rate of change in19

surface area of the granule (Lewis and Cowsar, 1977).  Diffusion mechanisms are well understood20

with respect to the resulting linear differential governing equation, and van Genuchten and Alves21

(1981) provide solution summaries for various differential and partial differential equations22

describing this process.  More complicated problems with diverse boundary conditions can be23

found in the book by Carslow and Yeager (1959).24
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Two approaches can be employed to account for sorption and degradation effects on granular1

release rates.  The first is to solve the full conservation of mass equation directly.  This approach2

can give insight into the physical phenomena of rate of release and diffusive transport into the soil3

matrix.  Additional information gleaned from such an approach includes the time dependent4

spatial distribution of the pesticide.  This could be useful for predicting efficacy as a function of5

the coupled sorption, half-life, and release rate variables.6

Often, pesticide parameters such as the diffusion coefficient in soil, degradation rate constant7

dependency on soil moisture and temperature, etc. are not known or readily accessible.  It would8

be useful to deploy a simplistic model which can capture the field behavior of a granule with9

respect to release characteristics.  Coefficients for such a model should be easily obtainable from10

existing field and/or laboratory experiments.  An empirical kinetic approximation or “lumped11

sum” approach meets these constraints, is simple, and can provide reasonable comparisons with12

experimental observations.  This approach assumes the physical phenomena of mass transfer from13

a granule particle and subsequent degradation/partitioning in the soil environment can be modeled14

by a simple kinetic expression(s).  A major advantage other than simplicity for this approach is15

that it automatically conserves mass.16

Leonard and Knisel (1989) described how the GLEAMS model can be used to simulate17

controlled-release pesticides such as those on pesticide granules through the use of the model’s18

pesticide metabolite and degradation routines.  Analytical solutions for these mechanisms can be19

easily found and thus a numerical model such as GLEAMS does not need to be used.  In the most20

simplistic form, a granule can be described by the reaction pathway given by Figure C-3.  21
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1

Figure C-3.  Proposed “reaction” pathway for pesticide mass contained within a granule. 2

A = mass of pesticide in granule, T = pesticide mass volatilized, R = mass of pesticide3

released from the granule into surrounding medie, and S = mass of degradation products4

as the pesticide degrades outside the granule.5

Here “A” represents the mass of pesticide contained within the granule, “R” is the pesticide mass6

released from the granule and into the surrounding media, “S” is the mass of degradation products7

as the pesticide breaks down within the environment, and “T” is used to represent pesticide mass8

lost to the atmosphere via volatilization.  If it is assumed that the rate of release and degradation is9

proportional to the mass initially present, then the resulting material balance equations and initial10

conditions can be represented by equations 14-16.   The constants governing the relative rate of11

“reaction” are the ki’s.12

= -k1 MA - k3 MA = -(k1+k3) MA [eq. C-14]13  
dM

dt
  A

= -k2 MR + k1 MA [eq. C-15]14  
dM

dt
  R
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= k3 MA [eq. C-16]1  
dM

dt
  T

MAo = MA + MR +MS + MT [eq. C-17]2

with initial conditions3

MT = MR = MS = 0.0  and MA = MAo at t=0 [eq. C-18]4

Mi's are concentrations and MAo is the initial concentration of pesticide on the application date.5

Equations 14-16 subject to Eq’s 17-18 can be easily solved by first solving eq. (14) for MA. 6

Substituting the expression for MA into Eq. (15) yields a separable ordinary differential equation7

which can be integrated analytically through an appropriate choice of an integrating factor.  MT8

can be obtained by substituting the results for MA into Eq. (16), separating variables and9

integrating.  MS can be obtained from Eq. (17) once MA, MR, and MT are known.  The results10

are:11

= e -(k1+k3) t [eq. C-19]12    
MA

M
A o

= [eq. C-20]13    
M R

M
A o

 
k

k -  (k +  k )
 ( e -   e ) 1

2 1 3

- (k1 + k3) t  - k2 t

= {1 - e - (k1+k3) t} [eq. C-21]14    
M T

M
A o



C3-31

= { 1 - e - (k1+k3) t - () [e - (k1+k3) t - e - k2 t ] - () [ 1 - e - (k1 + k3) t }.1    
MS

M
A o2

[eq. C-22]3

The constants in Eq’s 19-22 require laboratory and/or field data for evaluation.  The rate4

constants are adjusted until model predictions fit experimental observations.  Software packages5

such as SimuSolv or ASCL Optimize (MGA Software, Concord, MA) provide optimization6

routines with their ordinary differential equation solvers to aid in the rate constant selection7

process.  Pesticide mass should be given in moles to avoid stoichiometry mistakes involved with8

chemical reactions or degradation pathways.9

Errors are often made in interpreting field studies to estimate a degradation half-life when a10

granulated material is used.  What’s measured by extracting pesticides from soil samples taken at11

various times may actually be the combination of release rate plus degradation and volatilization. 12

Typical mistakes in interpreting dissipation data for granule materials resides in developing a13

“lumped sum” rate constant parameter which describes the observed dissipation of the pesticide,14

that is,  .  This lumped sum (klump) rate constant contains both the release rate15
A

k
Slump →

mechanism, plus any other dissipation pathway and as such can be a poor measure for the intrinsic16

release rate kinetics.17

A simple experiment of placing granules on petri dishes and analyzing for pesticide mass at18

various time intervals can be used to estimate the rate of volatilization (the coefficient k3 in Figure19

C-3) using first order kinetics.  Similarly, two soil dissipation experiments run concurrently under20

identical conditions can properly distinguish between release kinetics (k1) and the compounds soil21

degradation rate (k2).  The first experiment should use the active ingredient only, while the second22

experiment uses the granule formulation.  Thus, the first experiment can be used to calculate k2. 23

With k2 known, k1 can be determined using observations from the second experiment and Eq. 20. 24

Thus, the release kinetics are now quantified via Eq. 20 with k1 known.25
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Rate constants are typically functions of soil temperature and moisture conditions (Walker and1

Barnes, 1981).  Temperature dependence can usually be represented by an Arrhenius type2

expression.  Temperatures in field studies can fluctuate both diurnally and regionally.  Thus, if3

available, field/lab data obtained at various temperatures/soil moisture conditions, etc. should be4

used to refine the predictions for the rate constants.  An example of accounting for rate constant5

dependence on soil moisture and temperature is given by Walker and Barnes (1981). 6

If multiple experiments are performed under different climatic and soil conditions, than empirical7

regression relationships can be established between k1 and k2.  In this manner, probability density8

functions can be generated for the release coefficient (k1) given distributions for the pesticide soil9

degradation rate constant (k2) which may be correlated with other physical parameters such as10

soil type, moisture, etc.11

Although rate constants are strictly empirical (based upon experimental observations), the kinetic12

approach has the benefit of conserving mass and incorporating a functional dependence of the13

pesticide half-life in soil (k2) with the release rate into the soil environment (k1).  Rate constant14

dependence on soil moisture and temperature can be incorporated if field and lab data are15

available at different soil moisture and temperatures.  The kinetic model approach should prove16

useful for probabilistic modeling which is a method utilized for incorporating variability17

(Laskowski et al., 1990).  Thus, the amount of active mass within a granule can be estimated18

using Eq. 19 which is the solution to a simple first order ordinary differential mass balance19

equation.20

Water flowing past a granule can be extremely effective in releasing pesticide mass for certain21

granule types.  Water induced convection can occur during precipitation or irrigation events when22

water is infiltrating into the soil surface and past granule surfaces.  Davis et al. (1996) have23

explored water release rates for fenamiphos, atrazine, and alachlor and have documented the24

coupling between water release rates and environmental fate for these materials.  Water induced25

release rates scale as the square root of time for small times based upon theoretical arguments26

surrounding the diffusion equation (Collins et al., 1973; Collins, 1974).  The released mass of27

pesticide from a granular carrier can scale with the square root of the water infiltration magnitude28
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and duration.  Thus, the amount of pesticide mass within a granule with respect to time may be1

much less than what would be predicted by Eq. 14 if water-induced convection release rates are2

important.  Uncertainty techniques such as monte carlo, coupled with numerical simulation, must3

be employed to account for the impact on granule release rates due the highly variable nature of4

weather patterns and thus the flow of water past granules.  This is beyond the scope of the5

methodology presented here but water-induced release rates should be accounted for (when6

appropriate) on the time scale when precipitation occurs.  Equation 14 can be used on all other7

days (i.e., days when infiltration events do not occur) and the resulting methodology can be used8

to develop probability density functions for regionally specific release characteristics.  9

In the current implementation of the model, a lumped first-order half-life is used to simulate the10

dissipation of active ingredient from the granule.  The concentration of active ingredient in the11

granules is thus reduced by this first-order rate process over the ten day simulation period12

performed for each individual.  Because of the probabilistic nature of the grit ingestion behavior13

simulated (via a bionomial distribution), it is possible for an individual bird to receive higher14

exposure to pesticide later in the simulation period (i.e., by ingesting more granules).  Therefore,15

the exposure value of interest is the maximum an individual bird receives over the ten-day period.16

C.7   ESTIMATION OF PESTICIDE INGESTION RATE (PIRG)17

Pesticide ingestion rate from granules (PIRG) is the measure of dose to a bird in mg/kg/day.  It is18

calculated according to the following:19

[eq. C-23]20 MAi
Ai

MGnlWt= ×
100

[eq. C-24]21 CAi
Ai

CGnlWt= ×
100

[eq. C-25]22 MDose MAi MGIR= ×
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[eq. C-26]1 CDose CAi CGIR= ×

where:2

MAi =  amount of pesticide on single medium-sized granule (mg/granule)3

Ai =  percentage mass loading of pesticide on formulation at time t4

MGnlWt=  average weight of single medium-sized granule (mg)5

CAi =  amount of pesticide on single coarse-sized granule (mg/granule)6

CGnlWt =  average weight of single coarse-sized granule (mg)7

MDose =  pesticide dose due to medium-sized granules (mg/day)8

CDose =  pesticide dose due to coarse-sized granules (mg/day)9

Total pesticide daily dose from ingestion of granules is the sum of pesticide from ingestion of10

medium and coarse-sized granules.11

[26]12 PIRG
MDose CDose

BW
=

+

where:13

PIRG =  pesticide ingested by single bird as a result of granule ingestion14
(mg/kg/day)15

BW =  body weight of individual bird  in kg16

PIRG provides the estimate of dose and completes the implementation of the conceptual granular17

model outlined in Figure 3.5-1.  With information supplied in this section, the reader can estimate18

a pesticide dose an individual bird can receive.  The next section deals with propagation of19

uncertainty and variability in the analysis so that it is possible to estimate dose stochastically20

through the process of Monte Carlo modeling.21
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C.8   MONTE CARLO ANALYSIS1

So that estimation of exposure to birds reflects the probability of achieving various exposure2

levels, the uncertainty and variability of input parameters used to calculate dose is propagated by3

means of Monte Carlo spreadsheet add-in tools Crystal Ball (Crystal Ball, 1998) and/or @RISK4

(@RISK, 1997).  The approach utilizes the equations cited above to calculate dose for an5

individual bird, and it does this for a thousand or more birds by using the Monte Carlo add-ins to6

sample input parameter ranges according to the  distributions displayed by the databases for those7

parameters.  This, then develops a probability pattern for estimates of exposure and allows the8

assignment of probability to a given exposure level.9

Input parameters that are varied in the model are the following:10

Bird parameters:11

C Total numbers of grit particles ingested per day12

C Fraction of grit particles falling into medium and coarse size classes13

C Field utilization (PT) - - - user-defined distribution over a range (default is a14

uniform distribution.15

Soil and application parameters:16

C Soil texture distributions by region, according to distribution of acreage for soils17

suitable for growth of corn or random sampling of pedons with a user-defined18

surface texture.19

C Medium- and coarse-sized sand mass fractions according to distributions observed20

for soils of different texture in the pedon database21

C User-selectable pesticide application scenario (band spacings and band width, for22

example).23

An exposure assessment begins with the selection of  one of 10 corn-growing regions (or soil24

texture), followed by the selection of a bird species known to inhabit cornfields.  Formulation25
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characteristics such as application rate, size distribution, and pesticide loading are entered into the1

spreadsheet, along with the entry of values for factors that influence availability of granules on the2

soil’s surface or express bird preferences for granules vs  natural grit.  The number of iterations3

(individual birds and application sites) for simulation of exposure is set in Crystal Ball or @RISK;4

the program is begun; and it then selects values from ranges of soil texture distributions, sand size5

distributions, total numbers of grit, size preferences, and field utilization habits of birds from data6

tables contained in Excel workbooks.  The output is a probabilistic listing of exposure estimates7

for birds exposed to pesticide through ingestion of pesticide granules.8

C.9  GRANULE EXPOSURE MODEL (GEM) EXAMPLE9

To demonstrate the use of the probabilistic avian granule ingestion model, the following example10

is presented.  Each source of input data is described and referenced to show the reader how such11

an assessment should be performed and documented.12

The scenario examined is the exposure of the vesper sparrow, a common bird associated with13

midwest cornfields, to the soil-applied insecticide fonofos.  Fonofos, formulated as granular14

Dyfonate II 10GTM (Zeneca Agricultural Products), is no longer registered in the United States15

but in previous years was used widely as an at-planting treatment to control corn root worm.  A16

large body of data is available for the product, which makes it ideal candidate for an example.17

C.9.1  Inputs18

C.9.1.1  Region19

As fonofos was a widely-used corn insecticide, the region defined in the Abt Corn Cluster report20

(Abt Associates, 1996) as the “Corn Belt” was chosen as the region for simulation.  This region21

includes the states of Missouri, Iowa, Illinois, Indiana, and Ohio.  In 1991, these states accounted22

for 65% of the total pounds of fonofos applied to corn (USDA/NASS data).  The corn-capable23
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soils in the region are, by areal extent, 57% Silt Loams, 21%  Silty Clay Loams, 12% Loams, and1

small percentages of other types.2

C.9.1.2  Formulation & management information3

About 80% of the Dyfonate 10G sold was used as an at-plant, banded application to corn (19914

USDA/NASS data) .  The material, a clay granule formulation, was most commonly used at a rate5

of 12 ounces of formulation per 1000 linear feet of row.  In keeping with the manufacturer’s label6

application instructions, a 7-inch band was used, with incorporation by a press wheel, drag chains,7

or spring tines, leading to 15% of the granules remaining on the surface in the bands (the EPA8

default value).   A 30-inch band spacing was assumed.  For consistency with the data of Fischer9

and Best (1995) an endrow spill concentration factor of 15 was assumed (i.e., 15 times more10

granules per unit area in an endrow spill than present in the rest of the band) within an endrow11

spill area of one square foot.  This was assumed to occur at the end of every row.12

By employing the data presented in Best (1992), Dyfonate II 10G was determined to be made of13

81% medium granules and 18 % coarse granules by weight (as defined for the model).  It was14

10% active ingredient by weight (fonofos).   Medium granules were determined to have an15

average weight of 0.037g, while coarse granules had a weight of 0.27 g.  The overall dissipation16

half-life of fonofos in/on the exposed granules was assumed to be five days.17

C.9.1.3  Avian species information18

The indicator species of interest was the vesper sparrow, a common cornfield-dwelling bird.  The19

body of information for this species is relatively robust, with gizzard grit counts from 12520

individuals available (Gionfriddo and Best, unpublished data).  In addition, behavioral information21

on this species’ use of corn fields has been collected (Best, et al., 1990 and Frey, et al., 1994). 22

These studies indicate that vesper sparrows which live in corn production areas are present in23

corn fields in a range of 13 to 54% of the time.  Field utilization (PT) was implemented in the24

model as a triangular distribution over this range, with the mean value of 34% as the most25
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probable value.  The Best, et al. (1990) study showed that this species tended to be present in the1

margins of corn fields roughly 3.4 times more frequently than in field centers.  Therefore, the field2

margin utilization factor (FMuF) was set at 3.4.  The width of the field margin was assumed to be3

30 feet.  Granules in endrow spills were assumed to be 5 times more attractive to the birds than4

granules in the bands (L. Best, personal communication).  Grit turnover was assumed to be 24%5

per day (Fischer and Best, 1995) and an average body weight of 30.7 g was used (Dunning,6

1993).  Avoidance behavior is not implemented in this example.   Fonofos granules were assumed7

to be equally attractive to birds as natural grit particles.    8

C.9.2  Results9

Employing simulation of 10,000 individuals, the following percentiles for maximum daily10

exposure (in mg of fonofos per kilogram of body weight)  were obtained:11

Percentile12 mg /kg bw
0%13 0.00
5%14 0.00
10%15 0.00
15%16 0.00
20%17 0.00
25%18 0.00
30%19 0.00
35%20 0.00
40%21 0.16
45%22 0.42
50%23 0.88
55%24 1.44
60%25 1.85
65%26 2.60
70%27 3.33
75%28 4.24
80%29 5.46
85%30 7.51
90%31 10.04
95%32 15.28

100%33 66.67
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Examination of these percentiles shows the distribution to be weighted toward zero exposure,1

with > 35% of the trials resulting in no exposure.  2

This output distribution is well-fitted by a beta distribution:3

4

As would be expected, most (nearly 70%) of the high doses were received on the day of5

application (before granule dissipation took place).    6
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The maximum daily number of total insecticide granules eaten during the 10-day period exhibited1

the following percentiles:2

Percentile3 Value
0%4 0.00
5%5 0.00
10%6 0.00
15%7 0.00
20%8 0.00
25%9 0.00
30%10 0.00
35%11 0.00
40%12 1.00
45%13 2.00
50%14 3.00
55%15 4.00
60%16 5.00
65%17 6.00
70%18 8.00
75%19 10.00
80%20 13.00
85%21 17.00
90%22 23.00
95%23 35.00

100%24 188.00

This output also appears to be well represented by a beta distribution:25
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APPENDIX C41

COMPUTER MODELS FOR ESTIMATING PESTICIDE CONCENTRATIONS2

IN ENVIRONMENTAL MEDIA3

Based upon the literature reviews by Golder Associates (1997) and Jorgensen (1995),4

there do not appear to be any residue computer models currently available that could be5

used to adequately generate distributions of pesticide residues in all relevant environmental6

media for use in probabilistic terrestrial exposure assessments.  However, there are several7

existing models which could possibly serve together as a good foundation for such a8

model.  These include the spray drift model AgDRIFT, the leaching/runoff model PRZM9

3, the surface water model EXAMS, the Terrestrial Exposure Assessment (TEEAM)10

model, the Uptake, Translocation, Accumulation, and Biodegradation (UTAB) plant11

contamination model, the SNAPS/PLANTX plant contamination model, the Soil-Plant-Air12

Fugacity plant contamination model, and the Terrestrial Risk Integrated Methodology13

(TRIM) model. In addition, several correlations between the uptake of chemicals by plants14

and their physical chemical properties which may be useful in model development have15

been reported in the literature. All of these will be discussed in this section.16

Other models which include animal behavior algoritms  as well as residue algorothms may17

also be helpful in developing a comprehensive terrestrial exposure model are the bird spray18

exposure model PARET, the bird granule exposure model developed by Dixon et.al 1998,19

and the bird granule exposure model developed by Dow/Elanco, Fischer and Best.  These20

models are discussed in other sections of this report.21

C4.1  AgDRIFT Spray Drift Model22
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The USEPA/OPP recently began using the spray drift model AgDRIFT to estimate spray1

drift pesticide loadings to ponds adjacent to treated fields as part of aquatic exposure2

assessments.  Estimates of spray drift to off-site soil and water and to off-site vegetation3

are also important components of terrestrial exposure assessments.  The U.S EPA/OPP4

plans to use AgDRIFT for terrestrial as well as aquatic exposure assessments.  AgDRIFT5

was developed by modifying the USDA AGDISP model as part of a CRADA cooperative6

agreement between the SDTF and the U.S. EPA's Office of Research and Development7

(ORD).8

The description of AgDRIFT below is based primarily upon A Jones, Clem, and Thurman9

(1997) and on Bird, Ray, Teske, Esterly, Perry, and Gustafson (1995).10

AgDRIFT was developed by modifying an existing USDA spray drift model (AGDISP)11

based upon:12

(1) The results of the tank mixture physical property, droplet size distribution, and spray13

drift deposition studies conducted by the SDTF.14

(2) The needs of U.S. EPA/OPP for a spray drift model that could be used to predict spray15

drift depositions on off-site ponds, fields, and vegetation up to at least 1000 feet16

downwind.17

The AgDRIFT model can be run in a "Tier I, Tier II, or Tier III" mode.  The Tier I mode18

is used for screening purposes.19

In the Tier I mode, a number of input parameters are assigned default values (described as20

"reasonable but conservative" including the wind speed (10 mph), wind direction21

(perpendicular to the flight path), the atmospheric stability (neutral), and the application22

height (10 feet).  Droplet size spectrum input is restricted to one of 5 droplet size spectra,23
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each representing a different droplet size category (very fine, fine, medium, coarse, and1

very coarse as defined by the British Crop Protection Council).2

Droplet size spectra are not specified on labels, but generally correlate somewhat to spray3

volume ranging from very fine or fine for low volume applications to coarse or very coarse4

for high volume applications.  If the spray volume is specified a droplet size spectrum is5

selected based upon the magnitude of the spray volume.  If a spray volume magnitude is6

not specified, a fine/medium droplet size spectrum is used as the default.7

Model outputs for Tier I runs are graphically presented as spray drift deposition versus8

distance downwind curves for the upper boundaries of each of the droplet size categories9

(Figure 3 which is a photocopy of Figure 2 in Bird etal 1995).  Tier I estimates of spray10

drift deposition at any distance downwind up to 1000 feet are obtained from the graphs by11

graphical interpolation.12

The Tier II and Tier III modes require progressively more input, but are designed to13

provide progressively more accurate estimates of spray drift for use in higher tier exposure14

assessments.  The upper tier modes allow the user several options for generating a droplet15

size distribution input.  The user can define a distribution, select one from the "library" of16

droplet size spectra generated by the SDTF or generate one.  Droplet size distributions are17

generated by AgDRIFT using regression equations developed by the SDTF that relate18

droplet size distribution characteristics to nozzle characteristics, application characteristics19

and the physical properties of the tank mixture.20

Although AgDRIFT is currently a deterministic model, it is being modified to allow for the21

input of distributions for wind speed and directions rather than a single wind direction. 22

Although the model will still be primarily deterministic except for the wind speed and23

direction, some other variables could also be made stochastic with additional24

modifications.25
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C4.2  PRZM31

The U.S. EPA/OPP currently uses the leaching/runoff model PRZM 3 to estimate runoff2

pesticide loadings to ponds adjacent to treated fields as part of aquatic exposure3

assessments.  Although not completely adequate for pesticide terrestrial exposure4

assessments, a number of outputs of PRZM3 are useful for interim terrestrial exposure5

assessments.  As an option, PRZM3 can be run stochastically to give distributional6

outputs.  However, the plant growth and plant fate algorithms of PRZM3 need to be7

strengthened for use in terrestrial exposure assessments and it lacks insect, granule, and8

puddle algorithms.9

Assuming chemical equilibrium, PRZM3 combines separate pesticide mass balance10

equations for the soil pore water, soil solids, and soil pore air into a single mass balance11

equation for soil in terms of the pesticide concentration in the pore water (Carsel et. al12

1997 - PRZM 3 Manual):13

14
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(Equation C4-1)15

where16

Cw =  pesticide concentration in soil pore water (g/cm3)17
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1w =  fractional volumetric soil water content (volume/volume)1

Kd =  soil/water equilibrium partition coeff.(cm3/g)2

ks =  bulk density of soil (g/cm3)3

Mg =  fractional volumetric soil air content (cm3/cm3)4

KH =  dimensionless Henry's Law constant (cm3/cm3)5

t =  time (day)6

Dw =  molecular diffusivity of pesticide in pore water (cm2/day)7

Dg =  molecular diffusivity of pesticide in pore air (cm2/time)8

z =   depth (cm)9

)z =  thickness of soil layer (cm)10

v =  water velocity (cm/day)11

kws = pseudo first order degradation rate constant (1/day) for pesticide in the pore water12

or adsorbed to soil solids (assumed to be equal in PRZM)13

kg =  pseudo first order rate constant for the pesticide in air (default value = 0 in PRZM)14

f =  fraction of total water used per transpiration per day (1/day)15

, =   uptake efficiency factor (dimensionless)16

Q =   daily runoff volume (volume/day)17

Aw =  watershed area (cm2)18

b =   conversion factor (g/ton)19

Xe =  sediment erosion per day (metric tons/day)20

rom = enrichment ratio for organic matter (g/g)21

Japp = pesticide application rate (g/day)22

As =  pesticide treated area (cm2)23

E =   foliar extraction coefficient (1/cm)24

Pr =  daily rainfall (cm)25

mp =  pesticide mass on/in plants (g)26
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Equation C4-1 is the mass balance equation for the top soil layer(s).  Mass balance1

equations for the lower soil layers are comparable except terms only applicable to the2

upper layer(s) such as runoff loss, and washoff addition to the soil are equal to zero for3

soil layers beneath the surface soil.4

The three terms on the left side of equation C4-1 represent contributions to the overall5

change in pesticide mass with time within the soil layer due to changes in mass with time6

of pesticide in the pore water, adsorbed to soil solids, and in the pore air, respectively. 7

The first three terms on the right side of the equation represent pesticide mass transport in8

the soil due to molecular diffusion in the pore water, molecular diffusion in the pore air,9

and advection associated with downward percolation of water through the soil layers,10

respectively.  The next 3 terms on the right side of the equation represent degradation of11

the pesticide in the pore water, adsorbed to soil solids and in the pore air, respectively. 12

The next 3 negative terms represent losses from the soil layer due to uptake by plants,13

dissolution in runoff water, and adsorption to eroding soil.  The last 2 terms (which are14

positive) represent pesticide additions to the soil layer due to application and washoff,15

respectively.16

PRZM3 uses a finite difference numerical method for solving equation B4-1 to give the17

pore water concentration Cpw at the beginning of each daily time step and for each of18

several hundred user specified vertical computational steps (referred to as compartments19

in PRZM3).   Concentrations in the soil solids Cs and in the pore air Ca are computed from20

those in the pore water by assuming chemical equilibrium such that:21

                                                                                                               22 C K Cs d w=

(Eq. C4-2)23

and24
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                                                                                                              1 C K Ca H w=

(Eq. C4-3)2

where3

Kd =  soil/water equilibrium partition coeff.(cm3/g)4

KH =  dimensionless Henry's Law constant (cm3/cm3)5

Losses due to runoff water and soil erosion depend upon the pore water concentration6

Cpw, the soil solids concentration Cs, the runoff volume Q and the sediment Yield Xe. 7

Previous versions of PRZM allowed pesticide extraction for runoff down to 1 cm with an8

uniform extraction equivalent to the pore water concentration. PRZM3 allows pesticide9

extraction for runoff down to 2 cm, but assumes exponentially decreasing extraction with10

depth down to 2 cm.11

PRZM3 uses the SCS curve number method to estimate runoff volume. Predicted runoff12

volume increases with increasing SCS curve numbers which in turn depend upon the soil13

moisture prior to the rainfall event, the inherent infiltration potential of the soil (as14

indicated by the hydrologic group to which it belongs), land use, and tillage/plant residue15

practices.  In general soils with relatively low inherent infiltration potential such as16

hydrologic Group C and D soils produce more runoff than soils with relatively high17

inherent infiltration potential such as hydrologic Group A and B soils.18

To estimate sediment yield, PRZM3 lets the user select among three similar equations: the19

Modified Universal Soil Loss Equation (MUSLE), the MUSS equation or the MUST20

equation. In all three equations, the estimated sediment yield depends upon the product of21

the (total runoff volume X the peak runoff to a fractional power) X the soil erodibility22

factor X the length/slope factor X the soil cover factor X the conservation practice factor.23

The erodibility factor depends upon the soil texture and increases with decreasing organic24
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content. The soil cover and conservation practice factors depend upon factors such as the1

crop, crop rotation, tillage type and plant residue management.2

PRZM3 outputs of interest with respect to terrestrial exposure assessments include daily3

estimates of pesticide concentrations in soil pore water and of bulk soil concentrations for4

each of several hundred vertical computational compartments.  PRZM3 uses its estimates5

of concentrations in soil to estimate runoff/erosion losses of pesticide which in turn are6

used as input to EXAMS to estimate pesticide concentrations in adjacent ponds (also7

important for terrestrial exposure assessments).  Estimates of concentrations in soil can8

also be used by algorithms outside of PRZM3 to help estimate uptake by insects and other9

soil invertebrates.10

PRZM3 uses its estimates of concentrations in pore water to estimate pesticide uptake by11

plants.  Slightly modifying the uptake equation in PRZM to reflect uptake on a specific12

day i from a specific soil compartment (layer) j within the root zone gives:13

                                                                   (Eq.14
dm

dt
Q C t t

up ij
trans ij w j i





 = =

( )
( ) ( ) ( )ε 

C4-4)15

where16

, = uptake efficiency factor often referred to as a reflectance coefficient17

(dimensionless)18

Cw(j)(t=ti) =  pore water concentration at the start of day i at t=ti in soil compartment19

(layer) j (g/cm3) 20

Qtrans(ij) = transpiration flow on day i from soil layer j to the roots (cm3/day)21
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and where the transpiration flow on day i from soil compartment (layer) j is given by:1

                                                             (Eq. C4-2 Q f t t A ztrans ij ij w j i s j( ) ( )
( )= • = •θ ∆

5)3

where4

fij = fraction of total water in soil compartment (layer) j used for transpiration on day i5

(1/day)6

1pw(j)(t=ti) =  volumetric water fraction at the beginning of day i at t=ti in soil7

compartment (layer j) (cm3/cm3)8

As = area of the field (cm2)9

)zj = width of soil compartment (layer) j (cm)10

In PRZM3, the total evapotranspiration demand for any given day i is generally estimated11

from pan evaporation data.  According to the PRZM3 manual, the total evapotranspiration12

demand is met sequentially in PRZM3 by canopy storage, ponded water (irrigation), and13

then from each soil compartment (layer) down until the demand is met or until the wilting14

point of each layer is reached.  On any given day i, the evapotranspiration from soil layer j15

is given by:16

                          (Eq.17 ET MIN SW t t WP f ET ETij j i d ij p i ij
j

j j

= = − −










=

= −

∑[ ( ) ] ,( ) ( )  
1

1

C4-6)18

where19
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MIN {a, b} = minimum of a or b1

ETij = evapotranspiration on day i from soil layer j (cm)2

SWj(t=ti) = soil water at the beginning of day i at t=ti in soil layer j (cm)(derived from3

water balance equations)4

WPj = wilting point of soil layer j (cm)5

ETp(i) = remaining evapotranspiration demand on day i not satisfied by canopy6

storage or ponded water (cm)7

'ETij = total evapotranspiration on day i from all of the soil layers 1 to j-1 above soil layer8

j9

fd(ij) = depth factor on day i for layer j (dimensionless) which depends upon the root mass10

within layer j (PRZM3 assumes an inverted triangular distribution for root density11

which decreases with root depth)12

The PRZM Manual indicates that equation C4-6 means that all of the available water for13

evapotranspiration, [SWj(t=ti) - WPj)fd(ij), will not be used for evapotranspiration unless the14

remaining demand, ETp - 'ETij, is greater than the available water.15

The PRZM3 manual does not provide an equation for the evaporation from the soil (Eij)16

but indicates that Eij is extracted to meet evapotranspiration demand (ETij) before17

transpiration from the soil (Tij) such that presumably18

                                                                                                       (Eq.19 T ET Eij ij ij= −

C4-7)20

The leaf area index (LAI) is the ratio of leaf area to field area.  In two leaching models21

that estimate the leaf area index LAI (PESTALA and MACRO), potential22

evapotranspiration is divided into potential evaporation and potential transpiration as23

follows (Rasmussen 1995):24



C4-11

                                                                            (Eq.1 ( )E ET LAIpot pot= − •exp .0 6

C4-8)2

                                                                      (Eq.3 ( )[ ]T ET LAIpot pot= − − •1 0 6exp .

C4-9)4

Assuming the uptake on day i from soil layer j is given by equation C4-4, the total uptake5

from all of the soil layers from which transpiration is extracted should be given by:6

                                                              (Eq.7
dm

dt
C

totup i
pw ij

j

j j trans



 =

=

=

∑
( )

( )

max( )

ε  Q trans(ij)
1
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where9

(dm/dt)totup(i) = total uptake rate on day i10

jmax(trans) = the deepest soil layer from which transpiration is extracted11

The PRZM3 manual recommends as one option, setting the reflectance coefficient , =12

TSCF = transpiration stream concentration factor. The TSCF is defined as the steady state13

ratio of the concentration in the above ground biomass transpiration stream to the14

concentration in the soil pore water:15
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                                                                                               1 TSCF C Ctrans pw= /

(Eq. C4-11)2

As will be discussed later, TSCF can be estimated from the octanol/water partition3

coefficient of a chemical.4

The mass balance equation for vegetation in the PRZM3 manual appears to be only for5

pesticide residues on the foliage:6

                                                           (Eq.7 ( )dm

dt
App k EP m

p i

pl i p r i p i

( )

( ) ( ) ( )= − +

C4-12)8

where9

mp(i) = mp(ti+1<t<ti) = pesticide mass on plants/area of the field as a function of time over10

day i from t=ti to t=ti+1 (g/cm2)11

kp = overall foliar dissipation rate constant accounting for both degradation and12

volatilization (1/day)13

E = foliar washoff extraction coefficient (1/cm)(depends upon the chemical and14

the plant - PRZM default value is 0.1)15

Pr(i) = rainfall per day on day i (cm/day)16

App(pl)i = application rate to the plant on day i (g/cm2*day)17

Because the vegetation mass balance equation in PRZM3 does not consider pesticide18

residues in the foliage, it does not include a term for plant uptake even though plant19

uptake is included in the mass balance equation for soil.  Any modification to PRZM 3 to20

improve its use for terrestrial exposure assessments would presumably include adding a21
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term for uptake by plants to generate a mass balance equation for pesticide residues in as1

well as on vegetation:2

3 ( )dm

dt
App t t z C t t k EP m

p i

pl i pw j i
j

j j

pw j i p r i p i

trans
( )
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= + • = • • =

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


 − +

=

=

∑ ε θ f ij
1

∆

(Equation C4-13)4

Note that in the PRZM3 vegetation mass balance equation (equation C4-12) and in the5

above modification to the PRZM3 equation (equation C4-13) to include an uptake term,6

the application to the plant Apppl(i) is included as a term in the mass balance equation, not7

as an instantaneous event modifying the initial conditions.  The associated implication is8

that application is more a continuous event dragged out over the entire day than an9

instantaneous event. In reality, application is somewhere in between the two extremes.10

Note that the application rate to the plants Apppl(i) is less than the nominal application rate11

to the field Appnom(i) due to spray drift and partial penetration of the canopy to soil.12

To be useful for terrestrial exposure assessments, estimates of pesticide mass on13

plants/area of the field (mp) at any given time need to be converted to pesticide mass/mass14

of plant (Cp) at the same time.  The bulk concentration of a chemical on/in plants at any15

given time t' is related to in mass on/in plants at the same time by:16

                                                        (Equation17 C t t m t t B t tp p ag( ' ) ( ' ) / ( ' )= = = =

C4-14)18

where19
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Cp(t=t') = pesticide mass on/in vegetation/plant mass at time t=t' (g chemical/kg plant)1

mp(t=t') =  mass of chemical on foliage per unit area of the field at time t=t' (g2

chemical/m2 of field)3

Bag(t=t') =  above ground plant biomass per unit area of the field at time  t=t' (kg dry4

weight/m2 of field)5

C4.5  EXAMS6

For aquatic exposure assessments, estimates by PRZM3 of pesticide losses due to runoff7

water and soil erosion from a 10 ha treated field and by AgDRIFT of spray drift8

deposition are used as pesticide loading inputs to the surface water EXAMS.  EXAMS9

than estimates dissolved and adsorbed concentrations in an adjacent 1 ha by 2 m deep10

pond.  Comparable computations would also be useful in a terrestrial exposure11

assessments since birds and mammals utilize farm and/or natural ponds for drinking, food,12

and swimming.13

EXAMS generates mass balance differential equations for each segment within a simulated14

water body and generates steady state solutions to the equations for each computational15

time step (Burn 1990).  EXAMS outputs of interest with respect to terrestrial exposure16

assessments include daily estimates of dissolved and sediment bound concentrations of17

pesticide in each segment.18

Although the hydrology and sediment algorithms in EXAMS are somewhat more19

simplistic than in WASP (whose fate algorithms were based primarily upon those in20

EXAMS), they are probably adequate for estimating pesticide concentrations in ponds for21

use in terrestrial exposure assessments.  Furthermore, the input requirements for EXAMS22

are reasonable.  Also, EXAMS does a good job of simulating chemical transformation23

processes such as hydrolysis, direct photolysis in water, and biodegradation.  EXAMS24

does not directly simulate adsorption/desorption kinetics, but the time required to reach25
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equilibrium does decrease with increasing magnitude of the sediment/water partition1

coefficient. 2

EXAMS cannot currently be run stochastically.  Temporal and site distributions of3

estimated pesticide concentrations for aquatic exposure assessments are currently4

generated by running the model deterministically over multiple years and sites.5

C4.6  TEEAM6

The original and subsequent versions of PRZM were developed as  leaching/runoff7

models, not as terrestrial exposure models. PRZM3 does not estimate factors necessary8

for the conversion of pesticide mass/area of the field to pesticide mass/mass of plant such9

as the plant biomass.  Furthermore, the linear and exponential canopy cover algorithms10

PRZM3 uses are inadequate for estimating foliar interception.  Other weaknesses of11

PRZM3 with respect to terrestrial exposure assessments are that it does not simulate the12

fate of granules, and does not estimate pesticide concentrations in the highly transient13

puddles formed on fields during rainfall events.  Although PRZM includes a plant uptake14

term in the mass balance equation for soil, it does not include it in the mass balance15

equation for vegetation.16

TEEAM  was derived from PRZM in the late 1980s by the USEPA laboratory in Athens17

GA and its contractors for use in terrestrial exposure assessments (Bird, Cheplick, and18

Brown 1991).  Although TEEAM was not supported beyond the testing phase, many of19

the algorithms developed for it could possibly be used or modified for use in a new model. 20

TEEAM was a close derivative of the leaching/runoff model PRZM and used many of the21

same algorithms.  However, it did contain improved plant growth algorithms, improved22

plant fate algorithms (which included uptake), fate algorithms for granules, and algorithms23

for estimating pesticide concentrations in transient small puddles. In addition, algorithms24

for animal movement (based upon a Markov model), animal feeding, and animal uptake25

(including soil invertebrates as well as vertebrates) were included.26
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The plant growth algorithms employed by TEEAM were based primarily upon ones in1

EPIC which was designed in part to simulate plant growth.  The total biomass B in kg/m22

is computed on a daily time step as a function of solar irradiation (modified by the leaf3

area index) and a measure of temperature stress dependent upon the difference between4

the optimal growth temperature and the average daily temperature on day i.  The leaf area5

index LAI is the ratio of leaf area to the area of the field.6

The root biomass (RWT) is computed on a daily time as a function of the total biomass7

and the ratio of the number of heat units accumulated as of day i ('HUi) to the total8

number of heat units required for maturation (PHU).  A heat unit for a given day i is given9

by:10

                                                                                             (Eq. C4-15)11 HU T Ti i b= −

where12

Ti = average daily temperature in 0C13

Tb = user specified base temperature in 0C14

The root depth is computed on a daily basis as a function of the maximum root depth,15

HUi, and PHU.  The canopy height is computed on a daily basis as a function temperature16

stress, HUi, and PHU.17

The leaf area index LAI is computed on a daily basis as a sigmoidal function of the above18

ground biomass (total biomass - root biomass) with the function approaching the19

maximum leaf area index LAImax as the above ground biomass approaches its maximum.20

Likewise, the canopy cover is computed on a daily basis as a sigmoidal function of the21

LAI with the function approaching the maximum canopy cover COVMAX as the leaf area22

index LAI approaches its maximum.23
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TEEAM uses the Green-Amp equation to estimate decreases in puddle depth due to1

infiltration through the soil beneath the puddles. Due to the transient nature of puddle2

depths, TEEAM uses an hourly rather than daily time step in its puddle algorithms. 3

Unfortunately, most available weather data that are needed to estimate puddle depths are4

on a daily rather than hourly basis.5

C4.7  Compartment Models6

Simple compartment models generally assume first order mass transfer between7

compartments and assume first order degradation within each compartment. Mass balance8

ordinary differential equations and initial conditions are developed for each compartment9

and solved simultaneously to estimate pesticide concentrations as a function of time in10

each compartment.11

An example of a compartment model is one proposed by Moorhead for this report. The12

compartments considered by Morehead (based on a consideration of exposure pathways)13

were (1) air, (2) plants, (3) soil solution, (4) soil solids, (5) free-standing water such as14

puddles, (6) invertebrates, and (7) vertebrates. Morehead allows for any significant abiotic15

and/or biotic mass transfer between compartments (which he represents as the cells of a 716

X 7 matrix - Figure ?) as well as external inputs and internal losses.17

As is the case with other compartment models, the Morehead model involves generating a18

set of mass balance ordinary differential equations consisting of one equation for each19

compartment. Based upon a set of initial conditions (one for each compartment), the20

equations would then be solved simultaneously with numerical methods to estimate21

pesticide concentrations as a function of time in each compartment.22

Morehead represents the set of differential equations by:23
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                                                                                   (Eq.1
d

dt
a b

X
X X Y Z= + + +

C4-16)2

where3

X = vector representing the pesticide concentration in each compartment4

a =  matrix of coefficients representing mass transfers between compartments due to5

abiotic processes.6

b = matrix of coefficients representing mass transfers between compartments due to7

biological processes8

Y = vector of external inputs to compartments such as pesticide application9

Z = vector of internal losses from compartments such as chemical degradation 10

The Morehead equation C4-16 differentiates between abiotic and biological transfer11

processes and considers internal decay within compartments separately. Such specificity is12

sometimes quite useful. However, for illustrative purposes, we will add the abiotic and13

biotic matrices together. Futhermore, like the abiotic and biotic mass transfers, the internal14

decay Z in the Morehead equation can also be represented as a first order process =15

kdecayX. Therefore, the Morehead equation can be further simplified to give:16

                                                                                                   (Eq.17
d

dt
h

X
X Y= +

C4-17)18
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where1

h = matrix representing the sum of matrices a, b, and kdecay2

Note that for the purpose of adding the matrices a, b, and kdecay together, the decay matrix3

(kdecay) can be represented as a matrix with the same order (7 x 7) as the abiotic mass4

transfer matrix “a” and biological mass transfer matrix “b”. However, the only elements in5

the kdecay matrix that are not equal to zero are the diagonal elements where i=j because6

internal decay does not involve mass transfer from one compartment to another.7

It should be noted that equation C4-17 is a shorthand matrix representation of a series of8

coupled differential equations of the form:9

  (eq.10
d

k k k k k k k
X

X X X X X X X Y1
11 2 3 4 5 6 7 1dt

= + + + + + + +11 12 13 14 15 16 17

C4-18)11

  (eq.12
d

dt
k k k k k k k

X
X X X X X X X Y2

1 2 3 4 5 6 7 2= + + + + + + +21 22 23 24 25 26 27

C4-19)13

  (eq.14
d

dt
k k k k k k k

X
X X X X X X X Y3

1 2 3 4 5 6 7 3= + + + + + + +31 32 33 34 35 36 37

C4-20)15

  (eq.16
d

dt
k k k k k k k

X
X X X X X X X Y4

1 2 3 4 5 6 7= + + + + + + +41 42 43 44 45 46 47 4

C4-21)17



C4-20

  (eq.1
d

dt
k k k k k k k

X
X X X X X X X Y5

1 2 3 5 6 7= + + + + + + +51 52 53 54 4 55 56 57 5

C4-22)2

 (eq.3
d

dt
k k k k k k k

X
X X X X X X X Y6

1 2 3 4 6 7= + + + + + + +61 62 63 64 65 5 66 67 6

C4-23)4

 (eq.5
d

dt
k k k k k k k

X
X X X X X X X Y7

1 2 3 4 5 6 7 7= + + + + + + +71 72 73 74 75 76 77

C4-24)6

where7

kij(i not = j) = first order coefficient for overall (abiotic and/or biological) mass transfer8

from compartment j to compartment i = aij + bij in the Morehead representation9

Yi = external mass addition to compartment i10

                                        (Eq.11 ( )k k k k k k k kdecay11 1 21 31 41 51 61 71= − + + + + + +

C4-25)12

                                       (Eq.13 ( )k k k k k k k kdecay22 2 12 32 42 52 62 72= − + + + + + +

C4-26)14

                                        (Eq.15 ( )k k k k k k k kdecay33 3 13 23 43 53 63 73= − + + + + + +

C4-27)16
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                                       (Eq.1 ( )k k k k k k k kdecay44 4 14 24 34 54 64 74= − + + + + + +

C4-28)2

                                        (Eq.3 ( )k k k k k k k kdecay55 5 15 25 35 45 65 75= − + + + + + +

C4-29)4

                                        (Eq.5 ( )k k k k k k k kdecay66 6 16 26 36 46 56 76= − + + + + + +

C4-30)6

                                      (Eq.7 ( )k k k k k k k kdecay77 7 17 27 37 47 57 67= − + + + + + +

C4-31)8

where9

kdecay(i) = first order decay constant in compartment i10

The full matrix representation of differential equations C4-18 through C4-24 (as opposed11

to the shorthand representation given by equation C4-17) is:12
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To estimate the residue level in each compartment i as a function of time, Xi(t), differential3

equations C4-18 through C4-24 must be solved simultaneously because they are coupled4

by the reversible mass transfers between the compartments. To solve the equations, an5

initial condition at t=0, Xi(t=0), must be specified for each compartment.6

Solving a series of coupled mass balance differential equations simultaneously using7

numerical methods is a common element of simple compartment models involving first8

order mass transfers between compartments and first order decay within each9

compartment. Examples of terrestrial residue models that approximately follow such an10

approach are UTAB, PLANTX, the Soil-Plant-Air Fugacity Model and the environmental11

fate module of TRIM. Those models will be discussed in greater detail below.12

C4.8  UTAB13

The Uptake, Translocation, Accumulation, and Biodegradation (UTAB) plant14

contamination model divides the plant into one root, three stem, and three leaf15

compartments (Boersma et. al 1988, Lindstrom etal 1991).  Each compartment is further16

subdivided into xylem, phloem, and storage subcompartments.  The compartments are17

represented as a series of continuous stirred flow reactors separated by membranes.18
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The transport of chemical between compartments is simulated as passive diffusive1

transport across membranes separating the compartments.  Partition coefficients and2

reflection coefficients are used to reflect the ease by which a chemical penetrates and3

crosses the membranes, respectively.  Transport and accumulation within each4

compartment are represented by mass balance equations that account for diffusive5

transport into and out of each compartment, convective mass transport within each6

compartment and first order degradation and adsorption to solid matrices within each7

compartment.  The series of differential equations are solved numerically to estimate8

chemical masses in each compartment.9

Boersma et al. (1991) evaluated the accuracy of UTAB in estimating the plant uptake and10

translocation of bromacil by soybean.  The model satisfactorily predicted the observed11

chemical uptake and distribution.12

C4.9  SNAPS/PLANTX13

SNAPS (Simulation Model Network Atmosphere-Plant-Soil) is actually a coupled series14

of 3 models used to simulate soil water content, and chemical transport and fate within the15

soil profile and in plants (Matthies and Behrendt 1995).16

The soil water model estimates soil water content by solving Richard's equation. Richard's17

equation is a partial differential equation relating the change in soil moisture with time to18

the change in the soil water velocity with depth. The equation includes a term for water19

loss due to uptake by plants.  The soil water velocity at a given depth is proportional to20

the product of the hydraulic conductivity and the hydraulic gradient at that depth.  The21

chemical transport and fate model for soil is based upon a convection-dispersion equation22

similar to the one used in PRZM 3.23

The chemical transport and fate model for plants in SNAPS is called PLANTX (Trapp,24

McFarlane, and Matthies 1993; Trapp 1995).25
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The plant model consists of root, stem, leaf, and fruit compartments.  The model1

numerically solves simultaneously mass balance equations for the roots, stems, leaves, and2

fruits.3

The model simulates passive diffusive and transpiration uptake by roots from soil water4

and advective mass transport with transpiration and/or assimilation streams to and from5

the stems, leaves and fruits. It simulates first order degradation and partitioning between6

the aqueous phase and plant tissue in all of the compartments.7

PLANTX also simulates volatilization from leaves to the atmosphere. The volatilization8

equation used in PLANTX and in a simplified version (PLANT) is discussed in Appendix9

C5.10

Plant degradation and volatilization from leaves to the atmosphere were shown to be11

major dissipation pathways in the PLANTX modelling of carbofuran and terbuthylazine12

behavior in barley and wheat over the growing season (Behrendt and Bruggemann 1993). 13

The results showed that even though the concentration of carbofuran at harvest was lower14

than the allowable level, peak concentrations in the vegetative period were substantially15

higher.16

C4.10  PLANT17

The PLANT model is a simplified version of the PLANTX model in which the 418

compartments within the PLANTX model (roots, stems, leaves, and fruits) are replaced by19

a single overall aerial plant compartment (Trapp and Matthies 1995; Trapp 1995).  Uptake20

is represented by the product of the transpiration flow times the Transpiration Stream21

Concentration Factor (TSCF) times the concentration in the soil pore water.  For neutral22

organics, the TSCF can be estimated from the octanol/water partition coefficient as23

described below.  The single mass balance equation for the plant compartment is solved24

analytically to give the bulk chemical concentration in the plant.25
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C4.11  Soil-Plant-Air Fugacity Model1

A root-stem-foliage compartment model was developed to predict residue uptake from2

soil and fate and transport within plants (Paterson, Mackay, and McFarlane 1994;3

Paterson and Mackay 1995).  The model involves solving simple mass balance equations4

for each compartment. It is similar in many aspects to the various other plant fate models5

duiscussed above, but it differs in using the concept of fugacity and the ratio of fugacity6

capacities of different phases to estimate equilibrium partition coefficients.7

The fugacity of a chemical in a phase is given by:8

                                                                                                                (Eq.9 f C Z= /

C4-33)10

where11

f = fugacity12

C = concentration in the phase13

Z = fugacity capacity14

The fugacity capacity of the chemical in each phase depends upon properties of both the15

chemical and the phases.16

Because the fugacities f1 and f2 of a chemical in two phases in equilibrium are equal,17

equilibrium partition coefficients between phases are estimated from the ratio of the18

fugacity capacity in each phase (Paterson and Mackay 1995):19
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                                                           (Eq.1 K C C f Z f Z Z Z12 1 2 1 1 2 2 1 2= = =/ / /

C4-34)2

Like most earlier modeling efforts, the model was not designed to be used for perennial3

vegetation and did not include seasonal variations in temperature, precipitation, or growth4

rates.  The results showed that Kow and Henry's law constant played a key role in5

determining organic chemical rate of uptake, fate, and role of transport through the6

transpiration stream and foliar absorption from air.  The authors noted that flow rates in7

the phloem, rates of exchange between the root and the soil, and determining when wet8

and dry deposition rates should be included in the mass balance were areas that needed9

greater elucidation.10

C4.12  TRIM11

The TRIM Model is currently being developed by the USEPA Office of Air Quality12

Planning and Standards and its contractors.  The current environmental fate module is a13

simple compartment model that allows for first order mass transfers between14

compartments and first order degradation within each compartment.  A mass balance15

ordinary differential equation and initial condition is developed for each compartment. 16

The system of ordinary differential equations are then numerically solved simultaneously17

to give the chemical mass in each compartment as a function of time.18

The primary purpose for developing TRIM is to generate multi-media exposure and risk19

assessments associated primarily with the deposition of industrial and urban air pollutants,20

not pesticides.  The TRIM fate module does not simulate plant growth or spray drift. Its21

runoff extraction algorithm appears to be an improvement over the equilibrium assumed22

between runoff water and pore water in most models.  However, soil moisture within the23

vadose zone is not based on Richard's equation and the fate and transport of chemicals24

within the vadose zone is not based on a convection dispersion equation.  However, some25
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of the fate equations/algorithms in the TRIM fate module related to plants, worms, and1

wildlife may possibly be useful in developing a pesticide terrestrial exposure model.2

C4.13  Plant Uptake Concentration Factors3

Plant uptake of pesticide residue can occur by uptake from the soil solution or by4

absorption of residue volatilized from the soil.  Uptake of the residue from soil solution5

may be a passive process whereby the residue is transported by the transpiration stream to6

the foliage.  Such a process would allow the prediction of foliage residue levels based7

upon such chemical properties as Kow.  Pesticide solubility and soil adsorption properties8

would also influence bioavailability of the chemical to the plant.  Root growth and9

diffusion may also contribute to plant uptake.10

Plant root uptake of six herbicides and a systemic fungicide was described by Shone and11

Wood (1974) using the Root Concentration Factor (RCF) where:12

RCF = (Concentration in roots-wet weight)/(Concentration in external solution)        (Eq.13

C4-35)14

For dilute solutions, RCF was independent of chemical concentration.  Translocation of15

the chemical from the roots to the shoots was described by the Transpiration Stream16

Concentration Factor (TSCF) where:17

TSCF = (Conc. in transpiration stream or xylem sap)/(Conc. in external solution)    (Eq.18

C4-36)19

The TSCF was independent of external solution concentration and had a maximum value20

of 1.0 for passive uptake.  The authors noted that uptake of 2,4-dichloro-phenoxyacetic21

acid (2,4-D) was influenced by plant metabolic activity.22
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Briggs et al. (1982) reported that root accumulation of non-ionized compounds, O-1

methylcarbamoyloximes and substituted phenylureas, was determined by partitioning of2

the chemical to lipophilic root solids and uptake by the aqueous phase in the root. 3

Lipophilic chemicals had large RCF values and the relationship reported was log (RCF-4

0.82) = 0.77 log Kow -1.52.  Translocation to shoots was a passive process and greatest5

for compounds with a log Kow value of 1.8.  The relationship was described as:6

                                       (Eq.7 ( )[ ]TSCF = • − −0 784 178 2 44
2

. exp log . / . Kow

C4-37)8

The authors also determined first-order degradation rate values for the chemicals studied9

and corrected the TSCF values for degradation loss during the study.10

Using a closed laboratory model ecosystem, Trapp et al. (1990) reported that plant11

bioconcentration of several organic chemicals was dependent upon transfer rates and the12

Kow/Koc values.  Chemicals with high Kow values and large enough Henry's law constants13

were predominantly absorbed by plant foliage from the air.  Plant uptake via the14

transpiration stream was important for chemicals with medium Kow values.  Plant15

metabolism was important in determining foliage concentrations of given pesticides. 16

Trapp et al. (1990) were able to model pesticide bioconcentration factors (BCF) as residue17

concentration in fresh plant material/ residue concentration in dry soil and reported a value18

of approximately 1.0 for atrazine.19

A numerical and an analytical model were used to evaluate root uptake in the transpiration20

stream of barley (Behrendt et al., 1995).  Both models were sensitive to soil sorption and21

degradation input parameters.  Maximum residue root uptake was a function of the22

sorption parameter Koc that was determined by the degradation rate of the pesticide.23
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Ryan et al. (1988) reported that compounds with log Kow values of 1 to 2 would most1

likely result in transport of the chemical to above portions of the plant in soil systems.  The2

researchers also indicated that compounds with half-lives of <10 days in the soil would be3

lost from the soil before plant uptake would result in substantial foliage concentration of4

the material.  If active uptake is involved, the process is most likely compound specific and5

it would be difficult to develop general relationships to predict foliage concentrations. 6

Absorption of pesticides by foliage is a likely process if the Henry's Constant is >10-47

unitless and the compound is not readily degraded in the soil.  Based upon the data8

reviewed, Ryan et al. (1988) indicated that potential plant uptake of an organic compound9

could be evaluated using log Kow, Henry's Constant, and half-life value.   Devine and10

Vanden Borden (1991) have summarized root uptake and root-to-shoot translocation for11

several herbicides.12

Plant root uptake of organic chemicals was evaluated by Polder et al. (1995) with the13

Uniform System for the Evaluation of Substances (USES) model used in The Netherlands. 14

The USES model was developed for rapid risk assessment of organic chemicals.  Using a15

wider range of compounds, plant species, and plant growth stages, Polder et al. (1995)16

concluded that RCF and TSCF relationships described by Briggs et al. (1982) were17

satisfactory, but shoot concentration factors required major adjustments.18

An in-depth treatment of the subject of modeling and simulation of organic chemical19

processes related to plant contamination was recently given by Trapp and McFarlane20

(1995).21
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APPENDIX C51

VOLATILIZATION AND PESTICIDE CONCENTRATIONS IN AIR2

Pesticide doses to birds and mammals through direct inhalation of pesticide contaminated3

air is generally thought to be relatively small compared to pesticide doses from ingestion4

of food and water. Nevertheless, air inhalation could occasionally be an important5

exposure pathway, particularly for inhalation of volatile chemicals by terrestrial birds and6

mammals who spend a considerable amount of time within a plant canopy.7

Pesticide residues in air are determined directly in lab and field studies and can also be8

estimated with the use of computer models.9

The PRZM3/TEEAM models assume that pesticide concentrations in the air over bare soil10

or in the air over a canopy are approximately zero, but provide algorithms for estimating11

pesticide concentrations within the plant canopy under some conditions.12

Computational methods for residues in air generally focus on volatilization fluxes from13

soil, water, and plants.  The PRZM3/TEEAM models assume that pesticide concentrations14

in the air above bare soil, open water, and plant canopies are approximately equal to zero15

due to wind advection and turbulent dispersivity. However, the models use estimated16

volatilization fluxes to estimate pesticide concentrations within the plant canopy.17

C5.1:  Volatilization Flux at the Soil/Air Interface18

To estimate pesticide concentrations in soil, PRZM3 numerically solves an advection-19

dispersion mass balance equation that includes sources and sinks for the pesticide on/in the20

soil including application, washoff, degradation, leaching, runoff, and uptake by plants. 21
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Losses due to volatilization are not included as a sink term in the advection dispersion1

mass balance equation, but rather as a flux boundary condition at the soil surface.2

Assuming only vertical flux, the flux at any given height is proportional to the vertical3

concentration gradient in air at that height (Taylor and Spencer 1990):4

                                                                                   (Eq.5 J z t K
z t

z( , )
( , )

= −
∂

∂
  C

  z
a

C5-1)6

where7

Kz = molecular dispersivity coefficient in air (cm2/day)8

To develop a boundary flux equation for the soil/air interface, Jury etal 1983 assumed that9

a stagnant air layer of thickness w separates the bulk soil from the bulk atmosphere. 10

Assuming that Kz = Da (molecular diffusivity in air) for a stagnant air layer and that the11

flux is independent of z within the stagnant layer, separating variables in equation C5-1,12

and integrating it from Ca =13

Ca(z=0,t) to Ca = Ca(z=w,t) and from z = 0 to z = w, gives the following equation for14

volatilization flux from the soil through the stagnant air layer at the soil/air interface:15

                                             (Eq.16 ( )[ ]J t D w C z t C z w tsoil st a a a( ) ( ) / ( , ) ( ,= = − =0

C5-2)17

where assuming chemical equilibrium between the soil solids, pore water, and pore air:18
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and where3

Jsoil(st)(t) = flux from the soil through the stagnant air layer as a function of time4

(g/cm2*day)5

Da = molecular diffusivity of the chemical in air (cm2/day)6

w = width of stagnant air layer over the soil/air interface (cm)7

Ca(z=0,t=t') = concentration in the pore air at the soil/air interface as a function of time8

(g/cm3)9

Ca(z=w,t) =  concentration in the air just above the upper boundary of the stagnant air10

layer as a function of  time(g/cm3)11

Ds = bulk density of soil (g/cm3)12

Kd = soil/water equilibrium partition coefficient (cm3 water/g soil)13

KH = "dimensionless" Henry's Law constant (actually has units of cm3 water/cm3 air)14

1w = volumetric water fraction (cm3/cm3)15

Mg = volumetric air fraction16

C5.2:  Pesticide Concentrations in Air Within the Plant Canopy for Foliarly Applied17

Pesticide (PRZM3)18

For bare soil having no canopy, PRZM3 assumes Ca(z = w) is approximately equal to zero19

because of wind and atmospheric turbulence such that equation C5-2 becomes:20
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                                                                 (Eq.1 ( )[ ]J t D w C z tbaresoil st a a( ) ( ) / ( , )= = 0

C5-4)2

However, as a plant canopy develops, Ca(at z = w) may increase to substantially > 0 and3

needs to be estimated.  Assuming the canopy is neither a source or sink for pesticides (as4

in PRZM3) and that the flux from the soil through the canopy is independent of z within5

the canopy,  separating variables in equation C5-1, and integrating from Ca(at z = w) to6

Ca(z = hcan) = 0 and from z = w to z = canopy height = hcan gives the flux from the soil7

through the plant canopy:8

                                                                                    (Eq.9 J t
C z w t
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C5-5)10

Recall that if Ca(z = w) is > 0, the flux Jsoil(st) from the soil through the stagnant air layer11

from z = 0 to z = w is given by equation C5-2.  Assuming steady state conditions, the flux12

from the soil through the stagnant air layer Jsoil(st) (given by equation C5-2) can be assumed13

to be equal to the flux from the soil through the plant canopy Jsoil(pc) (given by equation C5-14

5). The assumed equality between the right sides of equations C5-2 and C5-5 can be used15

to solve for Ca(z = w):16
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Substituting equation C5-6 for Ca(z=w,t) into equation C5-5 gives the following equation1

for Jsoil(pc) which is provided in the PRZM3 Manual:2

                                                                       3
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(Eq. C5-7)4

Based primarily upon Mehlenbacher and Whitfield 1977, the PRZM3 Manual provides5

equations for estimating the vertical dispersivity constant Kz(z) as a function of height z6

within the plant canopy. The function appears to be sufficiently complex to require7

numerical integration of the integrals in equations C5-5 through C5-7.8

For foliarly applied pesticides, PRZM3 assumes that the flux through the plant canopy is9

due to the sum of the flux from the soil and the flux from the plants:10

                                                                      (Eq.11 J t J t J ttot pc soil pc pl pc( ) ( ) ( )( ) ( ) ( )= +

C5-8)12

where13

Jtot(pc) = total flux through the plant canopy from soil and plants14

Jsoil(pc) = flux from the soil through the plant canopy15

Jpl(pc) = flux from plants through the plant canopy16

For foliarly applied pesticides, PRZM 3 assumes that the volatilization flux per unit field17

area from pesticide treated leaves through the plant canopy is given by:18
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where3

Jpl(pc)(t) = flux through the plant canopy from plants (g/cm2*day)4

Kfv = foliar volatilization rate constant (1/day)5

mpl(t) = total mass of pesticide on/in plants per unit field area (g/cm2 of field))6

Substituting equation C5-8 for Jtot(pc) into equation C5-1 for J and assuming the flux is7

independent of z within the canopy, separating variables in equation C5-1, integrating it8

from C(z) to C(z=hcan) = 0 and from any height z within the canopy to z = hcan, and9

rearranging gives the following equation for the concentration within the canopy at any10

height z:11

                                                 (Eq.12 [ ]C z t J t J t dz Ksoil pc pl pc z
z

hcan

( , ) ( ) ( ) /( ) ( )= + • ∫

C5-10)13

PRZM3 assumes that the concentration within the plant canopy changes linearly such that14

the average concentration within the plant canopy is assumed to be approximately equal to15

the concentration at a height of approximately 50% of the canopy height.  Therefore, to16

approximate the average concentration within the plant canopy for foliarly applied17

pesticides, PRZM3 substitutes z = 0.5 hcan into equation B5-10 to give the concentration18

within the plant canopy at 50% of the canopy height:19
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                               (Eq.1 [ ]C z h t J t J t dz Kcan soil pc pl pc z
hcan

hcan

( . , ) ( ) ( ) /( ) ( )
.

= = + • ∫0 5
0 5

C5-11)2

where3

Jpl(pc) is given by equation C5-94

Equation C5-11 may provide only a somewhat crude approximation of the average5

concentration within the canopy because it is based upon assumptions that may not be6

entirely correct.  The derivation of equation C5-10 (presumably from which equation C5-7

11 in PRZM 3 is derived) is based in part upon assuming that Jsoil(pc)(t) and Jpl(pc)(t) are8

constant with respect to the height z within the canopy thereby allowing them to be9

treated as constants in integrating equation C5-1 with respect to z.  Equation C5-9 (taken10

from PRZM3) gives an assumed constant flux with respect to the height z within the11

canopy from the plants through the plant canopy.  In reality, the flux from the plants12

through the plant canopy may increase with height z within the canopy and therefore be a13

function of z.  The reason is that plant leaves and/or other plant tissues above any given14

height z within the canopy are unlikely to contribute to the upward flux at that height.  On15

the other hand, the flux at any given height z is likely to be a cumulative flux from all of16

the leaves below z.17

Another possible problem with using equation C5-11 is the assumption that the18

concentration at half the canopy height is approximately equal to the height averaged19

concentration within the canopy.  That approximation is based upon the assumption that20

the concentration changes linearly within the canopy such that dC/dz = constant. 21

However, equation C5-1 indicates that dC/dz within the canopy will not be constant22

unless both the flux and vertical dispersivity coefficient are constant with respect to z.  As23

previously discussed, it is possible that the flux from plants is a function of z for foliarly24
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applied pesticides.  However, even if the flux could be assumed to be independent of z, the1

dispersivity coefficient would still be a function of z (as indicated in the PRZM manual). 2

Consequently, it may be more appropriate to actually compute the height averaged3

concentration within the canopy with the following equation than to assume that it is4

approximately equal to C(z=0.5hcan,t):5

                                        (Eq.6 Height Averaged C t t

C z t t dz

ha

a

hcan

can

( ' )

( , ' )

= =
=∫

0

C5-12)7

C5.3:  Foliar Volatilization Equation in Plant Model (Trapp and Matthies 1995,8

1997) and Relationship to Volatilization Rate Constant in PRZM 3 Equation9

Trapp and Matthies (1995, 1997) have developed the PLANTX/PLANT models for10

estimating chemical residues in plants.  The equation used in PLANTX/PLANT for11

estimating the rate of mass loss from plant leaves due to volatilization is (except for a sign12

change to reflect volatilization rather than deposition) as follows:13

                                                      (Eq.14 ( )[ ]dm

dt
A g C K C

volatilization
pl L LA a





 = −/

C5-13)15

where16

Apl = leaf surface are (m2)17

g = conductance (m/s)18

CL = concentration in leaves (kg/m3)19
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CA = concentration in air (kg/m3)1

KLA = leaf to air equilibrium partition coefficient = KLW/KH2

and where3

KH = dimensionless Henry's Law constant4

KLW = leaf to water equilibrium partition coefficient5

Assuming that Ca is << than CL/KLA, equation C5-13 from Trapp and Matthies (1995,6

1997) can be approximated by:7

                                                                     (Eq.8 ( )dm

dt
A g C K

volatilization
pl L LA





 = /

C5-14)9

Recall that equation C5-9 provided in PRZM 3 for the flux from plants through the10

canopy is in g/cm2 field*day.  Multiplying both sides of equation C5-9 by the area of the11

field gives a PRZM 3 based version of the rate of volatilization loss from plants in g/day:12

                                                                           (Eq.13
dm

dt
A K m t

volatilization
s fv pl





 = ( )

C5-15)14

Because equations C5-14 and C5-15 both give the rate of volatilization from plants, the15

right sides of the equations can be equated and solved for the volatilization rate constant16

used in PRZM 3:17
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                                                                                                 (Eq.1 ( )K g T Kfv L LA= /

C5-16)2

where3

g = conductance (m/s)4

TL = leaf thickness5

KLA = leaf to air equilibrium partition coefficient = KLW/KH6

Methods for estimating KLA and g are discussed by Riederer (1995).7

C5.4:  Volatilization from Water8

Volatilization rates from water typically increase with increasing Henry's Law constant,9

water flow, wind speed, and temperature and with decreasing molecular weight and water10

depth [Schwarzenbach, Gschwend, and Imboden (1993) and by Thomas (1990)].11

Based upon the two film (stagnant air/stagnant water films) model of Liss and Slater as12

cited by Thomas (1990), the volatilization flux of a chemical from surface water is given13

by:14

                                         (Eq.15 [ ]J K C z w C z w Kw a w a w w a a H↔ ↔= = − =( ) [ ( ) / ]

C5-17)16

where17
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Jwv = volatilization flux of the pesticide from water (g/cm2*sec)1

Kwa = volatilization mass transfer coefficient (cm/sec)2

KH = Dimensionless Henry's Law constant3

Cw = pesticide concentration in water just below the stagnant water film (g/cm3)at z = -ww4

Ca = pesticide concentration in air just above the stagnant air film at z = wa5

wa = width of stagnant air layer6

ww = width of stagnant water layer7

The Henry's Law constant for a chemical can be approximately estimated by the ratio of8

the chemical's vapor pressure to its aqueous solubility.  Measured and/or estimated values9

of Henry's Law constant are presented for numerous pesticides in the ARS/USDA and10

OPP fate property databases.11

The volatilization mass transfer coefficient rate constant Kw-a is given by (Thomas 1990):12

                                                                                            (Eq.13 K
k k K

k K kw a

w g H

g H w
↔ =

+

C5-18)14

where15

kw = water exchange coefficient (cm/s)16

kg = air exchange coefficient (cm/sec)17

Equations for estimating the water exchange coefficient kw and the air exchange18

coefficient kg are  presented in detail by Schwarzenbach, Gschwend, and Imboden (1993)19

and Thomas (1990).  All of the equations depend upon the chemical's molecular diffusivity20

in air (Da)or water (Dw).  Most are a function of water exchange or air exchange21
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coefficients for reference chemicals such as O2, CO2, and water vapor.  Most also depend1

upon wind velocity and/or water velocity consistent with observed increases in2

volatilization rates with increasing air and/or water flow.3

Based upon a compilation of empirical relationships in the literature, Schwarzenbach,4

Gschwend, and Imboden (1993) recommend using the following equations to estimate the5

air ka and water kw exchange coefficients for slowly flowing waters such as lakes:6

                                                  (Eq.7 ( )( )k u D Da w chemical w oxygen= +0 2 0 310. . /( ) ( )

α

C5-19)8

                          (Eq.9 ( ) ( )[ ]( )k u D Dw w chemical w oxygen= • + •− −4 10 4 105
10
2 4

( ) ( )/
β

C5-20)10

where11

ka = air exchange coefficient (cm/s)12

kw = water exchange coefficient13

u10 = wind velocity 10 m above the air/water interface14

Da = molecular diffusivity in air15

Dw = molecular diffusivity in water16

" = empirical coefficient ranging from 0.5 to 117

$ = empirical coefficient18

Possible default values for " and $ are 0.67 and 0.5, respectively, based upon laboratory19

studies by Mackay and Yeun (1983) as cited by Schwarzenbach, Gschwend, and Imboden20
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(1993).  A mean value of 0.57 + 0.15 for $ was reported by Holmen and Liss (1984) as1

cited by  Schwarzenbach, Gschwend, and Imboden (1993).2

Equations for estimating the molecular diffusivities of chemicals in air (Da) and in water3

(Dw) are discussed in detail by Schwarzenbach, Gschwend, and Imboden (1993) and by4

Thomas (1990).  The unknown molecular diffusivities of a chemical in air and in water can5

be approximately estimated from its molecular weight and the known molecular6

diffusivities and molecular weight of a reference compound from the following equations7

(Schwarzenbach, Gschwend, and Imboden 1990):8

                                         (Eq.9 ( )D D MW MWa chemical a reference reference chemical( ) ( )

.

/=
0 5

C5-21)10

                                        (Eq.11 ( )D D MW MWw chemical w reference reference unknown( ) ( )

.

/=
0 5

C5-22)12

To avoid confusion, note that while the terminology used above is similar to the List and13

Slater terminology as reported by Thomas (1990), Schwarzenbach, Gschwend and14

Imboden (1993) refer to the volatilization mass transfer coefficient Kw-a, the water15

exchange coefficient kw, and the air exchange coefficient ka (all in velocity units of cm/sec)16

as the total transfer velocity vtotal, the stagnant water layer transfer velocity vw, and the17

stagnant air layer transfer velocity va, respectively.18
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APPENDIX C61

PESTICIDE DISSIPATION KINETICS IN ENVIRONMENTAL MEDIA2

This generic section on dissipation kinetics is applicable to various types of environmental3

media, but the concepts covered are most frequently used for soil.  The concentrations4

referred to are generally experimental concentrations for a given bulk environmental5

medium, not individual phases.  For example, soil concentration is for the bulk soil, not for6

the individual pore water, soil solids and pore air concentrations. 7

C6.1  Single Rate Constant Pseudo First Order Kinetics Linear Regression Model8

Dissipation kinetics in environmental media are often analyzed assuming pseudo first order9

kinetics because of the simplicity involved and because most computer models used to10

estimate pesticide concentrations in environmental media require as input, pseudo first11

order rate constants.12

The rate of concentration change with time for a chemical following pseudo first order13

dissipation kinetics in/on soil, foliage, water, or air, is given by14

                                                                                                           15
dC

dt
k Cb

b b= −

(Eq. C6-1)          16

where17

Cb = bulk chemical concentration in/on soil, foliage, water, or air (in units of mass18

chemical/mass of dry media for soil or foliage and mass chemical/volume of media for19

water or air)20
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kb = pseudo-first order bulk rate constant (in units of 1/time)1

A pseudo-first order constant is not an actual first order rate constant because it has2

incorporated into it one or more parameters (such as biomass, irradiation intensity, or pH )3

which can change with time.  However, when those parameters approximately remain4

constant over the duration of the study or model simulation,  a pseudo first order rate5

constant approximates an actual first order rate constant.6

Integrating equation C6-1 gives the bulk concentration of the chemical in soil, foliage,7

water or air as a function of time assuming the chemical dissipates with pseudo first order8

kinetics:9

                                                                                                       10 C t C eb b
k tb( ) = −

0

(Eq. C6-2)11

Data can be fit to a single rate constant pseudo first order kinetics model using linear or12

non-linear regression.  If linear regression is used, equation C6-2 above is ln transformed13

to a linear form, and the rate constant is determined by simple linear regression as follows. 14

Taking the natural logarithm of both sides equation C6-2 gives:15

                                                                                         16 ln ( ) ln  C t C k tb b b= −0

(Eq. C6-3)17

The ln transformed bulk concentration (ln Cb) is then plotted and linearly regressed against18

the time t as shown in Figure C6-1.  The estimated pseudo first order dissipation rate19

constant is equal to the slope of the regression line.  Although ln Cb0 is generally known, a20

more accurate estimate of the slope and therefore the rate constant k can generally be21

obtained if the intercept is computed rather than forced through ln Cb0. 22
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By substituting C/Cb0 = 0.5 and t=t1/2 in to equation C6-3 and rearranging, it can be shown1

that the half-life t1/2 and pseudo first order rate constant k are related by:2

                                                      (Eq.3 t k tb1 2 1 22 2/ /ln / ln /= =       or       k  b

C6-4a,b)4

There may be more than one pathway by which a chemical dissipates. For chemicals5

following pseudo first order dissipation kinetics, the overall pseudo first order dissipation6

rate constant k is given by:7

                                                                                                                 8 k ki
i

i n

=
=

=

∑
1

(Eq. C6-5)9

where10

ki = pseudo first order rate constant for dissipation pathway i11

n = number of dissipation pathways contributing to the overall dissipation12

In cases where the dissipation of a chemical fits a single rate constant pseudo first order13

kinetics model over the entire study duration, a plot of the natural logarithm of the14

concentration (ln C) versus time will be approximately linear.15

Unfortunately, the dissipation of a chemical often does not fit a single rate constant16

pseudo first kinetics model very well over the entire duration of the study. In such cases, a17

plot of the natural logarithm of the concentration (ln C) versus time will not be linear.  It18

will often appear temporally "biphasic" with the first phase having a substantially steeper19

slope than the second phase (Figure C6-1).  The reasons for observed "biphasic" behavior20

may vary and have not been firmly established.  Some reasons may include some of the21
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chemical being gradually and irreversibly imbedded into the environmental media to a1

sufficient extent to inhibit dissipation processes,  declines in microbiological activity over2

time, and the complexity of some dissipation processes such as volatilization.3

C6.2  Biphasic Pseudo First Order Kinetics Linear Regression Model4

Biphasic data can be fit to a number of different regression models. The most commonly5

used one is the biphasic linear regression model in which ln C is plotted against time. The6

plot is essentially divided by eye into an initial and subsequent phase representing different7

slopes. Linear regression of ln C versus time is then performed on both phases separately8

to estimate a rate constant and corresponding half-life for each phase. An example is9

presented in Figure C6-1, where the ln concentration versus time plot has been divided10

into an initial phase from t = 0 to t = T1 and a second phase from t = T1 to the end of the11

study at t = T2.  The overall pseudo first order rate constants k1 and k2 (one for each12

phase) are computed from the slopes of linear regressions performed separably on ln C13

versus time for the first and second phases.14

The half-life corresponding to each rate constant can be computed from equation C6-4a,15

and is generally reported along with the duration of each phase.  Note, however that the16

half-life corresponding to each rate constant and the duration of the phase over which the17

rate constant is applicable are not the same thing. The first phase can be shorter,18

comparable to, or longer than the initial half-life corresponding to the first phase rate19

constant. Likewise, the second phase can be shorter, comparable to, or longer than the20

second half-life corresponding to the second phase rate constant.21

The resulting estimates of pseudo first order rate constants for each phase can in some22

cases also be used as input to some computer models. However, the biphasic regression23

model itself is not very realistic because it assumes the shift from one slope to another is24

essentially instantaneous whereas a more gradual shift in the slope is generally observed. 25
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Consequently, it is sometimes difficult and somewhat arbitrary to determine when the first1

phase ends and the second phase begins.2

C6.3  Non-linear Regression Models3

Whenever the data do not fit a single rate constant pseudo first order kinetics linear4

regression model very well over the entire duration of a study, there are a large number of5

alternate non-linear regression models which can also be fit to kinetics data.  Fortunately,6

the widespread availability of relatively low cost spreadsheets and statistical software has7

made performing non-linear regression more routine than in the past.  Several of many8

possible alternate non-linear regression models are discussed below.9

Non-linear regression models which can be used to fit observed chemical dissipation data10

include applying non-linear regression to the untransformed form of the single rate11

constant pseudo first order kinetics model, an empirical n order model, a reversible12

equilibrium 2 compartment model, a reversible non-equilibrium 2 compartment model, and13

a non-reversible non-equilibrium 2 compartment model. All of those models except the14

empirical n order model are also pseudo first order kinetics models.15

C6.4  Single Rate Constant Pseudo First Order Kinetics Non-Linear Regression16

Model17

As previously discussed, the single rate constant pseudo first order kinetics model Cb(t) =18

Cb0exp(-kbt) is often ln transformed to a linear form and the data is analyzed using linear19

regression.  In addition to allowing for simple linear regression, the ln transformation helps20

to stabilize any systematic increase in residuals with increasing concentration.  A ln21

transformation also results in higher (and therefore more conservative) estimates of the22

half-life than non-linear regression.  Consequently, ln transformations to a linear form23

followed by linear regression are sometimes recommended over non-linear regression on24

the untransformed data, particularly for data that fit reasonably well to a pseudo first order25
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kinetics model.  However, in cases where the fit is not good using ln transformations and1

linear regression, non-linear regression on untransformed dat sometimes gives a better fit2

of the data to the single rate constant pseudo first order kinetics model.  In addition, if3

other non-linear regression models are fit to the data, fitting the data to the single rate4

constant pseudo first order kinetics model using non-linear regression is more appropriate5

for comparative purposes.6

The r2 (0.846) for the non-linear regression of the untransformed hypothetical data set is7

greater than the r2 (0.740) for the linear regression of the ln transformed data.  The best fit8

linear regression line for the pseudo first order kinetics model is plotted in Figure C6-1 for9

comparison to the two best fit linear regression lines for the biphasic model.  The best fit10

non-linear regression line for the pseudo first order kinetics model is plotted in Figure C6-11

2 for comparison to best fit lines for other non-linear regression models. The estimate half-12

life based upon the non-linear regression (15 days) is substantially shorter than the13

estimated half-life (32 days) based upon the linear regression of ln transformed data.14

C6.5  Empirical N-Order Kinetics Non-Linear Regression Model 15

One empirical approach is to assume n-order kinetics:16

                                                                                                          17
dC

dt
k Cb

b b
n= −

(Eq. C6-6)18

Integrating the above equation and solving for the concentration C gives:19

                                                                     (Eq.20
( ) ( )[ ]C t C n k tb bo

n
b

n
( )

[ /( )]
= − −− −1 1 1

1

C6-7)21
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The rate constant kb and the order n can be estimated by non-linear regression of Cb1

against t.  The estimated values of k and n are the ones that minimize the sum of the2

squared residuals. 3

The times required for 50%, 75%, and 90% of the initial concentration to dissipate4

(DT50, DT75, and DT90 values) for an n-order kinetics model can be estimated by5

substituting Cb = 0.5Cb0, Cb = 0.25Cb0, and Cb = 0.1Cb0, respectively, into equation C6-7,6

and solving it for the time required to reach those levels:7

                                                           (Eq.8 [ ] ( )DT C C k nb
n

bo
n

b50 050 10
1 1= − −− −( ) ( ). /

C6-8)9

                                                           (Eq.10 [ ] ( )DT C C k nb
n

b
n

b75 0 25 10
1

0
1= − −− −( ) ( ). /

C6-9)11

                                                          (Eq.12 [ ] ( )DT C C k nb
n

b
n

b90 010 10
1

0
1= − −− −( ) ( ). /

C6-10)13

A non-linear regression fitting of the hypothetical data set to the empirical n-order kinetics14

model gave an initial concentration of 919 (as opposed to 900 monitored), a rate constant15

of k = 2.33 X 10-5, a reaction order of n = 2.26, and a r2 = 0.970 (compared to r2 = 0.84616

and r2 = 0.740 for the non-linear and linear regressions of the pseudo first order kinetics17

model, respectively).  Note that in this example, a best fit initial concentration was18

computed rather than forcing the regression line through the monitored initial19

concentration.  The best fit non-linear regression line for the n-order kinetics model is20

plotted in Figure C6-2.21

C6.6  Reversible Non-Equilibrium 2 Compartment Non-Linear Regression Model22
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There are numerous non-equilibrium and equilibrium compartment non-linear regression1

models that can be fit to "biphasic data".  One such model is the reversible non-equilibrium2

2 compartment non-linear regression model depicted below:3

      kads4

   --------->5

 W    kdes    S6

  <--------- 7

 |                |8

 |  kw          |   ks9

 |                |10

 V             V11

In the reversible non-equilibrium 2 compartment non-linear regression model depicted12

above, mass balance derived equations for chemical dissolved in pore water and13

susceptible to degradation (W - pore water) and chemical reversibly adsorbed to the solid14

matrix and susceptible to degradation (S - sorbed) are given by:15

                                                           (Eq.16 ( ) ( )dC

dt
k C k k Cw

des s w s w ads w= − +ρ θ/

C6-11)17

                                                             (Eq.18 ( ) ( )dC

dt
k C k k Cs

ads w s w s des s= − +θ ρ/

C6-12)19

where,20
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Cw = dissolved concentration (mass pesticide/pore water volume)1

Cs = reversibly sorbed labile concentration (mass pesticide/mass solid soil or plant matrix)2

1w = pore water volume fraction3

Ds = bulk density of soil or plant (dry weight mass of soil or plant/volume of soil or plant)4

kads = adsorption rate constant5

kdes = desorption rate constant6

kw = degradation rate constant for chemical dissolved in the pore water7

ks = degradation rate constant for reversibly sorbed chemical 8

Equations C6-11 and C6-12 must be solved simultaneously because the assumed9

reversible mass transfer between the 2 compartments causes the concentration in each10

compartment to be dependent upon the concentration in the other compartment.  To solve11

equations C6-11 and C6-12 simultaneously,  equation C6-11 is differentiated with respect12

to t and multiplied by (ks + kdes), equation C6-12 is multiplied by (kdesDs/1w), and the13

modified equations are added to give the following constant coefficient, second order14

homogeneous differential equation:15

                                                                                (Eq.16
d C

dt
D

dC

dt
FCw w

w

2

2 0+ + =

C6-13)17

where,18

                                                                                    (Eq.19 D k k k kw s ads des= + + +

C6-14)20

                                                                                (Eq.21 F k k k k k kw s w des s ads= + +

C6-15)22
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There are 3 different general solutions to equation C6-13 depending on whether D2 - 4F is1

> 0, = 0, or < 0.  As an example, for the most common case where D2 - 4F > 0, the2

general solution to Equation B1-14 is:3

                                                                 (Eq.4 C t A r t B r tw w w( ) exp( ) exp( )= +1 2

C6-16)5

where6

                                                                         (Eq.7 ( )[ ]r D D F1
2 1 2

4 2= − + −
/

/

C6-17)8

                                                                         (Eq.9 ( )[ ]r D D F2
2 1 2

4 2= − − −
/

/

C6-18)10

Specific solutions of equation C6-13 for which the coefficients in the general solution (Aw11

and Bw in equation C6-16) are specified depend upon the initial conditions.  Consider the12

following initial conditions at t=0:13

                                                                                (Eq. C6-14 C Cw w= =0 0          Cs  

19)15

                                                                               (Eq. C6-16 ( )dC

dt
k k Cw

w ads w= − + 0

20)17
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Under those initial conditions, the coefficients Aw and Bw are:1

                                                                              (Eq.2
( )

( )A
C k k r

r r
w

w w ads=
+ +

−
0 2

2 1

C6-21)3

                                                                                 (Eq.4
( )

( )B
C k k r

r r
w

w w ads=
+ +

−
0 1

1 2

C6-22)5

Substituting equation C6-16 for Cw into equation C6-12 and using integrating factors to6

solve equation C6-12 for Cs with the initial condition Cs0 = 0 gives:7

               (Eq.8

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]

C t
k A

r k k
r t k k t

k B

r k k
r t k k t

s
ads w w

s s des

s des

ads w w

s s des

s des

=
+ +













− − + +

+ +













− − +

θ

ρ

θ

ρ

1

1

2

2

exp exp[ ( ) ]

exp exp[ ]

C6-23)9

For a 2 compartment (pore water, solid matrix) model, the total bulk concentration Cb(t)10

is given by:11

                                                                          (Eq.12 ( )C t C t C tb w s w s( ) / ( ) ( )= +θ ρ

C6-24)13
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For a reversible non-equilibrium 2 compartment model, Cw(t) and Cs(t) are given by1

equations C6-16 and C6-23, respectively.2

In theory, bulk concentration data Cb(t) can be non-linearly regressed against sampling3

time t to determine numerous regression coefficients including one or more initial4

concentrations (depending upon the initial condition) and the pseudo first order rate5

constants kw, ks, kads and kdes.  In reality, the accurate determination of > 5 regression6

coefficients would require more numerous data points than are normally available.  In7

addition,  most computer models assume adsorption/desorption equilibrium and do not8

provide for adsorption and desorption rate constant inputs.9

C6.7  Non-Reversible Non-Equilibrium 2 Compartment Model10

This model is conceptually similar to the reversible non-equilibrium model, but in this11

model kdes is assumed to be zero such that there is no desorption from the solid matrix to12

the pore water. Setting kdes = 0 in equations B1-12 and B1-13 reduces them to:13

                                                                                         14 ( )dC

dt
k k Cw

w ads w= − +

(Eq. C6-25)15

                                                                             16 ( )dC

dt
k C k Cs

ads w s w s s= −θ ρ/

(Eq. C6-26)17

Because the pore water and the solid matrix are not reversibly coupled in this non-18

reversible non-equilibrium 2 compartment model, equations C6-25 and C6-26 do not have19

to be solved simultaneously.  Although the concentration in the solid matrix is dependent20

on the concentration in the pore water, the concentration in the pore water is not21
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dependent on the concentration in the solid matrix in a non-reversible non-equilibrium1

model where there is no assumed desorption from the solid matrix.2

Solving equation C6-25 for Cw with the initial condition Cw(t=0) = Cw0 gives:3

                                                                    (Eq.4 C t C t k k tw w w ads( ) ( ) exp[ ( ) ]= − +0

C6-27)5

Substituting equation C6-27 for Cw into equation C6-26 and using integrating factors to6

solve equation C6-26 for Cs with the initial condition Cs0 = 0 gives:7

                 (Eq.8 ( ) [ ]C t
k C

k k k
k k t k ts

ads w w

s s w ads

w ads s( ) exp[ ( ) ] exp( )=
− −













− + − −
θ

ρ
0

C6-28)9

For a 2 compartment model, recall that the total bulk concentration Cb(t) is given by10

equation C6-24.  For a non-reversible nonequilibrium 2 compartment model, Cw(t) and11

Cs(t) are given by equations C6-27 and C6-28, respectively.12

Substituting equation C6-27 for Cw(t) and equation C6-28 for Cs(t) into equation C6-2413

for the bulk concentration and grouping terms gives a biexponential form for Cb(t):14
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                    (Eq.1
( )

( )

C t
k

k k k
C k k t

k

k k k
C k t

b
w

s

ads w

s s w ads

w w ads

ads w

s s w ads

w s

( ) exp[ ( ) ]

exp( )

= +
− −













− + −

− −













−

θ
ρ

θ

ρ

θ

ρ

0

0
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The bulk concentration data Cb(t) can be non-linearly regressed against sampling time t to3

determine the regression coefficients including one or more initial concentrations4

(depending upon the initial condition) and the pseudo first order rate constants kw, ks, and5

kads.   The estimated values of kw, ks and kads are the ones that minimize the sum of the6

squared residuals.7

A non-linear regression fitting of the hypothetical data set to the non-reversible non-8

equilibrium 2 compartment model gave an initial pore water concentration of Cw0 = 4010,9

an adsorption rate constant of kads = 1.90 X 10-2, a degradation rate constant in the pore10

water of kw = 8.48 X 10-2, a degradation rate constant in the solid matrix of ks = 0, and a r211

= 0.988 (compared to r2 = 0.846 and r2 = 0.740 for the non-linear and linear regressions of12

the pseudo first order kinetics model, respectively).  The best fit non-linear regression line13

for the non-reversible non-equilibrium 2 compartment model is plotted in Figure C6-2.14

C6.8  Reversible Equilibrium 2 Compartment Non-Linear Regression Model15

Note that if chemical equilibrium is assumed between the pore water and solid matrix such16

that (kdesDs/1w)Cs = (kads)Cw  and  (kads1w/Ds)Cw = kdes)Cs, the mass balance equations for17

each are:18
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                                                                   (Eq.1
θ

ρ
θ

ρ
w s

s

w w s w

s
w

M dC

dt

M k
C







 = −









C6-30)2

                                                                                           (Eq.3 M
dC

dt
M k Cs

s
s s s= −

C6-31)4

where5

Cw = dissolved concentration (mass pesticide/pore water volume)6

Cs = reversibly sorbed labile concentration (mass pesticide/mass solid soil or plant matrix)7

1w = pore water volume fraction8

Ds = bulk density of soil or plant (dry weight mass of soil or plant/volume of soil or plant)9

kw = degradation rate constant for chemical dissolved in the pore water10

ks = degradation rate constant for reversibly sorbed chemical11

Assuming chemical equilibrium:12

                                                                                                             13 C K Cs d w=

(Eq. C6-32)14

 15

Substituting equation C6-32 for Cs into equation C6-31 gives:16

                                                                                (Eq.17 M K
dC

dt
M K k Cs d

w
s d s w= −

C6-33)18



C6-16

Adding equations C6-30 and C6-32 together and rearranging gives a total mass balance1

derived equation in terms of the pore water alone:2

                                                                                                        (Eq.3
dC

dt
k Cw

m w= −

C6-34)  4

                                                                                                                                 5

where6

                                                                                                 (Eq.7 k
k k

Km
w w s s

w s d

=
+

+
θ ρ
θ ρ

C6-35)8

Solving equation C6-34 with the initial condition Cw(t=0) = Cw0 gives9

                                                                                        10 C t C k tw w m( ) exp( )= −0

(Eq. C6-36)11

Recall that in a 2 compartment model (pore water, solid matrix), the bulk concentration is12

given by equation C6-24.  Substituting equation C6-35 for km into equation C6-36 for Cw,13

and equations C6-36 for Cw and equilibrium equation C6-32 for Cs in equation C6-24 for14

Cb gives:15

                                 (Eq.16 ( )[ ]C t K C
k k

K
tb w s d w

w w s s

w s d

( ) / exp= + −
+

+


















θ ρ

θ ρ
θ ρ0

C6-37)17
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The bulk concentration data Cb(t) can be non-linearly regressed against sampling time t to1

determine the regression coefficients including one or more initial concentrations2

(depending upon the initial condition), the pseudo first order rate constants kw and ks. The3

solid matrix/water equilibrium partition coefficient Kd can also be included as an additional4

regression coefficient or entered as a constant based upon the results of5

adsorption/desorption batch equilibrium studies. The estimated values of kw, ks and Kd are6

the ones that minimize the sum of the squared residuals.7

When equation C6-37 is simplified, it is in the same form as equation C6-2 for the single8

(bulk concentration) rate constant pseudo first order kinetics model where9

                                                                                  (Eq.10 ( )[ ]C K Cb w s d w0 0= +θ ρ/

C6-38)11

and12

                                                                                      (Eq.13 k k
k k

Kb m
w w s s

w s d

= =
+

+
θ ρ
θ ρ

C6-39)14

Therefore, when equation C6-37 for the reversible equilibrium 2 compartment non-linear15

regression model is simplified to be expressed in terms of the initial bulk concentration and16

an overall bulk concentration rate constant, it is identical to equation C6-2 for the single17

constant pseudo first order kinetics non-linear regression model.  Consequently, equation18

C6-37 cannot provide any better fit to biphasic data than equation C6-2. However, unlike19

performing non-linear regression on equation C6-2,  performing non-linear regression on20

equation C6-37 can provide separate estimates of the water (kw) and solid matrix (ks)21
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degradation rate constants as well as (if desired) for the solid matrix/water equilibrium1

partition coefficient Kd.2

That is an important difference because some computer models such as PRZM require as3

input, separate values of kw and ks instead of kb. However, in generating estimates of the4

regression coefficients, appropriate constraints should be placed on them such as setting5

all > 0 and setting kw > ks. If only kb is determined with the use of equation C6-2 instead of6

equation C6-37, default options such as assuming that both kw and ks are equal to kb have7

been proposed. However at least in some cases, the validity of such assumptions may be8

poor.9

C6.9  Formation and Decline Rate Constants for Major Degradates10

Estimates of rate constants for the formation and decline of major degradates can be input11

into computer models to simulate the formation and decline of the degradates.  Assuming12

pseudo first order kinetics, estimates of rate constants for the formation and decline of13

major degradates can sometimes be obtained by using nonlinear regression to fit time14

series data to the exponential solutions to the mass balance differential equation for each15

degradate.16

An example is as follows: Consider a combination series and parallel degradation pathway17

in which the parent chemical P simultaneously degrades to primary degradates D1 and D218

which in turn each simultaneously degrade to secondary degradates S1A and S1B, and S2A19

and S2B, respectively:20

                                          kD1SA         kS1A21

                                         +--------> S1A ------->22

              kPD1         kD1  *23

             -------> D1 ------>124
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            *                           * kD1SB         kS1B1

    kP    *                           .--------> S1B ------->2

P ----->1                             kD2SA         kS2A3

            *                            +--------> S2A ------->4

            * kPD2         kD2  *5

            .-------> D2 ------>16

                                         * kD2SB         kS2B7

                                         .--------> S2B ------->8

Since the parent P is undergoing parallel degradation, its    overall rate constant is equal to9

the sum of the formation rate constants for the primary degradates D1 and D2 (e.g.,  kP =10

kPD1 + kPD2). Since the primary degradates are also both undergoing  parallel degradation,11

their overall decline constants are each equal to the sum of the formation constants for the12

secondary degradates they form (e.g., kD1 = kD1SA + kD1SB and kD2 = kD2SA + kD2SB).13

To determine formation and decline rate constants for the primary degradate D1 and the14

secondary degradate S1A, generate for the parent and each degradate a mass balance15

differential equation describing its change in concentration with time:16

                                                                                                        (Eq.17
d P

dt
k tp

[ ]
= −

C6-40)18

                                                                                 (Eq.19
d D

dt
k P k DPD D

[ ]
[ ] [ ]1

1 1 1= −

C6-41)20
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                                                                        (Eq.1
d S

dt
k D k SA

D SA S A A

[ ]
[ ] [ ]1

1 1 1 1= −

C6-42)2

At t = 0, [P] = [P]0, [D1] = 0, and [S1A] = 03

The solutions to differential Equations C6-40 through C6-42 with the above stated initial4

conditions are as follows:5

                                                                                         (Eq.6 [ ] [ ] exp( )P P k tP= −0

C6-43)7

                                            (Eq.8 ( ) [ ][ ]
[ ]

exp( ) exp( )D
k P

k k
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D P

P D1
1 0

1

1=
−
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
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− − −

C6-44)9

     (Eq.10 [ ] [ ][ ] exp( ) exp( ) exp( ) exp(S A k t k t B k t k tA P S A D S A1 1 1 1= − − − − − − −

C6-45)11

where12

                                                                               (Eq.13 ( )( )A
k k P

k k k k
D SA PD

D P S A P

=
− −

1 1 0

1 1

[ ]

C6-46)14
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                                                                            (Eq.1 ( )( )B
k k P

k k k k
D SA PD

D P S A D

=
− −

1 1 0

1 1 1

[ ]

C6-47)2

Note that concentrations should be in units of moles/volume rather than mass/volume to3

maintain the correct stoichiometric relationship between the parent, primary degradates,4

and secondary degradates.5

The overall rate constant for the parent kP can be calculated from the non-linear regression6

fitting of equation C6-43 to a plot of [P] data versus time t.  The formation and decline7

rate constants for primary degradate D1 (kPD1 and kD1, respectively) can be determined8

from the non-linear regression fitting of equation C6-44 (after substitution of the value for9

kP into the equation) to a plot of [D1] versus time t.  The formation and decline rate10

constants for the secondary degradate S1A (kD1SA and kS1A, respectively) can be determined11

from the non-linear regression fitting of equation C6-45 (after substitution of the values12

for kP, kPD1, and kD1 into the equation) to a plot of [S1A] versus time t.13

An identical procedure could be used to determine formation and decline rate constants14

for the other primary and secondary degradates.  In addition, alternate degradation15

pathways could be handled with comparable procedures.  If numerical methods of solution16

are used, equations for non-first order processes can also be developed.17
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APPENDIX C71

U.S. EPA/OPP REQUIRED FATE AND/OR RESIDUE STUDIES2

The Environmental Fate and Effects Division (EFED) and the Health Effects Division3

(HED) of the Office of Pesticide Programs (OPP) of the U.S. EPA require pesticide4

registrants to submit numerous pesticide studies.  The results of the studies help OPP5

evaluate the potential exposure and risks to non-target organisms and humans associated6

with pesticide use.  Studies of interest with respect to terrestrial exposure assessments7

include laboratory fate studies, field fate and residue studies, and ecological residue/effects8

studies.9

The core environmental fate data requirements U.S. EPA/OPP/EFED imposes for the10

registration of pesticides in the U.S. (CFR 158) depend primarily upon the uses of the11

pesticide.  The criteria for imposing conditionally required studies depend upon other12

factors as well including the physical/chemical, fate and (in some cases) the toxicity of the13

parent and/or major degradates.  Both core and conditionally required studies are heavily14

oriented toward soil and water.15

Pesticide residue data in the field are obtained from EFED required fate field studies,16

EFED required ecological residue/effects field studies, and from HED required residue17

studies.18

C7.1  OPP/EFED Required Laboratory Fate Studies19

EFED required laboratory transformation studies (study requirements vary depending20

upon the pesticide's use and/or characteristics) include abiotic hydrolysis, direct photolysis21

in water, photodegradation on soil, photodegradation in air, aerobic soil metabolism,22



C7-2

anaerobic soil metabolism, aerobic aquatic metabolism, and anaerobic aquatic metabolism. 1

Laboratory transformation studies are conducted under controlled conditions generally2

using the radiolabeled active ingredient of one or more pesticide products.  Laboratory3

transformation studies determine the transformation pathways of the parent and major4

degradates, the decline rates of the parent and the formation and decline rates of major5

degradates.  Parental decline rates are reported as half-lives and/or DT50s.  A major6

degradate is defined as one accounting for > 10% of applied or present at > 0.01mg/kg7

(whichever is lower) at any time during any laboratory study.8

EFED required laboratory mobility studies (study requirements vary depending upon the9

pesticide's use and/or characteristics) include adsorption/desorption batch equilibrium, soil10

column leaching, and volatilization from soil.  The adsorption/desorption batch equilibrium11

study generates Freundlich adsorption and desorption binding constants and exponents for12

the parent and major degradates.  The soil column leaching study determines the mobility13

of the parent and major degradates in soil columns eluted with 20 or more inches of water. 14

The volatility from soil study determines the flux of pesticides (in mass/time*area) from15

soil including those incorporated as well as not incorporated into the soil.16

The laboratory fish BCF study determines the accumulation and depuration of pesticides17

and their major degradates in whole fish, edible tissues, and non-edible tissues.18

The results of the EFED laboratory fate studies are used for developing input to19

environmental fate and transport models.  The results of laboratory fate studies are also20

used to develop protocols for conducting field studies.21

C7.2  OPP/EFED Required Field Fate Studies22

EFED required field fate studies (study requirements vary depending upon the pesticide's23

use and/or characteristics) include terrestrial field dissipation, aquatic field dissipation,24

forestry dissipation25
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Field fate studies are conducted under actual use conditions using one or more formulated1

pesticide products.  In a terrestrial field dissipation study, soil cores up to 90 cm deep are2

collected at various sampling intervals, segmented at various widths and analyzed for3

parent and major degradates. Foliage is only rarely sampled.  In an aquatic field dissipation4

study, samples of water to various depths and of sediment to a depth of 5 cm are collected5

at various sampling intervals and analyzed for the parent and major degradates.  In a6

forestry dissipation study, samples of foliage, leaf litter, soil under leaf litter, exposed soil,7

standing (pond) water, flowing (stream) water, and sediment from water bodies are8

sampled at various sampling intervals and analyzed for the parent and major degradates.9

In all of the different fate field studies, The dissipation of the parent and formation and10

decline of major degradates are generally presented tabularly and graphically as11

concentration versus time series for any environmental compartments for which the12

number of detects is sufficient to do so.  The dissipation of the parent in the various13

environmental compartments monitored is also characterized by computed half-lives and14

or DT50s.15

The results of field fate studies are typically not used for inputs to models because they16

reflect the overall dissipation of the chemical from potentially multiple dissipation17

pathways whereas models generally require separate inputs for different dissipation18

pathways.  However, the results of the EFED field studies are compared to modeling19

outputs and are used to assess the overall environmental fate of a pesticide and its major20

degradates resulting from multiple dissipation pathways.21

C7.3  Spray Drift Studies and the Spray Drift Task Force (SDTF)22

Estimates of spray drift deposition as a function of distance downwind from the23

application site are necessary to predict residues on/in vegetation as well as on/in soil and24

in water.  Spray drift droplet size laboratory and spray drift field studies are required for25

outdoor aerial or orchard airblast spray uses. They are also conditionally required for26
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outdoor ground spray or chemigation in cases where such applications may result in1

substantial drift.2

The Spray Drift Task Force (SDTF) is a consortium of approximately 40 registrants that3

was formed in 1990 to (A. Jones, Clem, Thurman 1997):4

(1) Conduct studies to investigate the affect of tank mixture properties, application5

equipment, application conditions and meteorological conditions on droplet size spectra6

and spray drift deposition.7

(2) Develop a generic tank mixture property, droplet size distribution and spray drift8

deposition database that would presumably be independent of the properties of specific9

active ingredients.10

(3) Develop or modify an existing spray drift model for use in supporting pesticide11

registrations under FIFRA.12

The rationale for forming the SDTF was based on literature reviews that indicated (A.13

Jones, Clem, and Thurman 1997):14

(1) Spray drift depends primarily upon the droplet size spectra, meteorological conditions,15

and application method, equipment, and height.16

(2) The droplet size spectra depend in turn primarily upon the properties of the tank17

mixture, wind shear, and nozzle type, size, angle and operating pressure.18

(3) The physical and chemical properties of the active ingredient had negligible effect on19

the physical properties of the tank mixture, the droplet size distribution, and spray drift.20
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The results of the SDTF research and the AGDRIFT model developed by the SDTF for1

estimating spray drift are currently being assessed by OPP and external peer review.2

C7.4  EFED Terrestrial Ecological Residue/Effects Studies3

Over a number of years, EFED has required and/or received approximately 34 terrestrial4

ecological residue/effects studies covering 15 pesticides.  The studies involve treating5

fields with maximum allowed numbers of applications and application rates. Various6

environmental media (including soil, water, vegetation, birds, mammals, and occasionally7

amphibians) were sampled at various sampling intervals.  The samples were analyzed for8

the parent and occasionally for major degradates as well.  Observed effects on non-target9

organisms were also reported.10

C7.5  HED Worker Inhalation Exposure Studies11

Inhalation exposure studies are imposed by HED/OPP to determine the inhalation12

exposure of pesticide applicator workers (applicators and flaggers) during application and13

of farm workers post-application.  The studies occasionally involve the collection of air14

grab samples and the direct determination of pesticide concentrations in the air.  However,15

in most cases, sampling is done by test personnel wearing air pump samplers and results16

are reported in mass of pesticide collected in the trapping medium over the sampling17

interval.18

Such data can presumably be converted to approximate average air concentrations over19

the sampling interval by dividing the mass of pesticide collected by the product of the air20

flow times the sampling interval.  The resulting air concentrations will be total air21

concentrations reflecting pesticide adsorbed to particulate matter as well as pesticide in the22

vapor phase.23
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C7.6  HED Foliar Dislodgeable Residue Studies1

The U.S. EPA/OPP/HED requires foliar dislodgeable residue studies for foliarly applied2

pesticides of concern for potential risks to humans.  The results of the studies are used to3

help determine a safe post-application re-entry interval.  Crops and/or lawn/turf are treated4

at maximum application rates. Foliar samples are generally collected just before5

application and at 1/6, 1/2, 1, 2, 4, 7, 10, 14, 21, 28, and 35 days post-application.6

Although of potential use in terrestrial exposure assessments, dislodgeable residues reflect7

only a part of the total foliar residues ingested by a bird or mammal ingesting8

contaminated foliage.  Furthermore, the percentage of registered pesticides for which the9

foliar dislodgeable residue study has been required is relatively small.10

C7.7  HED Crop Residue Studies11

The U.S. EPA/OPP/HED requires crop residue studies for pesticides foliarly applied to12

food crops.  The results of the studies are used to help determine tolerances and post-13

harvest intervals.  Crop residue studies involve the determination of total rather than14

dislodgeable residues and are required for a much higher percentage of registered15

pesticides than the foliar dislodgeable study.  However, such studies rarely include more16

than two sampling times (immediately post-application and at the end of the proposed17

post-harvest interval).  Indeed, many of the studies only include a sampling time at the end18

of the proposed post-harvest interval.19
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APPENDIX C81

ENVIRONMENTAL DATABASES2

Types of environmental data/databases relevant to computer estimates of pesticide3

residues for terrestrial exposure assessments include fate, spray drift, pesticide use, crop4

distribution, land use, soil property, crop property and weather.  Types of pesticide5

residue data/databases include foliar, insect, mixed media, and surface water.6

C8.1  ARS/NRCS/USDA Pesticide Properties (Fate) Database7

The ARS/NRCS/USDA maintains a chemical/fate pesticide properties database which lists8

one or more values for up to 18 chemical/fate properties for 335 pesticides.  The database9

can be accessed and down loaded at www.arusda.gov/ppdb.html.  Properties for which10

data are listed include hydrolysis, direct photolysis in water, photodegradation on soil,11

aerobic soil, anaerobic soil, and terrestrial field dissipation half-lives and/or rate constants.12

Other properties of interest for which data are listed include soil/water partition13

coefficients (Kd values), air/water partition coefficients (Henry's Law Constant values),14

and the octanol/water partition coefficient.15

The ARS database is well maintained and reasonably up to date compared to the16

EFED/OPP fate database.  It is of value in performing preliminary assessments of17

individual pesticides and preliminary comparative assessments across different chemicals.18

However, it should not be relied on heavily for performing more definitive assessments for19

regulatory purposes.  The reason is that a substantial number of the studies producing the20

data have not been reviewed by independent parties such as the OPP/EFED.  In addition,21

like the EFED fate database, information on the experimental media and conditions22

associated with the data23
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is minimal.1

C8.2  The U.S. EPA/OPP/EFED Environmental Fate (One-Liner) Database2

The U.S. EPA/OPP maintains a chemical/fate pesticide properties database that is3

comparable to that of the ARS/NRCS/USDA database.  The U.S. EPA/OPP database has4

both advantages and disadvantages compared to the ARS/USDA database.5

The OPP database covers more pesticides than the ARS database and includes only data6

that has been reviewed by OPP scientists and judged to be acceptable for use in fate and7

exposure assessments. Unlike the USDA/ARS/NRCS database, the U.S. EPA/OPP8

database does contain data from aquatic metabolism and aquatic field dissipation studies. 9

However, it has not been as well maintained as the ARS database, and even though is10

covers more pesticides, it often provides less information per pesticide than the ARS11

database.  In addition, it frequently contains errors such as failures to differentiate between12

Freundlich binding constants and Kd values, failure to correct reported photodegradation13

half-lives for dark controls, and reported half-lives and DT50s based on one or two of the14

data points instead of regression on all the data points.15

Like the ARS database, the OPP database is of some value in performing preliminary16

assessments of individual pesticides and preliminary comparative assessments across17

different chemicals. However, it should not be relied on heavily for performing more18

definitive assessments for regulatory purposes.19

C8.3  Spray Drift Task Force (SDTF) Database20

Based upon studies conducted by the SDTF, the SDTF has developed a generic database21

containing data on:22
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1) Physical properties (dynamic surface tension, shear viscosity, extensional viscosity) of1

various tank mixtures that were used in droplet size distribution and spray drift deposition2

studies.  The physical properties studied were those thought to potentially have significant3

affects on droplet size distributions and therefore on spray drift.4

2) Wind tunnel determined droplet size distributions for numerous combinations of5

different tank mixtures, nozzle types, nozzle sizes, nozzle angles, nozzle pressure and6

windstream velocities.  Most tank mixtures were aqueous based, but a few oil based7

mixtures were included.8

3) Spray drift deposition as a function of distance for aerial spray, orchard airblast, ground9

spray, and chemigation with aerial spray drift trials being by far the most numerous.  Spray10

drift trials were conducted for numerous combinations of different tank mixtures, droplet11

size distributions, nozzle properties, release height, boom length, airplane speed, and12

meteorological conditions including wind speed and direction, temperature, and relative 13

humidity.  However, no experiments were conducted under stable atmospheric conditions.14

C8.4  Pesticide Use Databases and Maps15

Non-proprietary estimated pesticide use data are maintained by USDA's National16

Agricultural Statistical Service (NASS) and the private company Resources for the Future. 17

Downloadable information on specific pesticide uses by states and crop is available for18

major row crops, fruits, and vegetables at the following USDA/NASS internet address:19

www.usda.gov/nass/pubs/pubs.htm.  The information on pesticide uses on row crops is20

updated yearly whereas information on pesticide uses on fruits and vegetables is updated21

alternately every other year.22

Estimated pesticide use on a county scale is available through the Census of Agriculture23

which is conducted at 5 year intervals. Downloadable Census of Agriculture data can be24
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obtained at the following USDA/NASS internet address: www.usda.gov/census/.  To help1

interpret the results of analyses for pesticides in water samples collected as part of the on-2

going National Water Quality Assessment Program (NAWQA), the USGS has used the3

1992 Census of Agriculture data to generate nationwide pesticide use maps for numerous4

pesticides.  The nationwide pesticide use maps can be downloaded from the following5

USGS internet address: http://water.wr.usgs.gov/pnsp/use92/.6

C8.5  Crop Distribution and Land Use Databases and Maps7

Estimated crop distribution on a county scale is available in the Census of Agriculture8

which is conducted at 5 year intervals.  Downloadable Census of Agriculture data can be9

obtained at the following USDA/NASS internet address: www.usda.gov/census/.  Down10

loadable maps showing 1997 nationwide distributions of major row crops, and 199211

nationwide distributions of additional row crops as well as numerous vegetables, fruits and12

nuts can be obtained from that internet address as well.13

Nationwide information distributed separately by state on numerous factors including land14

use, land cover, major crops, soil properties, geographic distribution of soils, wetlands,15

wildlife habitats, erosion, and conservation practices/needs is available in the National16

Resource Inventory (NRI) which is conducted by the NRCS every 5 years.  Summary17

tables and graphs can be downloaded at the following USDA/NRCS address:18

www.nhq.nrcs.usda.gov/NRI/maps.html.19

C8.6  Soil Property and Soil Geographic Databases and Maps20

The following descriptions of soil property and soil geographic databases are based21

primarily upon information provided by the National Resource Conservation Service22

(NCRS) at the following internet addresses: www.nrcs.usda.gov/.  More specific23

information and downloadable data files from the databases can be obtained at the same24

internet address. 25
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The NRCS has published thousands of soil surveys conducted throughout the United1

States.  The area covered by each soil survey was typically that of a single county with a2

few exceptions such as some National Parks and Forests.  To house the soil survey data,3

the NRCS maintains a soil attribute database (MUIR) and several related soil geographic4

databases.  MUIR lists for > 30,000 soil series phases within the U.S., various site5

descriptive characteristics (such as depth to groundwater and potential crops) and up to6

28 physical and chemical properties (such as horizon depth, bulk density, water capacity,7

and organic matter) for up to 6 vertical horizons (layers).  The soil attribute database8

MUIR is linked to several different soil geographic databases that differ in scale9

(SSURGO, STATSGO, and NATSGO).10

The base map of the NATSGO soil geographic database is the USDA classified Major11

Land Resource Area (MLRA).  There are 189 MRLAs in the U.S. (excluding Alaska) and12

another 15 MRLAs covering Alaska. Descriptions of the MRLAs including topography,13

land use, crops grown, climate summaries, and the predominant soil series in each are14

contained in SCS Agricultural Handbook 296 entitled "Land Resource Regions and Major15

Land Resource Areas of the United States."16

C8.7  Weather Data17

Historical daily weather data collected for many years from approximately 300 hundred of18

the NOAA first order weather stations are maintained by the National Climatic Data19

Center (NCDC).  The data can be downloaded from the following NOAA/NCDC internet20

address: www.ncdc.noaa.gov/ol/climate/climatedata.html.  The data (referred to as21

"National Weather Service Summary of the Day" data) include 16 daily parameters which22

are sufficient to satisfy most model input requirements.23

For use in the PRZM model, the USEPA's Center for Exposure Assessment Modeling24

(CEAM) maintains a weather database specifically designed for input into the PRZM25
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model.  In the database, various MRLAs are each represented by the single NOAA first1

order weather closest to the centroid of the given MRLA. Information on how to obtain2

the MRLA based weather database can be obtained from the following USEPA/CEAM3

internet address: www.epa.gov/epa_ceam/wwwhtml/ceamhome.htm4

C8.8  Foliar Residue Data/Databases5

C8.8.1 HED Required Studies6

Some foliar residue data derived from U.S. EPA/OPP/HED required foliar dislodgeable7

residue and crop residue data are contained in a database maintained by U.S.8

EPA/OPP/HED.  A discussion on the types of data available from HED required studies is9

provided in Section 5.3.2.10

C8.8.2 Hoerger and Kenaga (1972)11

Hoerger and Kenaga (1972) evaluated several hundred published articles and selected 2212

publications that would represent the maximum possible residue levels on vegetation. 13

Using data compiled by Hoerger and Kenaga (1972), the Kenaga nomogram was14

developed by EPA to predict the maximum pesticide residue immediately following spray15

application to vegetation (Fig. 4352).  The vegetation was categorized into six types of16

plants or plant parts: short range grass, long grass, leafy crop leaves, legume forages,17

legume pods containing seeds, and fruit.18

The nomogram is based upon an assumed linear relationship between application rate and19

residue level on the vegetation (expressed as mg residue/kg fresh weight plant material). 20

The Kenaga nomogram has been criticized because it is based upon fresh (instead of dry)21

weight, it is based upon a selective data base of high residue levels only,  considers only22
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pesticides used prior to 1972, does not separate spray application from granular and1

systemic pesticides, and does not consider plant morphological differences (pubescence).2

The raw data upon which the Hoerger and Kenega (1972) paper was based is not directly3

available.  The data could be recompiled from the references they provided in their paper. 4

However, most of the data referred to in the paper were collected in the 1950s and 1960s5

and include many pesticides no longer registered.6

C8.8.3 Fletcher etal 1994 and the UTAB Foliar Residue Database7

During the greater than 20 years following development of the Kenaga nomogram, 10 of8

the 27 pesticides used in the original data base were banned or no longer registered for use9

in the U.S.  Additionally, several new pesticides were registered for use.  Thus, Fletcher et10

al. (1994) reviewed the Kenaga nomogram using information from the UTAB data base at11

the University of Oklahoma and compared pesticide residue levels predicted using the12

Kenaga nomogram to levels reported in the literature.  The UTAB data base was larger13

and represented more current pesticide usage than the original information used by14

Hoerger and Kenaga (1972).  The database reportedly contains some foliar dissipation as15

well as day 0 residue values.  Fletcher, Nellessen, and Pfleeger (1994) describe the UTAB16

foliar residue database as having (at that time) "42,000 individual records pertaining to17

over 1000 different chemicals, 65% of which are pesticides".  Data were reportedly18

compiled from over 2100 published papers representing over 400 plant species, 95 plant19

families and "all major crops".20

The analysis by Fletcher et al. (1994) showed that day-0 levels predicted by the nomogram21

were, in general, accurate with the exceptions of the fruits and legume forages categories. 22

The recommendations were to increase the predicted residue levels for legume forages and23

fruits.  One solution was to combine the legume forages with the leafy crops and combine24

the fruits with the pods category, thus, reducing the original six categories to four25

categories.  Fletcher et al. (1994) also evaluated persistence of pesticides on vegetation26
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using various combinations of plant categories and pesticides.  The results were consistent1

with exponential decay curves with the exception of systemic pesticides applied as dust or2

granules.3

Pfleeger et al. (1996) evaluated the Kenaga nomogram using 6 pesticides applied to 154

plant species in a field study.  Residue levels were determined from day-0 up to day-32. 5

The results showed that about 10% of the data for day-0 residues exceeded the Kenaga6

nomogram prediction levels and the researchers indicated that the forage category be7

combined with the leafy crops and have a higher estimated residue level.  Considerable8

variation in pesticide residue levels in vegetation was noted even under controlled9

experimental conditions.  The authors questioned the validity of the assumption of a linear10

relationship between application rate and residue level at day-0.  Systemic pesticide11

residues in fruits were indicated as a concern because levels did not decrease over the12

duration of the experiment in all cases.  Dusts and granules were not evaluated in the field13

study.  The authors also noted that the Kenaga nomogram format is not suitable to adding14

pesticide degradation rate information because of the differences in chemical properties15

and dissipation rates on various vegetation types.  Pfleeger et al. (1996) concluded that the16

Kenaga nomogram was a reasonable regulatory device if care was exercised in selecting17

the plant category and residue levels.18

For illustrative purposes, the arithmetic means and standard deviations reported by19

Fletcher et. al (1994) from the UTAB database for the Hoerger and Kenega 1972 crop20

categories have been transformed into lognormal equivalents and used to generate21

theoretical lognormal distributions (See Section 3.12).  However, to determine if a22

lognormal distribution fits the data or another type of distributions fits the data better, we23

will have to obtain the raw data. 24

The U.S. EPA/OPP does not currently have access to the UTAB database, but is currently25

evaluating options for gaining access to it.  The U.S. EPA/OPP is also currently trying to26

obtain the raw data generated by Pfleeger etal (1995).27
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C8.8.4 Willis and McDowell (1986) Foliar Dissipation Half-lives1

Willis and McDowell (1986) performed a literature review on the interception of2

pesticides by crops.  Interception data were compiled for 15 pesticides, but only some of3

the data reported reflected actual interception by the plants studied (cotton, alfalfa, citrus4

trees, and apple trees).  The rest of the interception data were for non-crop targets such as5

glass plates, absorbent paper, fiberglass discs, and aluminum foil.6

Willis and McDowell (1986) briefly discuss factors affecting the magnitude of interception7

by vegetation including spray drift, droplet size, wax content of the leaves, formulations8

and adjuvants, and canopy cover.  They also indicate that the rapid volatilization losses9

from foliage frequently observed during the first few minutes to hours post-application10

may often lead to under reporting of interception in cases where foliar samples are not11

collected immediately post-application. 12

Decreases in the droplet size distribution increase spray drift and therefore decrease the13

amount of chemical striking the foliage. However, that is somewhat counter balanced by14

leaves retaining smaller droplets to a greater extent than larger droplets.15

Willis and McDowell (1986) also performed a literature review on the persistence of16

pesticides on foliage.  In cases where a reviewed article did not contain an estimated half-17

life, Willis and McDowell calculated one based on tabular or graphical data and an18

assumption of pseudo first order kinetics.  For purposes of tabular presentation and19

discussion, Willis and McDowell divided the pesticides for which data were reported into20

the following chemical family categories: organochlorines, organophosphates, carbamates,21

pyrethroids, and other (which consist of miscellaneous fungicides, insecticides, and22

herbicides).23

Willis and McDowell (1986) made no attempt to explicitly differentiate between washoff,24

volatilization, and other dissipation pathways.  However, rainfall amounts or 0 were listed25
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for those articles reporting rainfall and a "-" was listed for those articles that did not1

mention rainfall.2

Willis and McDowell (1986) indicated that the following  precautions should be observed3

in interpreting the half-lives reported in the tables.4

(1) The first precaution involves the possibility that the foliar sampling may be inadequate5

in some cases to capture or accurately characterize the rapid volatilization which6

frequently occurs during the first few minutes to 1-2 days post-application.  Frequent7

examples of inadequate foliar sampling include studies where initial foliar samples were8

collected 30 to 60 minutes rather than immediately post application and/or a second9

sample was not collected until 1-2 days post-application.  In such cases, the reported foliar10

dissipation half-life may be substantially greater than the actual half-life. 11

2) The second precaution involves cases where dislodgeable residues (those extracted with12

aqueous solution generally reflecting only surface residues) cannot be differentiated from13

total residues (those extracted with organic solvents generally reflecting both surface and14

internal residues).  In cases where an article being reviewed contained enough extraction15

methodology information to differentiate, Willis and McDowell indicated in the tables16

whether the data were for dislodgeable or total foliar residues.  However, in some cases17

there was not enough extraction methodology information provided in the article being18

reviewed for Willis and McDowell to do so.19

3) In reviewing the summarized half-life values, it is important to note the variability for a20

given pesticide-plant combination.  For example, malathion on cotton had half-life values21

ranging from 0.3 to 6.1 days, or approximately a 20-fold difference in values.  In addition,22

it should be noted that only foliage was considered in the review and no values were23

reported for fruit, seeds, pods, or roots.24
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Willis and McDowell (1986) discuss some of the factors affecting foliar dissipation rates. 1

They concluded that pesticide persistence was influenced by the distribution of the residue2

on the foliage, plant morphological (pubescence) and chemical (waxes) properties,3

pesticide properties and formulation, and weather factors (temperature, wind, relative4

humidity, and sunlight).5

Chemicals and/or formulations that are lipophilic may be able to penetrate leaves more6

readily and therefore be less susceptible to weathering than more hydrophilic chemicals7

and/or formulations. Rainfall generally increases overall dissipation rates via washoff, but8

in some cases may decrease overall dissipation rates by enhancing leaf penetration. 9

Increases in the overall dissipation rate with increasing temperature and wind speed appear10

to be due primarily to associated increases in volatilization rates. Increases in dissipation11

rates with increasing intensity and/or duration of sunlight may reflect photodegradation,12

but may also reflect any associated increases in temperature.13

For illustrative purposes, the arithmetic means and standard deviations of foliar dissipation14

half-lives reported by Willis and McDowell 1986 for dislodgeable and total residues for15

the Hoerger and Kenega 1972 crop categories have been transformed into lognormal16

equivalents and used to generate theoretical lognormal distributions for various chemical17

families (See ----).  However, to determine if a lognormal distribution fits the data or18

another type of distribution fits the data better, we will have to use a goodness of fit test19

such as the Chi-square test.20

C8.8.5 Beril Foliar Residue Database21

The Beril foliar residue database is a compilation of mostly day 0-1 foliar residue data22

from over 500 international references primarily from the 1970s and 1980s.  Data for23

numerous crops, pesticide active ingredients, and formulations are included. Data are24

generally expressed as mg/kg fresh weight, but are occasionally also expressed as ug/cm225

leaf surface area.26
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C8.9  EFED Terrestrial Ecological Residue/Effects Study Data (Multimedia)1

As previously indicated, the U.S. EPA/OPP/EFED has required and/or received2

approximately 34 terrestrial ecological residue/effects studies covering 15 pesticides.  The3

studies involve treating fields with maximum allowed numbers of applications and4

application rates. Various environmental media (including soil, water, vegetation, birds,5

mammals, and occasionally amphibians) were sampled at various sampling intervals.  The6

samples were analyzed 7

for the parent and occasionally for major degradates as well. Observed effects on non-8

target organisms were also reported.9

C8.10  Insect Residue Data/Databases10

See Sub-Section 3.10.6.311

C8.11  Surface Water Monitoring Databases12

The STORET database maintained by the U.S. EPA/OW  contains a vast amount of13

general water quality and pollutant monitoring data (including for various pesticides) for14

many sampling sites for up to > 30 years.  The data have been submitted by many federal,15

state, academic, and private organizations.  Organizations or individuals having accounts16

can access the STORET database directly.  Other organizations and individuals can obtain17

data indirectly by filling out a detailed request form and submitting it electronically or by18

mail to the U.S. EPA.  The internet site having the request form and to which the19

completed request form can be electronically submitted can be obtained by following20

menus at the general internet address www.epa.gov or at the following specific internet21

address: www.epa.gov/OWOW/STORET/.22
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The USGS National Water Quality Assessment Program (NAWQA) is an ongoing1

program to monitor the surface water and groundwater within 60 study units (representing2

60 river basins and/or aquifers) widely spread throughout the U.S.  Summaries of the3

NAWQA pesticide data for the first 3 years of sampling of the 20 study units in the first4

group are available on the internet as are downloadable raw pesticide data from some of5

the 20 study units within the first group.  The summaries and downloadable pesticide data6

can be obtained by following the menus at the general USGS internet address7

www.usgs.gov or at the following more specific internet address:8

water.wr.usgs.gov/pnsp/.  Although the NAWQA Program is providing a vast amount of9

data on pesticides in surface water, the utility of the data for terrestrial exposure10

assessments is somewhat limited by the data all being for flowing water instead of for11

ponds and lakes.12

The ongoing USGS Toxic Substances Hydrology Program is also a substantial source of13

data on pesticides in the surface water of the Midwest, Mississippi Delta, and the Mid-14

Atlantic Coastal Plain.  Data summaries and publication lists can be obtained by following15

the menus at the general USGS internet address www.usgs.gov or at the following more16

specific internet addresses: toxics.usgs.gov/toxics/regional/agchem-midwest.shtml,17

toxics.usgs.gov/toxics/regional/cotton.shtml.  Although the18

much of the pesticide data from the Toxic Substances Hydrology Program has also19

focused on flowing surface water, some data have also been collected on reservoirs and20

lakes.21

C8.12  Residues in Air Data22

Literature data on pesticides in air are somewhat limited and are primarily on high use23

herbicides in the midwest, in California, and around the Great Lakes. As part of the24

background for the NAWQA Program, the USGS conducted a comprehensive literature25

survey for data on pesticides in the atmosphere.  The results of the survey along with26
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discussions on factors affecting pesticide concentrations and distributions in air are1

presented in the following book:2

Majewski MS and Capel PD. 1995. Pesticides in the Atmosphere - Distribution, trends &3

governing factors. Ann Arbor Press, Chelsea MI, 228 pages.4
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APPENDIX C91

LEVEL 1 AND 2 INTERIM  ESTIMATES OF PESTICIDE2

CONCENTRATIONS IN ENVIRONMENTAL MEDIA3

Based upon the literature reviews by Golder Associates (1997) and Jorgensen (1995),4

there do not appear to be any residue computer models currently available that could be5

used to adequately generate distributions of pesticide residues in all relevant environmental6

media for use in probabilistic terrestrial exposure assessments. Consequently, interim7

methods of estimating pesticide concentrations in environmental media must be used until8

an adequate model can be developed9

C9.1:  Interim Level 1 and 2 Estimates of Concentrations in Environmental Media 10

Until an adequate residue computer model for use in terrestrial exposure assessments is11

developed, level 3 and 4 estimates of pesticide residue concentrations in environmental12

media will not be performed.  Interim level 1 single value estimates and level 213

distributional estimates of residues on/in soil, on/in plants, in water, and in air within the14

canopy can be based on existing models (PRZM, AgDRIFT, EXAMS) or on simpler mass15

balance models.  PRZM, AgDRIFT, and EXAMS will not directly provide level 1 and 216

estimates of residues on/in surface invertebrates, subterranean invertebrates (such as17

worms), and vertebrates.  However, estimates for invertebrates and vertebrates can be18

based upon the use of output from PRZM, AgDRIFT, and EXAMS as input into simple19

pseudo first order kinetic algorithms that can be run outside of PRZM, AgDRIFT, and20

EXAMS as described below.21

PRZM, AgDRIFT, and EXAMS cannot be currently used to generate distributions of22

interest with respect to terrestrial exposure assessments using Monte Carlo simulation. 23
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Although PRZM 3 has some Monte Carlo simulation capability, the output variables1

currently available in PRZM 3 for Monte Carlo simulation do not include pesticide2

concentrations on/in soil or plants.  Neither EXAMS nor AgDRIFT currently have any3

Monte Carlo simulation capabilities.4

PRZM 3, AgDRIFT, and EXAMS can probably be provided with adequate Monte Carlo5

simulation capabilities long before a new terrestrial exposure model is developed. 6

Although they cannot currently be coupled to Monte Carlo software such as @RISK or7

CRYSTAL BALL, the cost of developing software to do so is probably relatively low.  In8

fact, the FIFRA Model Validation Task Force is currently funding the development of an9

interface between PRZM 3 and CRYSTAL BALL. If PRZM 3, AgDRIFT, and EXAMS10

are provided with adequate Monte Carlo simulation capabilities, they can be used to11

generate interim level 1 single value estimates and level 2 distributional estimates of12

residues on/in soil, on/in plants, in water, and in air within the canopy until a new13

terrestrial exposure model is developed.14

Until PRZM 3, AgDRIFT, and EXAMS are provided with adequate Monte Carlo15

simulation capabilities, at least two options should be considered for generating interim16

level 1 single value estimates and level 2 distributional estimates of residues on/in soil,17

on/in plants, in water, and in air within the canopy.  One option is to use the current18

versions of PRZM 3, AgDRIFT, and EXAMS (despite their limited to no Monte Carlo19

simulation capabilities) to generate level 2 distributional estimates by running them20

deterministically over multiple years and sites.  The distribution of outputs generated by21

running the models deterministically over multiple years and sites should adequately reflect22

natural year to year variations in weather at a given site and natural variability in mean23

values between sites.Furthermore, nonsensical combinations of inputs that are sometimes24

present in Monte Carlo simulations due to inadequate and/or inaccurate accounting for25

correlation can be avoided.  However, unlike with Monte Carlo simulations, the26

distributional outputs will not reflect natural variability and/or measurement uncertainty in27

other sensitive input variables.28
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The other option is to use simpler mass balance based equations (discussed in greater1

detail below) in conjunction with deterministic outputs from AgDRIFT to generate interim2

level 1 single value estimates and level 2 distributional estimates of residues on/in soil,3

on/in plants, and in water, until PRZM 3, AgDRIFT, and EXAMS are provided with4

adequate Monte Carlo simulation capabilities.  Such equations can be easily entered into5

spreadsheets and readily undergo Monte Carlo simulations with the use of Monte Carlo6

software such as @Risk, Crystal Ball, or DistGEN.  The problems with such equations are7

that they are not coupled to weather, do not account for the effects of weather and8

hydrology on residue levels, and do not consider as many factors affecting residue levels9

as do PRZM 3 and EXAMS.10

Many of the simple mass balance equations described below have been or will be11

incorporated into the bird spray exposure PARET which is described in greater detail in12

another section.13

C9.2:  Interim Equations for Bulk Pesticide Concentrations in Soil 14

If PRZM 3 is used, it can print out the total and dissolved pesticide mass per unit volume15

of soil (in g/cm3) for each soil compartment layer at the beginning of each daily time step.16

A simpler one or two soil layer model for a spray targeted field and/or a field receiving17

spray drift is based upon the following mass balance equation for each layer:18

                                                           (Eq.19
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where21



C9-4

As = surface area of the soil (m2)1

Ws = width of the soil layer (m)2

Ds = bulk density of the soil (kg dry weight/m3)3

AsWsDs = mass of soil (kg dry weight)4

Cbs(i) = bulk concentration of chemical in soil (mg/kg dry weight soil)5

kbs = overall bulk soil first order dissipation rate constant  (1/day)6

Equation C9-1 does not explicitly account for losses from the soil due to physical7

transport processes such as leaching, runoff, uptake by plants, diffusion, and volatilization. 8

However, if the dissipation rate constants reported for field studies rather than the9

degradation/volatilization rate constants for lab studies are used in equation B6-1, some of10

those physical removal processes should be at least partially reflected in the magnitudes of11

the dissipation rate constants.12

Because the mass of soil (AsWsDs) in equation C9-1 is constant, it can be moved outside13

the derivative on the left side of equation C9-1, and then divided out of both sides of the14

equation to give:15

                                                                                               (Eq.16
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C9-2)17

Separating variables, integrating equation C9-2 from Cbs(i) = Cbs(t=ti) to Cbs(i) = Cbs(t=ti+1)18

and from t=ti from t=ti+1, and allowing for a possible instantaneous addition at the19

beginning of day i+1 at t=ti+1 due to direct application or to spray drift generates the20

following daily time step algorithm.  The algorithm gives the concentration of chemical in21

soil at the beginning of day i+1 at t=ti+1 in terms of the concentration at the beginning of22

the previous day i at t=ti:23
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C9-3)2

where3

Cbs(t=ti+1) = bulk concentration of chemical in soil at the beginning of day i+1 at t = ti+14

(mg)5

Cbs(t=ti) = bulk concentration of chemical in soil at the beginning of day i at t = ti (mg)6

Cbs(add)(t=ti+1) = added concentration of chemical in soil due to  direct application or7

to spray drift at the beginning of day i+1 at t=ti+18

kbs = overall bulk soil first order dissipation rate constant (1/day)9

ti = beginning of day i10

ti+1 = beginning of day i+111

1 day = (ti+1 - ti)12

Equation C9-3 is applicable to a one soil layer model or to both layers of a two soil layer13

model.  In a model not accounting for vertical movement due to leaching, a one layer14

model is adequate when a field receives only direct application (surface or incorporated),15

only spray drift, or a combination of surface direct application and spray drift.  A two layer16

model is only necessary when a field receives both incorporated direct application to a17

depth of I and spray drift to an assumed depth of 1 cm (0.01 m).18

For a one soil layer model with a surface direct application to the soil at t=ti+1 and with a19

small incorporation of 1 cm (0.01 m) assumed to be due to natural processes, Cbs(add)(t=ti+1)20

in equation 21

C9-3  is given by:22
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where3

fint(t=ti+1) = fraction of applied chemical intercepted by foliage when applied at the4

beginning of day i+1 at t=ti+15

fsd = fraction of applied loss by spray drift before hitting the targeted field6

App(t=ti+1) = nominal application rate at the beginning of day i+1 at t = ti+1 in mg7

chemical/m2 field (convert from lb/acre or kg/ha)8

0.01 m = assumed incorporation of surface applications due to natural process9

Ds = bulk soil density (kg dry soil/m3 of soil)10

For a one layer model or the top layer of a two layer model receiving a spray drift11

application to soil at t=ti+1 with a small incorporation of 1 cm (0.01 m) assumed to be due12

to natural processes, Cbs(add)(t=ti+1) in equation B6-3 is given by:13

          (Eq.14 [ ] [ ]C t t f t t SD App t tbs add i i avg i s( ) int( ) ( ) ( ) ( ) / .= = − = =+ + +1 1 11 0 01ρ

C9-5)15

where16

SDavg = the average spray drift depositional fraction on a field directly downwind is given17

by:18
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where3

SD(x) = spray drift depositional fraction as a function of distance x downwind from the4

edge of a treated field (expressed as a fraction of the application rate)5

x1 = distance downwind of front edge of the field6

x2 = distance downwind of back edge of the field7

For a one soil layer model or for both layers of a two soil layer model receiving an8

incorporated direct application at t=ti+1  with an incorporation depth of I, Cbs(add)(t=ti+1) in9

equation B6-3 is given by:10

                                          (Eq.11 ( )[ ]C t t fsd App t t Ibs add i i s( ) ( ) ( ) /= = − =+ +1 11 ρ

C9-7)12

where13

I = incorporation depth specified on the label (m)14

If equation C9-3 is used to compute the bulk concentration in the soil layer at the15

beginning of day i+1 at t=ti+1, the corresponding pore water concentration is given by:16



C9-8

                                                                (Eq.1 ( )C t t
C t t

K K
pw i

s bs i

w d s a H

( )
( )

= =
=

+ ++
+

1
1ρ

θ ρ φ

C9-8)2

where3

Cpw(t=ti+1) = concentration in soil pore water at the beginning of day i+1 at t=ti+14

Cbs(t=ti+1) = bulk concentration in soil at the beginning of day i+1 at t=ti+15

Ds = bulk density of soil6

1w = volumetric pore water fraction7

Kd = soil/water partition coefficient8

1a = volumetric pore air fraction9

KH = dimensionless Henry's Law constant10

C9.3:  Interim Equations for Concentrations on/in Plants Without Uptake by Plants11

If PRZM 3 is used, it can print out pesticide mass on the foliage per unit area of the field12

(mp) at the beginning of each daily time step.  However, as previously discussed, estimates13

of pesticide mass on foliage/area of the field (mp) need to be converted to pesticide14

mass/mass of plant (Cp) to be useful for terrestrial exposure assessments.  As previously15

discussed, the conversion can readily be made with equation C4-14 provided that the16

above ground biomass can be estimated at the beginning of each daily time step.  Although17

PRZM does not estimate biomass, a biomass growth algorithm run outside of PRZM18

could be used to do so provided the algorithm was consistent with the canopy cover19

models algorithms in PRZM.20

A simpler model for bulk plant concentration in a spray targeted field is based on the21

following mass balance equation:22
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                                                                         (Eq.1
( )d B C

dt
k B C

ag i p i

p ag i p i

( ) ( )

( ) ( )= −

C9-9)2

where3

Bag(i) = above ground plant biomass as a function of time on day i (kg dry weight)4

Cp(i) = concentration of chemical on plants as a function of time on day i (mg/kg dry5

weight)6

kp = overall bulk plant first order dissipation rate constant (1/day)7

Equation C9-9 does not explicitly account for uptake by the plant or losses from the plant8

due to washoff and volatilization.  However, if the dissipation rate constants reported for9

field studies rather than the degradation/volatilization rate constants for lab studies are10

used in equation B6-9, the uptake and washoff processes should be at least partially11

reflected in the magnitudes of the dissipation rate constants.12

Separating variables, integrating equation C9-9 from Bag(i)Cp(i) = Bag(t=ti)Cp(t=ti) to13

Bag(i)Cp(i) = Bag(t=ti+1)Cp(t=ti+1) and from t=ti from t=ti+1, allowing for a possible14

instantaneous addition at the beginning of day i+1 at t=ti+1 due to direct application or15

spray drift, and rearranging generates the following daily time step algorithm.  The16

algorithm gives the concentration of chemical on/in plants at the beginning of day i+1 at17

t=ti+1 in terms of the concentration at the beginning of the previous day i at t=ti:18
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(Eq. C9-10)1

where2

Cp(t=ti+1) =  chemical concentration on/in plants at the beginning of day i+1 at t=ti+13

(mg/kg dry weight)4

mp(add)(t=ti+1) = mass of chemical added to plants per unit field area at the beginning of day5

i+1 at t=ti+1 due to direct application or spray drift (mg/m2 field).6

Bag(t=ti) = above ground plant biomass per unit field area (kg dry weight/m2 of field)7

The plant biomass at the beginning of each day can be calculated separately from one of8

several plant growth models including an exponential growth model and several more9

complex alternatives that generate characteristic sigmoidal shape plant growth curves10

(Jorgensen 1995).11

For direct foliar application at t=ti+1, mp(add)(t=ti+1) in equation C9-10 is given by:12

                         (Eq.13 [ ]( )[ ]m t t f t t f App t tp add i i sd i( ) int( ) ( ) ( )= = = − =+ + +1 1 11

C9-11)14

where15

fint(i+1) =fraction intercepted by plant when chemical is applied at t=ti+116

fsd =  fraction loss by spray drift before hitting the targeted field17

App(i+1) =  nominal application rate at the beginning of day i+1 at t = ti+1in mg18

chemical/m2(convert from lb/acre or kg/ha)19
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As an alternative to computing the added mass of chemical on/in plants per unit field area1

mp(add)(t=ti+1) for direct application from equation C9-11 and then dividing by the biomass2

per unit field area Bag(t=ti+1),  mp(add)(t=ti+1)/Bag(t=ti+1) can be computed from the product of3

the Fletcher et. al (1994) time zero foliar residues (normalized to an application rate of 14

lb ai/acre) times the application rate.5

For spray drift to foliage at t=ti+1, mp(add)(t=ti+1) in equation C9-10 is given by:6

                               (Eq.7 [ ]( )[ ]m t t f t t SD App t tp add i i avg i( ) int( ) ( ) ( )= = = =+ + +1 1 1

C9-12)8

where9

SDavg = average spray drift deposition defined by equation C9-6. 10

As an alternative to computing the added mass of chemical on/in plants per unit field area11

mp(add)(t=ti+1) for spray drift from equation C9--12 and then dividing by the biomass per12

unit field area Bag(t=ti+1),  mp(add)(t=ti+1)/Bag(t=ti+1)can be computed from the product of the13

Fletcher et. al (1994) time zero foliar residues (normalized to an application rate of 1 lb14

ai/acre) times the application rate times the average spray drift deposition fraction for the15

field receiving the spray drift.16

Caution should be observed in using the Fletcher etal (1994) time zero foliar values17

because of the large uncertainties associated with  basing concentrations on a variable wet18

weight rather than a constant dry weight. Also, if residues on a wet weight basis are used19

to estimate ingestion dose, food intake must also be on a wet weight basis which may20

require the use of dry to wet factors (DWFs) to convert dry weight food ingestion to wet21

weight food ingestion.22
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C9.4: Interim Equations for Pesticide Concentrations on/in Plants With Uptake by1

Plants2

To take into account uptake by plants, the one and two layer soil models previously3

discussed will have to have an additional layer added extending from the bottom of the4

incorporation depth to the bottom of the root zone.  Although the concentration of the5

chemical in the pore water within the additional zone will be assumed to be zero, the plant6

will be allowed to extract water from it. 7

Adding a plant uptake term to plant mass balance equation C9-9 gives:8

                 (Eq.9
( )d B C

dt
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ag i p i
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=
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∑
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C9-13)10

where11

Cpw(j)(t=ti) =  pore water concentration at the start of day i at t=ti in soil compartment12

(layer) j (g/cm3)13

Qtrans(ij) =  transpiration flow on day i from soil layer j to the roots (cm3/day)14

j = soil layer index15

jmax(trans) = the deepest soil layer from which transpiration is extracted.16

In this case, jmax(trans) must be < 2 or < 3 depending on whether a 2 or 3 layer soil model is17

being used.  The relative transpiration contribution of each soil layer j on day i (Qtrans(ij)) to18

the overall transpiration on day i (Qtrans(i)) will depend on several factors including the root19

mass/area distribution, the soil moisture content relative to the wilting point, the depth of20
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the layer, and to what extent higher layers satisfied the transpiration demand (Carsel etal1

1997).2

The uptake term in equation C9-13 is a multiple layer version of ones in the PRZM 3,3

PLANTX, and PLANT models.4

The total transpiration on day i (Qtrans(i)) as well as well as the transpiration extracted from5

each soil layer j on day i (Qtrans(ij)) will increase with increasing biomass and leaf area index. 6

In a daily time step model, increases in transpiration can be reflected at the beginning of7

each day while still assuming that the transpiration remains constant during any given day. 8

Consequently, during any given day i, the uptake term in equation C9-13 can be9

considered constant such that:10

                                                            (Eq.11
( )d B C
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k B C

ag i p i
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C9-14)12

where13

                                                            (Eq.14
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C9-15)15

Separating variables, integrating equation C9-14 from Bag(i)Cp(i) = Bag(t=ti)Cp(t=ti) to16

Bag(i)Cp(i) = Bag(t=ti+1)Cp(t=ti+1) and from t=ti from t=ti+1, allowing for a possible17

instantaneous addition at the beginning of day i+1 at t=ti+1 due to direct application or18
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spray drift, and rearranging generates the following daily time step algorithm.  The1

algorithm gives the concentration of chemical on/in plants at the beginning of day i+1 at2

t=ti+1 in terms of the concentration at the beginning of the previous day i at t=ti:3

4
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[ ]C t t
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(Equation C9-16)5

C9.5:  Interim Equations for Pesticide Concentrations in Dew6

In a more sophisticated residue model, mass balance differential equations for residues in7

the dew, on/in plants, in soil and in any other environmental media with which they8

reversibly transfer chemical mass would be solved simultaneously.  In addition, the9

decrease in dew volume would be taken into account.  However, for a daily time step10

model in which the dew is assumed to form at the beginning of each day, but only last for11

a small fraction of the day, the equilibrium calculation provided above using an average12

dew volume should suffice for interim estimates.13

Assuming equilibrium between the chemical dissolved in dew water and the bulk14

concentration of the chemical on/in plants, and desorption of x chemical mass from the15

plant to the dew water,16
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                     (Eq.1 [ ] ( )C t t x A B t t K x A Dp i dew s ag i p w dew L dew( ) / ( ) //= − = =+ +1 1

C9-17)2

where3

Cp(t=ti+1) = bulk concentration in plant at the beginning of day i+1 at t = ti+1 in mg/kg4

dry weight plant5

xdew = chemical mass desorbed from plant tissue to dew water (mg)6

Bag(t=ti+1)(kg dry weight/m2 field)7

As = field area (m2)8

Kp/w = plant to water equilibrium partition coefficient9

AL = leaf area (m2)10

Ddew = dew depth (m)11

Solving equation C9-17 for xdew gives12

                                                       (Eq.13 [ ]x
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C9-18)14

                                                                           (Eq.15 C t t x A Ddew i dew L dew( ) /= =+1

C9-19)16

Substituting equation C9-18 for xdew into equation C9-19 gives:17



C9-16

                                      (Eq.1 [ ]C t t
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C9.6:  Interim equations for Concentrations in Puddles Assuming Constant Puddle3

Depth4

Assuming equilibrium between the sediment and puddle water and that the depth of the5

puddle water remains constant with time, coupled simple pseudo first order decline mass6

balance equations for puddles and sediment are given by:7

                             (Eq. C9-8 A D
dC

dt
A D k k Cpud pud

pud i

pud pud pud volatil pud i

( )

( )( )= − +

21)9

                                           (Eq.10 A D
dC

dt
A D k Cpud sed sed

sed
pud sed sed sed sed iρ ρ= − ( )

C9-22)11

where12

Apud = surface area of the puddle in the field (m2)13

Dpud = puddle depth (m)14

kpud = first order degradation rate constant for dissolved chemical  in the puddles (1/day)15

kvolat = first order volatilization rate constant for dissolved chemical in the puddles (1/day)16

Cpud(i) = concentration in the puddle as a function of time on day i (mg/m3)17

Dsed = depth of sediment assumed to interact and to be in equilibrium with the puddle18

water column (m)19
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Dsed = bulk density of the sediment (kg dry sediment/m3)1

ksed = first order dissipation rate constant for chemical on/in sediment (1/day)2

Csed(i) = concentration on/in sediment as a function of time on day i (mg/kg dry weight)3

Assuming the chemical dissolved in the puddle water and adsorbed to the underlying4

sediment are in equilibrium:5

                                                                                         (Eq.6 C K Csed i sed pud pud i( ) / ( )=

C9-23)7

Differentiating equation C9-23 with respect to time gives:8

                                                                                (Eq.9
dC

dt
K

dC

dt
sed i

sed pud

pud i( )

/

( )
=

C9-24)10

where11

Ksed/pud = equilibrium sediment/water partition coefficient (L/kg)12

Substituting equation C9-23 for Csed(i) and equation C9-24 for dCsed(i)/dt  in equation C9-2213

gives:14
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          (Eq.1 A D K
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/ ( )= −

C9-25)2

Adding equations C9-21 and C9-25 and rearranging gives the overall mass balance3

equation for the puddle/sediment system in terms of the puddle concentration:4

                                                                                           (Eq.5
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where7
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C9-27)9

Separating variables, integrating equation C9-26 from Cpud(i) = Cpud(t=ti) to Cpud(i) =10

Cpud(t=ti+1) and from t=ti from t=ti+1, allowing for a possible instantaneous application to11

the puddles at the beginning of day i+1 at t=ti+1, and allowing for instantaneous adsorption12

by sediment of part of what is added to the puddle generates the following daily time step13

algorithm. The algorithm gives the dissolved concentration in puddle water at the14

beginning of day i+1 at t=ti+1 in terms of the dissolved concentration in puddle water at the15

beginning of the previous day i at t=ti:16
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(Equation C9-28)2

where3

Cpud(t=ti+1) = dissolved concentration in puddle at the beginning of  day i+1 at t = ti+1 in4

mg/m35

mpud(add)(t=ti+1) = chemical mass added to puddle at beginning of day  i+1 at t=ti+1 due6

to direct application or spray drift (mg)7

xads = mass of chemical adsorbed from puddle water by sediment immediately after8

application to the puddles9

Cpud(t=ti) = concentration in puddle at the beginning of day i  at t = ti in mg/m310

koverall = overall dissipation rate constant in puddle and sediment (1/day)11

1 day = ti+1 - ti12

Assuming equilibrium partitioning of the chemical dissolved in puddle water with chemical13

adsorbed to sediment to an interaction sediment depth of Dsed, the mass of chemical14

adsorbed (xads) from puddle water by sediment immediately after any application to the15

puddles is computed as follows:16

Based upon the assumed equilibrium,17

                           (Eq.18
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Solving equation C9-29 for xads(t=ti+1) gives1

2
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C9-30)4

For direct application to the puddle at t=ti+1 (assuming puddles are only formed outside the5

canopy cover), the mpud(add)(t=ti+1) in equations C9-28 through C9-30 is given by:6

                                       (Eq.7 ( ) [ ]m t t f A App t tpud add i sd pud i( ) ( ) ( )= = − =+ +1 11

C9-31)8

where9

fsd = fraction loss by spray drift before hitting the targeted field10

App(i+1) = nominal application rate at the beginning of day i+1 at t = ti+1in mg11

chemical/m2(convert from lb/acre or kg/ha)12

For spray drift to the puddle at t=ti+1 (assuming puddles are only formed outside the13

canopy cover), the mpud(add)(t=ti+1) in equations B6-28 through B6-30 is given by:14
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                                          (Eq.1
( ) [ ]m t t SD A App t tpud add i avg pud i( ) ( ) ( )= = =+ +1 1

C9-32)2

where3

SDavg = average spray drift deposition defined by equation C9-6. 4

Estimating the initial concentration in the puddle depends upon how the chemical is5

assumed to be first introduced to the puddle.  If the puddle is formed over uncontaminated6

soil, the chemical will be first introduced to the puddle by direct application or spray drift7

at some time t=tadd-pud.  In such a case the initial concentration in the puddle Cpud0 when the8

puddle first receives a direct application or spray drift at t=add-pud can be estimated from the9

following equations:10
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where13
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Note that equation C9-34 was obtained by substituting t=tadd-pud for t=ti+1 in equation B6-16

30.17
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If the puddle is formed at t=tform-pud over contaminated soil, the following desorption1

equations can be used to estimate the initial concentration in the puddle Cpud0 when the2

puddle is formed at t=tform-pud:3

Based upon the assumed equilibrium,4

     (Eq.5
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C9-35)6

Solving equation C9-35 for xdes(t=tform-pud) gives:7
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The initial puddle concentration is given by10
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where13

xdes(t=tform-pud) is given by equation C9-3614
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C9.7:  Interim Equations for Pesticide Concentrations in Puddles Assuming A1

Linear Decrease in Puddle Depth2

Assuming even a simple linear decrease in puddle volume greatly increases the complexity3

of estimates of concentrations in puddles compared to assuming the puddle volume4

remains constant (as was previously done).  Assuming equilibrium between the sediment5

and puddle water and that the volume of the puddle water linearly decreases  with time6

due to infiltration and evaporation, coupled simple pseudo first order decline mass balance7

equations for puddles and sediment are given by:8

  (Eq.9
( ) [ ]A
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                                            (Eq.11 A D
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C9-39)12

If both sides of equation C9-38 were divided by Apud, the right side of the equation would13

be identical to the first 3 terms on the right side of the puddle mass balance equation in14

TEEAM.15

Because the puddle depth (but not the puddle area) as well as the concentration in the16

puddle are functions of time, the derivative on the left side of equation C9-38 can be17

expanded to give:18
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Assuming the puddle depth linearly decreases with time:3
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Therefore,6
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Substituting equation C9-42 for dDpud(i)/dt into equation C9-40 gives:9
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Assuming equilibrium and substituting dCsed(i)/dt = Ksed/puddCpud(i)/dt and Csed(i) = Ksed/pudCpud(i)12

into equation C9-39 gives:13
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Adding equations C9-43 and C9-44 and rearranging gives the overall mass balance3

equation for the puddle/sediment system in terms of the puddle concentration:4
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where7
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Separating variables, integrating equation B6-45 from Cpud(i) = Cpud(t=ti) to Cpud(i) =1

Cpud(t=ti+1) and from t=ti from t=ti+1, allowing for a possible instantaneous application to2

the puddles at the beginning of day i+1 at t=ti+1, and allowing for instantaneous adsorption3

by sediment of part of what is added to the puddle generates the following daily time step4

algorithm. The algorithm gives the dissolved concentration in puddle water at the5

beginning of day i+1 at t=ti+1 in terms of the dissolved concentration in puddle water at the6

beginning of the previous day i at t=ti:7
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C9.8:  Interim Level 1 and 2 Estimates of  Pesticide Concentrations in a Pond10

When AgDRIFT, PRZM3 and EXAMS are provided with adequate Monte Carlo11

simulation capabilities, they can be used to generate interim level 1 and 2 estimates of12

dissolved pesticide concentrations in ponds. AgDRIFT and PRZM3 will provide estimates13

of pesticide loadings to the pond and EXAMS will be used to estimate the resulting14

pesticide concentrations in the pond. 15

Until AgDRIFT, PRZM3, and EXAMS are provided with adequate Monte Carlo16

simulation capabilities, GENEEC (which is currently used by OPP/EFED as a screening17

model in aquatic risk assessments) can be used to generate interim level 1 and 2 estimates18

of dissolved pesticide concentrations in ponds.  GENEEC is also a component of PARET19

and is described along with PARET in a separate Section.20
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C9.9:Interim Level 1 and 2 Estimates of Pesticide Concentrations in Air Within the1

Canopy2

Interim level 1 estimates of average pesticide concentrations in air within the plant canopy3

can be generated with PRZM3.  When the Monte Carlo output variable capability of4

PRZM 3 is expanded to include pesticide concentrations in air, level 2 estimates can also5

be generated with PRZM 3.6

C9.10:  Interim Level 1 and 2 One Compartment Vertebrate Mass Balance Model7

The overall contaminant mass balance differential equation for a one compartment8

vertebrate model is given by:9

                              (Eq. C9-10
( ) ( )d W C

dt

dm

dt
k k W C

v i v i

ake
depur metab v i v i

( ) ( )

int
( ) ( )=





 − +

51)11

where12

CV(i) = CV(ti+1<t<ti) = bulk concentration in the vertebrate as a function of time on day i13

from t=ti to t=ti+1 (mg/kg body weight)14

WV(t=ti) = vertebrate mass (body weight) at the beginning of day i at t=ti (kg)15

(dm/dt)intake(i) = rate of total contaminant intake on day i from food ingestion, water16

ingestion, inhalation, and dermal contact (mg/day)17

kdepuration = pseudo first order depuration rate constant (1/day)18

kmetab = pseudo first order metabolic rate constant for the 19

contaminant (1/day)20
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Equation C9-51 is in the form1

                                                                          (Eq.2
( )d W

dt
K K W C

v i

i v i v i

( )

( ) ( ) ( )= −1 2

C9-52)3

where4

                                                                                              (Eq.5 K
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dti
ake i

1( )
int ( )

=






C9-53)6

                                                                                                (Eq.7 K k kdepur metab2 = +

C9-54)8

Separating variables in equation C9-52, integrating from Wv(i)Cv(i) = Wv(t=ti)Cv(t=ti) to9

Wv(i)Cv(i) = Wv(t=ti+1)Cv(t=ti+1) and from t=ti from t=ti+1, and rearranging generates the10

following daily time step algorithm.  The algorithm gives the concentration of chemical in11

the vertebrate at the beginning of day i+1 at t=ti+1 in terms of the concentration at the12

beginning of the previous day i at t=ti:13

                         (Eq.14
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C9.11:  Interim Equations for Concentrations in Surface and Foliar Dwelling Insects1

The mathematical form of equation C9-55 for vertebrates should also be applicable for2

foliar and soil surface dwelling insects except the mass balance should reflect pesticide on3

as well as in the insect.  Therefore, if a direct or spray drift application occurs in field j on4

day i+1, an additional application term (equivalent to that reaching the insect) should be5

added to the right side of the equation to reflect deposit of pesticides on to the organism:6

7

[ ]C t t
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(Equation C9-56)8

For direct application and spray drift at t=ti+1 to an insect on foliage, the minsect(add)(t=ti+1) in9

equation C9-56 is given respectively by:10

          (Eq.11 ( )[ ][ ][ ]m t t f f t t A App t tin t add i sd i in t isec ( ) int sec( ) ( ) ( )= = − = =+ + +1 1 11

C9-57)12

           (Eq.13 ( )[ ][ ][ ]m t t SD f t t A App t tin t add i avg i in t isec ( ) int sec( ) ( ) ( )= = = =+ + +1 1 1

C9-58)14

where15
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fint = fraction intercepted by plant when chemical is applied at t=ti+11

fsd = fraction loss by spray drift before hitting the targeted field2

App = nominal application rate at the beginning of day i+1 at t = ti+1 in mg3

chemical/m2(convert from lb/acre or kg/ha)4

Ainsect = area of insect exposed to pesticide deposition5

SDavg = average spray drift deposition defined by equation C9-66

For direct application and spray drift at t=ti+1 to an insect on uncovered bare soil, the7

minsect(add)(t=ti+1) in equation C9-56 is given respectively by:8

                   (Eq.9 ( )[ ][ ]m t t f A t t App t tin t add i sd in t i isec ( ) sec( ) ( ) ( )= = − = =+ + +1 1 11

C9-59)10

                                  (Eq.11 ( )[ ][ ]m t t SD A App t tin t add i avg in t isec ( ) sec( ) ( )= = =+ +1 1

C9-60)12

For direct application and spray drift at t=ti+1 to an insect on canopy covered bare soil, the13

minsect(add)(t=ti+1) in equation C9-56 is given respectively by:14

    (Eq.15 ( )[ ][ ][ ]m t t f f t t A App t tin t add i sd i in t isec ( ) int sec( ) ( ) ( )= = − − = =+ + +1 1 11 1

C9-61)16

      (Eq.17 ( )[ ][ ][ ]m t t SD f t t A App t tin t add i avg i in t isec ( ) int sec( ) ( ) ( )= = − = =+ + +1 1 11

C9-62)18
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C9.12:  Interim Equations for Concentrations in Worms and Subterranean Insects1

Earthworms can possibly act as a substitute for other soil invertebrates and subterranean2

insects.  Earthworms are often assumed to be in equilibrium with the bulk contaminant3

concentration in the soil or the pore water concentration (Sample et. al 1997):4

                                                                                     (Eq.5 C K Cworm worm soil bulk soil= −/

C9-63)6

                                                                                              (Eq.7 C K Cworm worm pw pw= /

C9-64)8

Worms ingest contaminated soil as well as uptake contaminants from pore water and can9

move between vertical soil compartments (layers) j (Bird, Cheplick, and Brown 1991). 10

Worms presumably tend to spend more time in soil layers with somewhat intermediate soil11

moisture than in excessively dry layers or in excessively wet layers where oxygen12

exclusion or depletion may occur.  However, there is no hydrology component in this13

interim model to estimate soil moistures for different layers.  Therefore, within the vertical14

extent of their movement, we will assume that on any given day i, the ratio of time worms15

spend in any given soil compartment (layer) j to the entire day will be equal to the ratio of16

the thickness of soil compartment (layer) j to the vertical extent of their movement. 17

Therefore, in weighing the relative contributions of different soil compartments (layers)18

with different concentrations in soil to the contaminant intake of the worm on day i, we19

will use ()zj/Dworm) as weighing factors where )zj = the thickness of soil compartment20

(layer) j and Dworm = deepest vertical extent of their movement.21

Based on the previous paragraph, one possible mass balance equation for worms would22

be:23
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1

( )( )[ ]( )

( )( ) ( )

dC

dt

z D k t t A z C t t W

z D dM dt C t t W k k C

worm i j worm up pw pw j i s j pw j i w

j

j j worm

j worm soil ingest bulk j i w depur metab worm
j

j j worm

( ) ( ) ( ) ( )
max( )

( ) ( )

max( )

( ) ( ) /

( ) /

=
= =

+ = − +

=

=

=

=

∑

∑

∆ ∆

∆

θ

1

1

(Equation C9-65)2

where3

Cworm(i) = Cworm(ti+1<t<ti) = bulk concentration in the worm as a function of time on day4

i from t=ti to t=ti+15

Wworm = worm mass (body weight) 6

jmax(worm) = deepest layer worms go to 7

)zj = thickness of soil compartment (layer) j (cm)8

Dworm = deepest vertical extent of movement (cm)9

kup = rate of soil pore water uptake (1/day)10

1pw(j)(t=ti) = volumetric water content of soil compartment (layer) j at the beginning of11

day i at t=ti12

As = area of the field (cm2)13

Cpw(j)(t=ti) = concentration in the pore water of soil compartment (layer) j at the14

beginning of day i at t=ti (g/cm3)15

dMs(ingest)/dt = soil ingestion rate (g/day)16

Csbulk(j)(t=ti) = bulk soil concentration in soil compartment (layer) j at the beginning of day i17

at t=ti18

kdepur = depuration rate constant (1/day)19
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kmetab = metabolic rate constant (1/day)1

Note that2

                                                                                              (Eq.3 D zworm j
j

j j worm

=
=

=

∑ ∆
1

max( )

C9-66)4

Also note that to calculate Cpw from Cs(bulk) or Cs(bulk) from Cpw, it can shown from mass5

balance considerations that:6

                                                               (Eq.7 C K
K

Csoil bulk
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and9

                                                                               (Eq.10 C
C

K Kpw

s soil bulk

pw d s a H

=
+ +

ρ

θ ρ φ
( )

C9-68)11

where12

Ds = bulk density of soil13

1w = volumetric pore water fraction14

Kd = soil/water partition coefficient15

1a = volumetric pore air fraction16

KH = dimensionless Henry's Law constant17
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Equation C9-65 is in the form1

                                                                             (Eq.2
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(Equation C9-70)6

and7

                                                                                                 8 K k kdepur metab2 = +

(Eq. C9-71)9

Separating variables in equation C9-69, integrating from Cworm(i) = Cworm(t=ti) to Cworm(i) =10

Cworm(t=ti+1) and from t=ti from t=ti+1, and rearranging generates the following daily time11

step algorithm.  The algorithm gives the concentration of chemical in the worm at the12

beginning of day i+1 at t=ti+1 in terms of the concentration at the beginning of the previous13

day i at t=ti:14
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(Equation C9-72)2

where K1(i) and K2 are given be equations C9-70 and C9-71, respectively.3
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APPENDIX C 101

2

RISKS TO BIRDS FROM THE USE OF CHLORPYRIFOS ON APPLES: AN EXAMPLE3

USING ECOFRAM APPROACHES4

5

OBJECTIVE6

• The aim of this section is to illustrate the use of some of the approaches proposed by7

ECOFRAM. In particular:8

⇒ The use of the daily dose equations at varying Levels of Refinement9

⇒ The use of generic field data to estimate distributions of pesticide residues on10

invertebrates11

⇒ The use of hypothetical distributions to help decide whether a variable has sufficient12

influence to be worth measuring in field studies.13

⇒ The use of radio-tracking data to estimate empirical distributions for the proportion of14

food obtained from treated areas15

⇒ Methods for extrapolating acute toxicity between species and estimating species16

sensitivity distributions17

⇒ The use of Monte Carlo simulations for risk characterization18

⇒ The definition and use of ‘acceptability thresholds’19

⇒ The use of sensitivity analysis to assess the relative influence of different inputs20

⇒ How all these elements fit together into a practical assessment process.21

22

• The example uses data relating to the use of chlorpyrifos in UK apple orchards, and is23

presented in a sequential fashion introducing progressive refinements as might be done in a24

regulatory assessment. The example is for illustration only and should not be interpreted as25

a formal assessment.26
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PROBLEM FORMULATION1

• The example focuses on risks to birds from the use of chlorpyrifos in apple orchards in the2

United Kingdom, applied by air-blast sprayer at 0.96 kg/ha.3

• The focal species for the example is the blue tit (Parus caeruleus), a small insectivorous4

bird which is common in orchards in the UK.5

• The Assessment Endpoint for the example is the Percent Mortality of Adult birds.6

• The Scope of the example is limited to considering Acute lethal effects, Exposure via the7

Dietary route only, and Exposure periods of One Day. This is purely to provide a8

relatively simple basis for illustrating the ECOFRAM approaches. A proper risk assessment9

should take account of other effects and timescales, as indicated by the ECOFRAM report.10

• ECOFRAM recommends that the acute oral LD50 should be used to assess effects of short-11

term exposures in the order of minutes to hours, and that a (modified) dietary LC50 should12

be used for longer term exposures. However, this example uses the LD50 as the measure of13

sensitivity for exposures estimated over one day.14

15

Defining the threshold of acceptability16

• Section 6 proposes that a ‘threshold of acceptability’ be defined at the start of the assessment,17

both to interpret the results at each stage and to assist in deciding whether and how to refine18

the assessment.19

• For example, it might be decided that a 1 in 3 chance of 1% mortality was at the limit of20

acceptable risk, but that only a 1 in 20 chance could be tolerated for mortality of 5% or more.21

These simple probability statements can be plotted as points on a graph of Probability of22

Exceedance vs. % Mortality, as in Figure 1.23

• A small number of points are sufficient to draw a line marking the approximate position of24

the threshold of acceptability. The line is shown as a broad grey area because of its subjective25

and approximate nature.26

• The points and threshold shown in Figure 1 are purely illustrative. In practice, very27

careful consideration would be required to define them, as discussed in Section 6. This might28
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take account of ecological factors (e.g. population stability and resilience) and other issues1

such as the economic and agricultural benefits of the pesticide.2

3

Figure 1.  The use of simple subjective probability statements to define a threshold of4
acceptability. Different thresholds might be defined for different assessment endpoints. The5
positions of the points and threshold shown here are examples for illustration only.6
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Exposure model8

Chapter 3, equation 3.3-7:9

10

One day dose dietary (day i)  = [ ]∑
=

=

−
kNk

k
ikiikikii WCAVFDRPDTFIRPT

1

/)(1))()()((11

(variable names are defined in the table below).12
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• This example explores variation in sensitivity, and in PT and C, but not the other exposure1

variables.2

• This example does not consider exposure by any route other than the ingestion of3

contaminated food.4

5

INITIAL DETERMINISTIC ASSESSMENT6

• The inputs used for the initial assessment are shown in the following table. The ‘Levels of7

Refinement’ correspond to those discussed in Sections 2 to 6 of the ECOFRAM report.8

Variable Level of
Refinement

Input

PTi – Proportion of food
obtained from treated area on
day i

1 1 – all food from treated area.

TFIRi – Total food ingestion
rate on day i

1 3.3g dry weight – estimated using Nagy’s (1987)
equation for passerine birds.

PDik – Proportion of diet
comprising food type k

1 1 – feeds exclusively on food type with highest
pesticide concentrations (small insects).

FDRik – Fresh to dry weight
ratio for food type k on day i

1 5 – based on water content of about 80% by
weight.

AVi – Avoidance of
contaminated food on day i

1 0 – no avoidance.

Cik – Concentration of
pesticide on food type k on
day i

1 116 mg/kg – residues on small insects assumed
similar to ‘maximum’ estimates used by US
EPA, based on Fletcher et al. (1994), and
adjusted for pesticide application rate of 0.96
kg/hectare.

W – body weight of bird 1 13.3g – mean from Dunning (1993).

LD50 1

Probit slope of LD50 1

Single study for bobwhite quail.

9

• Most of the exposure inputs are highly conservative (i.e. are more likely to over-estimate10

rather than under-estimate risk). PT, PD, AV are based on literal worst-case assumptions,11
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while C is based on a value tending to worst case (around the 95 percentile for residues1

immediately after application). TFIR, FDR and W are averages.2

• The exposure estimate should therefore be very conservative – actual exposures of this3

magnitude could conceivably occur, but should be very rare.4

• A summary of results from 41 LD50 studies was available for the example. It was decided to5

use a bobwhite quail study in the initial assessment, as this is the most likely species if only6

one study were available (e.g. for a new pesticide). There were several bobwhite studies but7

only one provided a slope for the technical active ingredient, so this study was selected.8

• The 5th percentile of the distribution of species sensitivities was estimated from the bobwhite9

quail LD50 using the method developed for ECOFRAM (Figure 4.5.5, output number 1).10

The one-sided 95% left confidence limit was also estimated (ECOFRAM Figure 4.5.5, output11

number 2).12

• The exposure and sensitivity estimates were combined in two ways: as a Risk Quotient (RQ13

= dose/sensitivity), and as the % mortality estimated using the probit relationship and the14

slope reported from the bobwhite quail study.15

16

LD50 estimate used Risk Quotient % Mortality

Reported value (bobwhite quail) 4.5 99.9 %

Estimated 5th percentile of the distribution of
species sensitivities

20 100 %

One-sided 95% left confidence limit of the
estimated 5th percentile of the distribution of
species sensitivities

141 100 %

17

• These results can be compared to the threshold of acceptability as shown in Figure 2. All18

three estimates are effectively 100% mortality, placing them at the right-hand end of the x-19

axis.20

• The probability associated with these estimates is not quantified at this stage of the21

assessment. However, as both the exposure and sensitivity estimates are conservative, the22

probability is likely to be very small, so the result is plotted at a probability close to zero.23
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1

Figure 2.2
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3

• Figure 1 shows the risk is very uncertain at this stage of the assessment. If the true risk curve4

is very shallow, or the current inputs are very over-conservative, then the true risk may in5

fact fall below the threshold. However, the position of the current estimate clearly leaves6

open the possibility that the risk curve exceeds the threshold by a large margin, so further7

refinement of the assessment is appropriate.8

9

PROBABILISTIC ASSESSMENT10

Methods11

• The examples were computed using Excel and @Risk software.12
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• In most cases, a two-stage Monte Carlo simulation was used, representing 1000 populations1

each comprising 1000 individuals. Exposure and individual tolerance varied within2

populations, but species sensitivity (LD50 and slope) was only varied between populations.3

• In the first stage, 1000 iterations of the exposure model were computed to provide 10004

estimates of the one-day dose (mg/kg/day), representing the exposure of 1000 individual5

birds.6

• In the second stage, 1000 iterations were computed in which values were drawn for the7

median and slope of the LD50. Individual tolerances were computed for the 1000 individuals8

using the method from Section 4.4.3.1 and a list of 1000 z-scores drawn from a standard9

Normal distribution (this list was generated once and used repeatedly throughout the10

example). In each iteration, the 1000 individual tolerances were compared with the 100011

doses calculated in stage 1. Individuals for which dose exceeded tolerance were assumed to12

have died.13

• The percentage mortality was calculated for each population, and the overall output was a14

distribution of percentage mortalities for 1000 populations. This distribution was used to15

compute an exceedance curve, showing the estimated probability with which each level of16

mortality was exceeded.17

• The two-stage Monte Carlo was repeated 7 times with different inputs, referred to below as18

Models 1-6 and 8. Model 7 used a one-stage Monte-Carlo, in order to carry out a sensitivity19

analysis covering inputs in both stages of the two-stage method (see later).20

• The input variables were assumed to be independent in every simulation.21

22

23

Model 124

The first model used the same inputs as the initial deterministic assessment, but using a two-25

stage Monte Carlo simulation to obtain an exceedance curve instead of point estimates for risk.26

27
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Inputs table1

Variable Level of
Refinement

Input

PTi 1 1

TFIRi 1 3.3g dry weight

PDik 1 1

FDRik 1 5

AVi 1 0

Cik 1 116 mg/kg

W 1 13.3g

LD50 1 Lognormal distribution estimated from one study
for bobwhite quail and method of Section 4.5.4.

Probit slope of LD50 1 Normal distribution estimated from slope and
standard error for the same bobwhite quail study,
as suggested in Section 4.5.7 (option I C).

2

Input distributions3

Figure 3. In these and subsequent histograms of input distributions, the figures show the4
distribution of values generated in the simulations rather than the distribution functions from5
which they were generated.6
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• Note that the dose was deterministic in this model, as in the initial assessment, and was8

estimated as 143.9 mg/kg. It can be seen from Figure 3 that the dose exceeded the LD50 for9

over 80% of the simulations.10

11
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Output1

Figure 4.2
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3

Interpretation4

• The risk curve at this stage greatly exceeds the threshold. Further refinement is clearly5

appropriate.6

7

8

Model 29

• It was decided to utilise a second LD50 study in the next stage, but to make no change to the10

exposure assessment.11
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• A mallard study was selected, as this would most commonly be available for a pesticide with1

2 studies. A slope was available from only one of the available mallard studies, so this study2

was selected.3

Inputs table4

Variable Level of
Refinement

Input

PTi 1 1

TFIRi 1 3.3g dry weight

PDik 1 1

FDRik 1 5

AVi 1 0

Cik 1 116 mg/kg

W 1 13.3g

LD50 2* Lognormal distribution estimated from one study
for bobwhite quail and one for mallard, and the
method of Section 4.5.4.

Probit slope of LD50 2* Normal distribution estimated from slopes for
the same bobwhite quail and mallard studies, as
suggested in Section 4.5.7 (option II A).

* these inputs have moved up a Level of Refinement from the previous assessment.5

6

Input distributions7

Figure 5.8
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Output1

Figure 6.2
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Interpretation4

• The second LD50 (mallard) was very much higher than the first (bobwhite), so the estimated5

mean of the sensitivity distribution increased markedly compared to Model 1. Consequently,6

the risk curve has moved down by a substantial amount.7

• However, the risk curve is still way above the acceptability threshold. It seems clear that8

reducing uncertainty about the LD50 will not bring the risk within threshold. However, the9

exposure assessment is still highly conservative, so it is appropriate to examine the effects of10

relaxing some of the worst-case assumptions on exposure.11

12

13
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Model 31

• It was decided to start refining the exposure assessment by introducing a distribution for the2

concentration of pesticide on insects, based on empirical data from field studies (insert3

reference to Appendix *** containing these?).4

• Only the 4 studies relating to applications to orchards (apples and citrus) were used: it is5

assumed that all were air-blast applications though this is unconfirmed for 2 studies. None6

was for chlorpyrifos. Insects were collected using pitfall traps. Biases which may affect these7

data are discussed in Appendix ***.8

• It should be noted that there are large differences between the levels found in the 4 studies,9

but the cause of this is unknown. This variation needs to be examined further to decide the10

best way to extrapolate to chlorpyrifos and other pesticides.11

• In view of the differences between studies it was decided to use the pooled data to generate a12

General distribution using RiskView software. This in effect adopts the shape of the13

empirical distribution rather than fitting a standard distribution such as the lognormal.14

Inputs table15

Variable Level of
Refinement

Input

PTi 1 1

TFIRi 1 3.3g dry weight

PDik 1 1

FDRik 1 5

AVi 1 0

Cik 3* General distribution based on 4 field studies
measuring residues in insects for pesticides other
than chlorpyrifos.

W 1 13.3g

LD50 2 Lognormal distribution as in Model 2.

Probit slope of LD50 2 Normal distribution as in Model 2.

* these inputs have moved up a Level of Refinement from the previous assessment.16

17
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Input distributions1

Figure 7.2
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• Note that the maximum concentration found in the field studies was much lower than the4

‘maximum’ estimate used in Models 1 and 2 (116 mg/kg).5

• The distribution for dose (output from stage 1 of Monte Carlo) mirrors the distribution for C,6

because the other exposure inputs are fixed values.7

8
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Output1

Figure 8.2
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Interpretation4

• The use of a distribution for C has greatly reduced the risk estimates, and the curve for Model5

3 exceeds only part of the acceptability threshold. The result indicates less than a 1 in 36

chance of >1% mortality, but over a 1 in 20 chance of >5% mortality. Further refinement is7

therefore appropriate.8

9

Model 410

• Only two LD50 studies were used in Models 2-3. In fact, LD50 data were available for 1711

species. It was therefore decided to use these to develop a refined estimate of the species12

sensitivity distribution for Model 4. Probit slopes were only available for 3 species.13
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• The LD50 data showed some deviations from the Lognormal distribution (see later) and was1

poorly fitted by the Log-logistic, so again a General distribution was fitted using RiskView.2

Inputs table3

Variable Level of
Refinement

Input

PTi 1 1

TFIRi 1 3.3g dry weight

PDik 1 1

FDRik 1 5

AVi 1 0

Cik 3 General distribution as in Model 3.

W 1 13.3g

LD50 3* General distribution fitted to LD50s for 17
species.

Probit slope of LD50 3* Normal distribution based on slopes from studies
for bobwhite, mallard and chicken.

* these inputs have moved up a Level of Refinement from the previous assessment.4

5

Input distributions6

Figure 9.7
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Output1

Figure 10.2
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Interpretation4

• The results show higher risk in Model 4 than Model 3. This occurs because the distribution5

based on 2 LD50s underestimated the general range of species sensitivities, due to the very6

high LD50 for mallard.7

• The mallard study used in Models 2 and 3 was the highest result out of a total of 41 studies8

for 17 species, including 6 studies giving lower values for mallard. It had been selected for9

Model 2 because it was the only mallard study from which a slope was available. If the full10

dataset was being considered in a real assessment (e.g. a regulatory review), this study would11

have been identified as an outlier and examined more closely. However, such an outlier could12

in principle occur even in a small dataset (e.g. for a new pesticide). In this case it might not13
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have been identified as an outlier and would have significantly biased the risk assessment, as1

is apparent from Figure 10.2

• Sensitivity distributions are therefore estimated from the full dataset in all subsequent3

models.4

• There is still a need to refine the assessment, as Model 4 is more reliable than Model 3 and5

clearly exceeds the acceptability threshold.6

7

8

Model 59

• The final variable considered for refinement in this example is PT – the proportion of food10

obtained from the treated area. So far it has been assumed that PT = 1, i.e. birds obtain all11

their food in the treated area.12

• Obtaining reliable field data on PT would be very costly. Before committing to such expense,13

it would be desirable to check the possible influence of PT in reducing risk. This is done in14

Model 5 by trying a hypothetical distribution in which all values of PT between 0 and 1 are15

considered equally likely (a uniform distribution).16

Inputs table17

Variable Level of
Refinement

Input

PTi 2* Uniform distribution between 0 and 1.

TFIRi 1 3.3g dry weight

PDik 1 1

FDRik 1 5

AVi 1 0

Cik 3 General distribution as in Model 3.

W 1 13.3g

LD50 3 General distribution for 17 species.

Probit slope of LD50 3 Normal distribution based on 3 species.

* these inputs have moved up a Level of Refinement from the previous assessment.18
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Input histograms1

Figure 11.2
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Output5

Figure 12.6
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Interpretation1

• Using a uniform distribution for PT brings the risk curve just below threshold. This2

distribution is purely hypothetical so the result cannot be relied upon as it stands. It may3

therefore be worth investing in field studies to obtain reliable data on PT for relevant species4

in relevant scenarios.5

• In practice, consideration would be given to refining other exposure variables before6

committing to costly field studies on PT.7

8

9

Model 610

• In fact, data on PT is already available from field studies of blue tits in UK orchards (Crocker11

et al. 1998). 23 individuals were tracked continuously in 8 orchards for periods of 1-2 hours.12

The total time monitored per individual ranged from 76 minutes to 719 minutes: 17 were13

monitored for 6 hours or more. The time for each individual was divided into that spent14

inside the orchards, and that spent in adjacent, non-orchard habitat. Time spent in the orchard15

was expressed as a percentage of total time to provide estimates of PT.16

• A General distribution was fitted to the field data using RiskView.17

• See Section 3.3.3 and Appendix C1 for detailed discussion of the many issues and possible18

biases affecting the use of field data to estimate PT. These would require very careful19

consideration in a formal risk assessment.20
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Inputs table1

Variable Level of
Refinement

Input

PTi 4* General distribution fitted to radio-tracking data
for 23 blue tits.

TFIRi 1 3.3g dry weight

PDik 1 1

FDRik 1 5

AVi 1 0

Cik 3 General distribution as in Model 3.

W 1 13.3g

LD50 3 General distribution for 17 species.

Probit slope of LD50 3 Normal distribution based on 3 species.

* these inputs have moved up a Level of Refinement from the previous assessment.2

3

Input histograms where appropriate. Incl. Intermediate outputs – dose, LD504

Figure 13.5
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• Note that PT is expressed as a percentage in Figure 13 but was used as a fraction in the7

simulations.8

9
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Output1

Figure 14.2
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Interpretation4

• The risk curve for Model 6 is well below the acceptability threshold. For example, the results5

indicate a 1 in 50 chance that mortality will exceed 2%.6

• The actual risk could be higher or lower, and more or less variable. Lower, because input7

values for PD and AV in the exposure assessment remain conservative. Higher, because8

Models 1-6 have not considered exposure in the drift zone. More variable, because the9

exposure assessment still uses fixed averages for TFIR, FDR and W.10

• In a formal assessment, the assessor would need to consider the possible influence of all11

these factors and perhaps address them with further refinements to the models.12
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• If the assessor were satisfied with the Model, the input data and the definition of the1

threshold of acceptability, then the result in Figure 14 would indicate that the risk is2

acceptable for timescale and assessment endpoint being considered. No further refinement of3

the assessment would then be necessary.4

• The assessor would still need to consider other assessment endpoints (e.g. reproductive5

effects), other timescales (e.g. exposure over more than one day) and other focal species (e.g.6

omnivorous or herbivorous birds). The assessment process would be repeated for each7

combination of endpoint, timescale and focal species. These combinations would require8

assessment to varying Levels of Refinement, depending on whether the initial assessments9

produced results to the left of the acceptability threshold.10

• As noted in Section 6, risk mitigation could be considered as an alternative to refining the11

assessment at any stage. The effect of the proposed mitigation could be incorporated into the12

assessment model to examine its effectiveness in bringing the risk curve below the threshold13

of acceptability.14

15

SENSITIVITY ANALYSIS16

• The division of the Monte Carlo simulations into two stages in Models 1-6 means that @Risk17

reports sensitivity analyses for only the exposure variables in stage one, and only the LD5018

and slope in stage 2. To obtain statistics on the relative influence of all the inputs, Model 619

was repeated as a single stage Monte Carlo analysis in Model 7. The inputs were the same as20

those for Model 6 (see table above).21

• The simulation was run for 10,000 iterations, in effect representing 10,000 individuals with22

varying exposures and species sensitivities. The output for each individual was the23

probability of death. The mean probability of death was 0.0026, close to the mean percentage24

mortality from Model 6 (0.23).25

• Sensitivity analyses were conducted using regression and rank correlation statistics provided26

by @Risk (Figures 15 and 16).27

28
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Figure 15.1
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Figure 16.3
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• All 4 of the variables examined probabilistically have a substantial influence on the risk5

outcome. Overall, the exposure variables (PT and C) and effects variables had broadly6

similar influence. The order of priority differs between the regression and correlation7

analyses as the former responds less to non-linear relationships8

• C has slightly more influence than PT on both measures (regression and correlation). This9

emphasises the need for closer examination of the reliability of the extrapolation from of10

invertebrate residue data between pesticides, as mentioned above. It also suggests that if an11

assessment requires refinement to Level 4 it may be more cost-effective to focus field studies12
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on C than on PT. On the other hand, once PT is measured for a given habitat scenario it can1

be applied to any pesticide used in that situation.2

• The probit slope has slightly more influence than the median LD50 in Model 7. This3

presumably occurs because the predicted mortality is far from 50% in nearly all the iterations4

of Model 7. In Models 1 and 2 the average mortality was 82% and 56% respectively, and the5

slope had much less influence than the median LD50. In Models 3-6 the average mortalities6

were between 0.23 % and 3.13%, and the slope had more influence although still not as much7

as the median.8

9

ALTERNATIVE DISTRIBUTIONS10

• Alternative distributions were considered for the LD50, C and PT, using BestFit software.11

Figure 17.12

13

• The Lognormal and Log-logistic distributions are often used for toxicity data. The14

Lognormal fits chlorpyrifos well, but the fitted values for the Log-logistic differed15

significantly from the raw data. Nevertheless, the Lognormal under-estimates the frequency16

of toxicities in the range 10-20mg/kg, and over-estimates the frequency of toxicities between17

20 and 40mg/kg (Figure 17). If the peaks and troughs in the raw data reflect real deviations18

from the Lognormal rather than sampling error, then the fitted distribution will lead to19

underestimation of risk. However, it is possible that the deviations are an artefact caused by20

the choice of dosing levels in up-and-down tests: this is an issue that needs further21

consideration (Section 4).22

23
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Figure 18.1

2

• The Lognormal distribution provides a good fit to the field data for C. However, as already3

mentioned, there were significant differences between the 4 contributing studies, and this was4

responsible for the small peak between 6 and 9 mg/kg.5

Figure 19.6

7

• The Beta distribution truncated at the observed maximum provided the best fit to PT.8

Truncating the distribution at 1 (100%) would be more conservative.9

10
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Figure 20.1
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2

• The fitted distributions from Figures 17-19 were used in Model 8, which was in other3

respects the same as Model 6. The results show a somewhat increased risk in Model 8.4

Further simulations using different combinations of the standard and General distributions5

would be required to analyse how the choice of distributions influences the risk outcome.6

These results emphasise the importance of care in choosing distributions.7

8
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APPENDIX D11

TECHNICAL NOTES FOR CHAPTER 42

Following are some mathematical details of results claimed in Chapter 4.  3

Note 1. Generation of a random tolerance based on the probit model.  The formula4

given above is, 5

random tolerance = LD50 * 10( z / slope ) 6

where z has the N(0,1) distribution.  The formula just given is derived as follows.  The7

base-10 logarithms of tolerances are assumed to have a normal distribution with8

parameters: 9

mean=log(LD50); standard deviation=1/slope.  10

To sample from this normal distribution we, drawing a random number z from the the11

N(0,1) distribution.  That value is transformed to a normal deviate with the desired mean12

and variance:13

log(LD50) + (1/slope)*z14

This result is transformed back to the dose scale using the inverse-log function.  The15

formula given follows from standard operations involving logarithms and antilogarithms.16

Note 2.  Formal equivalence of two algorithms for generating random mortality17

decisions.  To generate random numbers from a distribution with CDF F(x), as required18
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corr. [ b, m ] '
x̄ & m

b
variance of b
variance of m

for Algorithm 2, one algorithm would be the inverse-CDF method: The random tolerance1

would be given by 2

F-1(U) where U has a U(0,1) distribution.  However, comparing F-1(U) to exposure d  is3

equivalent to comparing F(d) to U (Algorithm 1).  This argument applies to any dose-4

response function that can be interpreted as a CDF, i.e., a dose-response that is increasing5

with the value of its argument, from zero to one.  6

Because Algorithm 1 does not require inversion of the CDF, it appears that it is never7

necessary to invert the CDF.  Algorithm 2 is suggested when sampling from the tolerance8

distribution does not require inversion of the CDF, as common algorithms for generating9

random numbers from a normal or lognormal distribution.  10

Note 3.  Correlation of the probit slope and median effective dose.  Using standard11

methods (see Stuart and Ord, 1985, Section 10.5), the following expression can be12

derived for the asymptotic correlation between the slope (b) and the log of the LD50 (say13

m), when the probit parameters are estimated using maximum likelihood:14

Thus a correlation of zero is obtained if the log of the LD50 precisely equals x', a weighed15

average of the doses (see Finney, 1971, Ch. 4).  The correlation will tend to be positive if16

the LD50 is in the lower range of doses tested and negative if the LD50 is in the upper17

range of doses tested.  Because a good design is to place the LD50 towards the center of18

the range of doses; it seems possible that the correlation will often be small.  19

This formula represents the correlation of statistical errors for the two parameters when20

they are estimated from a single data set.  In practice we may be concerned with the21

correlation of the parameters over studies.  22
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APPENDIX E1

An Individual-Based Model for Predicting Population Effects from Exposure to
Environmental Contaminants

Kenneth R. Dixon and Samuel R. Anderson

Introduction1

IBMOD is a simple individual-based growth model that is species specific.  The model uses2

probabilities for fecundity and survival on each individual in separate age classes.  IBMOD will3

simulate the growth of a population and display graphs of the output for the species. There are two4

parts to the program: IBMOD.EXE is used to model the data, and IBMGRAPH.EXE is used to5

display the results.6

Source Code7

The model was programmed by Sam Anderson using Borland's C++ v4.5, Borland's Turbo8

Assembler, and Borland's DOS Power Pack (16 and 32 bit DPMI enhancements).  He also developed9

a statistical library in C and included functions from this library in the model. All code is in C except10

hook functions that check for ctrl-break during execution. This code was written in  assembly.11

Model Description12

The model first reads a species specific data file to gather the probabilities for reproduction,  survival13

of each age class, number of males and females in the age class, along with probabilities for sex ratio14

and offspring survival.  The fecundity probabilities form a cumulative  probability distribution used15

to create a specific number of offspring per individual.  The model calculates the population size by16
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summing the number of individuals in all age classes.  Several output graphs are generated by1

IBMOD, including a plot of the population over time for each run, a plot of all populations over2

combined runs, and a mean and standard deviation for all runs.3

IBMOD starts with the first age class and determines the  fecundity probability for each individual4

in the age class at time step t1.  We assumed that individuals in age class 1 do not reproduce.5

Therefore the sample  Species.DAT specifies that individuals in age class 1 have a 100% probability6

of having 0  offspring.  The fecundity is estimated using a cumulative probability distribution to7

determine the  number of offspring each individual could have.  The model tracks  the frequency of8

births occurring and will display graphs of the measured and predicted fecundity by age class.9

Note that the probabilities specified in the species file must add up to 1.0.10

IBMOD then calculates the survival of each offspring in the current age class. Survivors of this11

calculation are moved into age class 1 at time step t+1.12

IBMOD then calculates the survival of each individual in the current age class (offspring  excluded).13

The survivors of this calculation are moved into (age class + 1), at time step t+1.  Each age class is14

processed in the current time step, and survivors graduate into the next highest  age class at time step15

t+1.16

Note that the last age class members have a 0.0 percent probability of survival.   Members of the last17

age class cannot graduate to a higher class, because there isn't one to  graduate to. 18

The process is repeated for each time step on all age classes.19

The output file IBMOD will generate will have a .OUT extension. This file will contain statistics  on20

fecundity and survival for each run.  The beginning of the output file will contain notes on  how the21

various results are obtained.22
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After all runs, and age classes for all time steps are completed, IBMOD will display statistics on  the1

population for the simulation.  Minimum, maximum, standard deviation, variance, and  normal2

probability are displayed for the population of all age classes combined over time.  Graphs are also3

provided for the combined age class population data.4

IBMOD tracks females and males in populations by age class at each time step. The model also5

tracks the number born and survival by sex and age class.6

The model assumes that all females can, according to the fecundity distribution, reproduce.  There7

is one limitation. There must be at least one male in the age class.8

The species input file has two more parameters for tracking mixed sex populations.  The first is for9

the initial number of females in each age class.  The second parameter is for the sex ratio in  each age10

class. This parameter is used for calculating how many offspring are female.11

Example12

A simulation was run for 100 time steps, using artificial population data, to illustrate the model.  The13

population had six age classes of both sexes, including newborn offspring.  Probabilities were14

assigned to reproduction (Figure 1) and survival (Figure 2) for each age class.  The survival of15

newborn offspring was set to 0.65 for each age class.  The newborn sex ratio was set to 0.50 for each16

age class.  The initial number of individuals in each age class was set for both males and females17

(Figure 3).18

Results of the simulation predict that the male population will increase from 103 at time t1 to 539 at19

time t100 (Figure 4).  This model yields output comparable to an aggregated population model such20

as a Leslie Matrix model, but allow for individual responses in reproduction and survival to exposure21

to environmental contaminants.22
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Figure 1.  Probability of from zero to three offspring
occurring during one time period for age classes two
through six.
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Figure 2.  Probability of survival for each of six
age classes.
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Figure 3.  Initial number of individuals in each age
class for male and females.
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Figure 4.  Predicted population size for males
over time.
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