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1995

1997

1999

2001

2003

2005

2007

2009

DNAPL Site Investigations

A Decade* of Progress

— <— Can’t find it!

<— Can’t deplete it!

<— NOo benefit!

<— Back Diffusion!

Flux-based Assessment

& Management?

Hill AEB 1994-1996; Dover AFB 1997-1999

Rao et al. (WRR, 1997); Jawitz et al. (EST,
1998); McCray and Brusseau (EST, 1998);
Falta et al. (WRR, 1999); Brooks et al. (JCH,
2004); Childs et al. (JCH, 2006)

Sages (FL) 1998; Bachman Road (M) 2000
Jawitz et al. (EST, 2000); Mravik et al. (EST,
2003); Ramsburg et al. (EST, 2005)

Partial source removal debate: Theory
Sale and McWhorter (WRR, 2001); Rao and
Jawitz (WRR, 2003); Parker and Park (WRR,
2004); Jawitz et al. (WRR, 2005)

Partial source removal and flux: Lab and
field data

Fure et al. (JCH, 2006); Basu et al. (WRR,

2008 in press); Basu et al. (JCH, 2008 in press);

Kaye et al. (JCH, 2008 in press); Chen and
Jawitz (EST, in review 2007); Brooks et al. (In
review, JCH, 2007)
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Frequently Asked Questions

How much data needed before remediation?
What types of data best serve CSM & design?

Are high costs justified in terms of reduced
uncertainty?

What are the short-term benefits of source clean
up?
What is the likely plume response to source

C

ean up?
ow to select target (interim) endpoints?
ow to determine long-term stewardship needs?

s there a simplified modeling & decision

framework?
How does all this fit into the TRIAD framework?

PURDUE
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DNAPL Site Monitoring:

Enhancing Archived Site Data

Source

Mass

M. and Source

I\/IO a Control Plane
now My (t)

Plume
Control Plane

Plume Mass
(Parent + Products)

M, () & A(t)

Pump & Treat Wells or
Interception Trench or
Stream etc.

E(t)

PURDUE
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Contaminant Fluxes &
Mass Discharge at Control Planes

M, =X JA

J; = Local mass flux (MLZT)
g; = Local Darcy flux (LT-1)
C;,= Local conc. (ML"3)

A;= Area of element / (L?)
M= Source strength (MT-1)
K.= Satd. Hyd. Cond (LT?%)

S

J = Hydraulic gradient (-)
5

Control Plane (CP)

]
_—
— y/ A =Ax Az
iy -:>]/ =g, ¢
AZ/ q; = sj
" /

Control plane area should be
just large enough to completely
iInscribe the dissolved plume
width

PURDUE



-
<
L
=
-
O
o
(@
L
>
—
- -
O
o 4
<
<
o
Ll
2
=

Cleanup to the Extent Necessary
(CUTEN or Q10)

> Source Strength
» Source Longevity
» Degradation Rate

» Receptor LoadingJ

Key measures for:

Site characterization
Remediation design &
Performance Assessment

Measuremen :
(field scale)

PURDUE



Contaminant Mass Discharge Estimates

[
= Site Contaminant (Mp; giday)
- Simpson County, NC* MTBE <12
= Vandenberg AFE, CA* MTBE ~1-7
= Port Hueneme, CA* MTEE 150
O

Elizabeth City, NJ* MTEE 4
O
0 Testfeld Sud, Germany* BTEX ~2
w PAHs ~30

Landfill Site, Germany* TCE ~3
>
= Alameda Naval Station, CA* cis-1,2-DCE 31
- - Nekkar Valley, Germany* PCE 77
O Dover AFB, DE* total chlorinated 280
x St. Joseph, MI* total ethenes 425
<

Hill AFB, UT TCE 104
= Manufacturing Plant, US TCE 365
& Ft Lewis, US total ethenes ~850

Site-1, Australia total ethenes 104
v Site-2, Australia TCE <10
=

[ 8] * adapted from: Einarson & Mackay (2001); ES&T, 35(3):67A-T3A
PURDUE




-
<
L
=
-
O
o
(@
L
>
—
- -
O
o 4
<
<
o
Ll
2
=

Characterization of DNAPL Sources

Source Longevity (Source Strength Function)
- present source mass
- source depletion behavior
Source & Flux Distribution (Source Architecture)

- identification of hotspots, targeted treatment

Temporal Data

Concentration in select source zone monitoring wells over time
Spatial Data

1. Mass discharge at the source control plane at a point in time

2. Plume Mass

PURDUE



Source Depletion

g z 4 ] B 14 r 1% 18
Years Binca Initial Sampling Evenl {‘t[h".l:i-l'iﬂﬁﬁ-}

I = empirical constant : Sita 14 Temporal Racord 34

=0

Constant Cs (t) — C0
Newell et al., 2006, Jour. Env. Eng. ;d&_--'.-

1At Q z L] L n i 12 4 &
Suarez et al., 2004, Remediation. Yoars Since Initial Sampling Event (12111987} PURDUE

- L Co [ (I — 1)V4AC -r

] (1) - — 0 T

m ."1’1’..[} ."1’1’.{}

p  Falta et al. 2005a e 5 TomooratRecord 12 Simple Cases

- where . " i =

O , 3L . First-Order ] o _FaAG,

g C(t) and C, = i Cult) = Coe
S < u

(IT]  flux-avg. conc. at source g T

> CP a’t tlme — t’ and t:o Years Since Initlal Sampling Event (6/12M985)

H | N " Site 4 Tomporsl Record 9 1“ — 05

== M, =initial source mass 3 ., . VaAC]

@] Eu : Cs(1) (fu—wf

4V, = Darcy flux 5 Linear oo

Em N\‘#i.l._

< A = Source CP Area : "

<

Q.

Ll

7))

=

TGE Cone, [mgiL]
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Source Mass Estimation

Fit monitoring well data to standard functions to estimate a value of T’

Site § Temporal Record 12

TGE Conc. [mg'L]

a 2 4 L] a =] 12 14 16
Years Since Initlal Sampling Event (&1 3M985)

Method A: Requires only MW data

1. Monitoring well data over time
fitted with an exponential to
estimate K.

2. Now,
M., =V,AC_, /k

3. Here, a=time from which
sampling data available

4. Thus:

M

t=now

=M,_, exp(—kt,)

Method B: Requires mass discharge

(Mp) and plume mass (Mp)

M
Mp (1) =M, exp| - MD’Ot

0

t
M, (t):jl\/lD,O exp[— I\:/ID’O tjdt
0

0

Two equations and two unknowns —
solve for My, and M,

Estimate present source mass using

M

o =M exp| ——22t
t=now 0 p MO

PURDUE
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Fractional Mass Flux Reduction

Source Flux Reduction

0.8

0.7 4

0.6 1

0.5 A

0.4 1

0.3

0.2 1

0.1 1

0.0

Source Mass & Source Strength

UTCHEM Simulations

1
0.8 -
0.6
0.4 -
0.2

) Basu et al. 2008
0 ] T T T T
0 0.2 04 0.6 0.8 1
Source Mass Reduction

« Borden, Canada A L k
| muinars, ut u u [ ] .

2 Dover AFB, DE VAN *

scwecamenil Brcceay et al. 2008

& Fort Worth, TX '

mAFP44, AZ

A Paducah, KY ‘) A 0 .

© Camp Leguene, NC ® A

& Savannah River, SC

@ Pinellas Plant, FL e More Common Data Type

4 Sages. FL Missing early stages

Former Solvent )

Recycling Facility Not continuous

¢ * -
Many uncertainties

0.0 l]‘,‘l OI2 D‘,S 0‘4 015 OIG 0‘,7 OIS DI,S 1.0

Fractional Mass Removed

Source Flux Reduction

1
Hill AFB OU-
pover AFg 0" @
0.
Falta et al., 2005 _“Dover AF
. -~ Clems
O' 7
Dover AFB
0. Florida Study .- N
0.2

0.4

0.6

Source Mass Reduction

Exponent I' is a function of DNAPL
source architecture, hydrogeologic
heterogeneity & correlation between
the two.
PURDUE



Source Zone Architecture
Eulerian Approach

* Ganglia to Pool mass rafio (GIP)

(Christ el al,, EHP 2005)
* (Gangla: regtons of tesidual NAPL, safuration
+ Pool: regions of DNAPL saturation highe than
maimum residual DNAPL safuration
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Source Zone Architecture
Lagrangian Approach

Reactive Travel Times

*Source zone conceptualized as a
network of stream tubes, each
characterized by velocity (travel time)
and NAPL saturation.

* The domain described by mean and
variance of travel time and NAPL
saturation distribution, measured by
non-reactive and reactive tracers,
respectively.

*The measured parameters are used to
predict change in the mean
contaminant flux in time over the
source control plane




Source Depletion Dynamics:

E Surfactant Flushing in 2-D Flow Chambers
1T
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-
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m 0 10 20 30 40 30 60 70 & % 100
- Cumdative PCE Recovery (% wt)

Suchomel & Pennell, ES&T, 2006
PURDUE
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Simplified Source Depletion Models

C(T) =f (HS, DS)
C«(T) = Flux-avg. Concentration
at Source Control Plane

HS = Hydrodynamic Structure
DS = DNAPL Structure

Streamtube U, = Mean of Hydrodynamic
Model C(T) 1 1 ; INT -1, . Field and DNAPL Architecture

(Jawitz et al. fC - __Eer o 2 0,,,~ Variability of Hydrodynamic
200 ¢S n Field and DNAPL Architecture

°)

Power Law Vi M, — Initial Mass of NAPL

Model C.(T) | M(T) B - Variability Index
(Zhu and fC M

Sykes 2005) s 0

Damkohler 51| Mg = Initial Mass of NAPL, K,
Model (M) ~1—exp| - KoL M(T) B, = Mass Depletion Exponent

(Parker and s K, M,

Park 2005)

Basu et al., 2006, JCH PURDUE
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Dissolution Profile Fitted to Source Depletion Models

0.5 1 Streamtube Model
0.5 1 . Power Function Model
A » UTCHEM output

3 - —— Model Fit R a

= 0251 Jd {4 NRMSD =0.015

@) A < 0.25 .

Finp Oinr O ‘
O L} | 1) 1} ] O L) L) L) L) L) L]
0 5 10 15 20 25 30 0 5 10 15 20 25 30
pore volumes pore volumes
- Conclusion
05 Damkohler Model . )
4 All source depletion models fit
’ k. B dissolution behavior effectively
a 0 IF2

., % NRMSD =0.017 BUT, can we estimate parameters of

O i “ .

5 020 any of these models independently
and predict the dissolution profile
apriori?

0 ' ' ' ' ' ' - YES, the streamtube model can be

0 5 10 15 20 25 30 parameterized using tracer tests —
pore volumes Basu et al., JCH, 2008 PURDUE



Predicting Source Depletion:

5 Simplified Models
m mnnn? |
§ L e UL = GTP can be measured

E T | 3 in lab. Field meth
u- 5 100 = 2 0.6 4 N ab. Fle d met OdS
(@] N o g .. need to be developed.
(@ 5 1 E etretal I . = Tracer tests for
g = — (e calibrating stream-tube

01 L L L | I]-' ™ ! ! 1

- 0 02 04 06 08 1 0o o 4 06 mOde“ng
: Mass Reduction, R, Mass Reduction, R, demonstrated at Iab &.
E 10000 Basu et a"’WRFf 2008 field scales.
< . 10001‘ 08 = Eulerian vs.

B e & .
<2 "oty | £ oo+ Lagrangian
o I ”\ﬂ'd E approaches, $$$!!!
m E 10 .| simulation E 0,4 =

E ] E = T'=1may be an
9 | — — v | adequate
- U B R LI o T approximation??

0 0.2 0.4 0.6 0.8 1 1] 0.2 0.4 0.6 0.8 1
Mass Reduction, Rm Mass Reduction, Rﬂi

PURDUE




-
<
L
=
-
O
o
(@
L
>
—
- -
O
o 4
<
<
o
Ll
2
=

Spatially Distributed vs.
Integrated Parameters

Transition from local parameters (S,, K, C) to integrated system

behavior [J(g/m?/day); Mg (g/day)] J .zt) =

dey.zt) Czyst)

1]

J = contaminant mass flux (g/m?/day)
q = groundwater flux (cm/day)
C = dissolved concentration (mg/L)

M (g/day)= mass discharge :j JdA

Relationship between mean values:

Total DNAPL mass [m(t)] & Source Strength [My(t)]

PURDUE



Source Mass & Flux Distributions

 How does source mass change with time?
 How does the flux distribution change?

T2VOC Numerical Simulations
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Basu et al. JCH, 2008 PURDUE



Flux Statistics at Source Control Plane

0 10 20 30 40 50

Time (years)

Both mean and standard deviation of contaminant flux
distribution decrease with mass depletion from DNAPL source

E 3 |

: % —e— Mean Flux (Positive Correlation)

U § 2.5 —a— Mean Flux (Negative Correlation)

o ke ——— Sigma Flux (Positive Correlation)

n 8 2 - —— Sigma Flux (Negative Correlation)
IS

w 8 s

> 5

= &

.- ¢ 1 Basu et al. JCH, 2008

O ®

(a4 g 0.5 -

< X

q T 0) T T

(a8

Ll

7))

PURDUE




-
<
L
=
-
O
o
(@
L
>
—
- -
O
o 4
<
<
o
Ll
2
=

Flux Statistics at Source Control Plane

A Domain 1 (Case 1) - variance (In k)
1 - X Domain 1 (Case 2) - variancegln k%

ol

L] Domain 1 (Case 3) - variance (In k
—-—--Domain 2 (Case 1 In k
Domain 2 (Case 2 In k
0.8 - [ | Hill AFB, Utah

- variance
- variance

!
NN N
[N NN
(6110)

0.6

Reduction in Hux Std Deviation

0 0.2 0.4 0.6 0.8 1
Basu et al. JCH 2008

Reduction in Flux Mean

Numerical simulations are for emplaced NAPL.
Will this be also valid for spills?

PURDUE



DNAPL Spill & Dissolution Simulations:
Evolution of Source Architecture

Simulation data provided courtesy of:
J A Christ (USAFCE) &
L M Abriola (Tufts University)

=
=

Red lines represent variance Ink =1 s

Black lines represent variance Ink =0.29 _-~ Red lines represent variance In k =1
7

1 Black lines represent variance In k = 0.

o
(04}
o
o0

o
()]
o©
o

Reduction in Sn standard deviatior
Reduction in Flux Standard Deviatior

b=
<
L
=
=
O
o
(@]
98
=
—
-
O
(1 4
<
<
Q.
w
2
=

0.4 0.4 -
0.2 0.2
0 ‘ ‘ | | 0 ‘ ‘ ‘ ‘
0 0.2 0.4 06 0.8 1 0 0.2 0.4 0.6 0.8 1

Reduction in Sn mean Reduction in Flux Mean

Basu et al. JCH 20097 .
DNAPL Mass Contaminant Flux

PURD_UE




Temporal Evolution Of
Source & Flux Centroids

S ?‘”_ .,:ﬁ
e |
= o P
- (- L, J
2 o 1 = el
o i e A
i [ : pal
e

Source Mass Contaminant Flux
Basu et al. JCH 2009?

o Saturation Center of Mass FAlux Center of Mass
7 X_b 7
y_b y_bar
——— 2z ba z_bar
L i °
} 5 5 \ ﬂZ
~
= £ E
@ 44 PR
. 2
= =
o] - s
= —
33 @3 e
= £ —
(2 4 8 8 /
q 2 2
q 1 1
n 0 T T T - 0 T T T T
I I I 0 20 40 60 80 100 0 20 40 60 80 100
Mass Removed (20) Mass Removed (%6)
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Lab Data: Flux Architecture Dynamics

Inlet chamber flush

NAPL injection port

port /'

G

Flow-cell top /

l

Zhang et al. 2008, JCH

/. . Water outlets
/ T3
Water . r T2
inlet P Heterogeneous : " M3
b < ermeability i ) —
& i i:. : : permeability field | M1 53
b |
: Jl j-_—_—:_: ,«L—' e e e e :_____jT::,—_ :_ - __)‘ B 1B 2
1 1/}\ / i’
Inlet Brass Outlet
chamber screen chamber

-

O O O O O o o o o
o

o P N
Il Il

reduction in flux standard deviation

oo ({o)
L L

D ~
I I

w Ea
L L

AExpl
® Exp2
¢ Exp3
X Exp4

0.4 0.6

reduction in flux mean

0.8
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Implication of Results

 Flux distribution is an important metric that can be used for design
of optimal remedial system that targets “hotspots”

* Flux distribution more stable over time than source distribution

* The observed stability of flux distribution is an unexpected and
interesting result that warrants further investigation

« Stability of flux distribution suggests the ability to characterize flux
distributions in time once initial distribution is known.

PURDUE



Use the CSM as a Scientific Hypothesis

p—

G

>  [he CSM is the basis of all site decisions about risk,

3 remediation, closure & reuse. It integrates all

g available evidence & predicts when more Is needed.

w

a Preliminary Develop new SAP to Mature CSM

LIJ Cgls-llll:l::{?il;j;s test new predjctjﬂns __the basis for

o , P t_* FLUX Cha.rac.terlzatlon g Jecisions &

pr{ Contaminan Test predictions: Data subsequent
distributions firms difies NP

<« confirms or modi activities

o predictions

Ll

)

=

the CSM maturation process




TRIAD Benefits

Improved Site Decision Making:

 Integration of archived site monitoring data with new data
collection for enhanced conceptual site model

« Mass discharge at source & plume control planes enables
estimation of source mass, source longevity, and natural
attenuation
capacity

« Mass discharge serves as a metric for site prioritization,
remediation performance, and helps in setting interim
cleanup goals

e Groundwater & contaminant flux distribution measured at
source control planes allows targeted source treatment &
helps formulate cost-effective of site monitoring strategies
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Questions

How much data needed before remediation?
What types of data best serve CSM & design?

Are high costs justified in terms of reduced
uncertainty?

What are the short-term benefits of source clean
up?
What is the likely plume response to source

C

ean up?
ow to select target (interim) endpoints?
ow to determine long-term stewardship needs?

s there a simplified modeling & decision

framework?
How does all this fit into the TRIAD framework?

PURDUE
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Answers?
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