THE ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM					
U.S. Environmental Protection Agency	ΕΤ	Battelle The Business of Innovation			
TECHNOLOGY TYPE:	AUTOMATIC TANK GAUGI LEAK DETECTION SYSTEM				
APPLICATION:	UNDERGROUND STORAGE	TANKS			
TECHNOLOGY NAME:	TSP-IGF4P Float				
COMPANY:	Franklin Fueling Systems				
ADDRESS:	3760 Marsh Road Madison, WI 53718	PHONE: 608-838-8786			
WEB SITE:	http://www.franklinfueling.com	<u>n/</u>			
E-MAIL:	boucher@franklinfueling.com				

ETV Joint Verification Statement

The U.S. Environmental Protection Agency (EPA) has established the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ETV Program is to further environmental protection by accelerating the acceptance and use of improved and cost-effective technologies. ETV seeks to achieve this goal by providing high-quality, peer-reviewed data on technology performance to those involved in the design, distribution, financing, permitting, purchase, and use of environmental technologies. Information and ETV documents are available at www.epa.gov/etv.

ETV works in partnership with recognized standards and testing organizations, with stakeholder groups (consisting of buyers, vendor organizations, and permitters), and with individual technology developers. The program evaluates the performance of innovative technologies by developing test plans that are responsive to the needs of stakeholders, conducting field and laboratory tests (as appropriate), collecting and analyzing data, and preparing peer-reviewed reports. All evaluations are conducted according to rigorous quality assurance (QA) protocols to ensure that data of known and adequate quality are generated and that the results are defensible.

The Advanced Monitoring Systems (AMS) Center, one of six verification centers under ETV, is operated by Battelle in cooperation with EPA's National Risk Management Research Laboratory. The AMS Center recently evaluated the Standard Water Float manufactured and distributed by Franklin Fueling Systems for its ability to detect water ingress into an underground storage tank (UST) holding gasoline and gasoline/ethanol blends. The technology vendor installed the equipment in a Battelle-designed/constructed test vessel and trained Battelle staff on its proper use. Battelle staff conducted the evaluation.

VERIFICATION TEST DESCRIPTION

Testing was performed between September 13 and September 30, 2011. The verification test was designed to evaluate the functionality of the ATG systems when in ethanol-blended fuel service. The test was performed in the interior of an existing research building (JS-20) at Battelle's West Jefferson, OH south campus. The building interior and the exterior area surrounding the building were modified to accommodate a specially-fabricated test vessel and support items. The test vessel was fabricated from a 6-ft diameter piece of a fiberglass storage tank shell that was fitted with glass ends to allow visual observation of the conditions within the vessel during testing. Exterior storage facilities were made available for fuel storage and waste storage.

The characteristics of independent variables were selected and established during the runs to determine the response of the dependent variables. Performance parameters were evaluated based on the responses of the dependent variables and used to characterize the functionality of the ATG system. The water ingress tests were focused on the mixing method of water addition into the test vessel. Three test designs were incorporated into the evaluation:

- A continuous water ingress test consisting of two parts:
 - Determination of minimum detection height;
 - Determination of smallest detectable incremental change in height; and
- A quick water dump followed by a fuel dump.

In the first test, a continuous stream of water was introduced into the field test vessel to produce a splash on the surface of the fuel or to not produce a splash by trickling the water along the surface of the fuel filler riser pipe to slowly meet the surface of the fuel. The independent variables and levels for the continuous water ingress test were:

- Fuel ethanol content (three levels): E0 (no ethanol), E15 (15% ethanol), and flex fuel (up to 85% ethanol);
- Water ingress method/rate (two levels): with splash and without splash; and
- Fuel height (two levels): 25% and 65% full.

The water ingress method/rate was selected to establish conditions that impact the degree of mixing that occurs in a tank using the three ethanol blends. The rate was established to accumulate enough water to generate a technology response within 1 hour. If a response was not observed in 3 hours, the run was terminated. Introducing water with a splash was accomplished by positioning a water tube such that water droplets would free-fall to the fuel surface below. The test condition was maintained until a response in the water detection technology was observed, or terminated after 3 hours if there is no response. Introducing water without a splash was accomplished by positioning the surface tension allowed the water to flow along the outside of the fuel filler riser pipe with minimal agitation to the surface of the fuel. The test condition was maintained until a response in the water detection was maintained until a response in the water detection technology was observed, or terminated after 3 hours if there is no response. Introducing water to flow along the outside of the fuel filler riser pipe with minimal agitation to the surface of the fuel. The test condition was maintained until a response in the water detection technology was observed, or terminated after 3 hours if there was no response.

Two fuel height levels were specified to establish different splash mixing regimes and diffusion columns. The lower fuel height yielded the greater splash mixing potential, but the shorter diffusion columns through which the water could flow. Conversely, the higher fuel height yielded the lower splash mixing potential, but the higher diffusion column. The fill heights were established to $\pm 10\%$ of the target height of either 25% or 65%. At 25% and 65% of the height of the test vessel, there were 170 and 610 gallons, respectively, of fuel were in the test vessel.

To address the second part of the continuous water ingress test, once the water detection technology reacted to the minimum water height, the smallest increment in water height that can be measured was determined. An ingress rate of 200 mL/min was calculated to produce a height increase at the bottom of the tank of approximately 1/16th of an inch in 10 minutes. Readings were taken from the technology, as well as visually, 10 minutes after the

increment portion of the run started. Both the technology readings and the manually-measured water levels were recorded. Readings/measurements were taken after ten, 10-minute increments for each replicate of Test 1 (to produce a minimum of 100 measurements).

The last type of test focused on the potential to detect phase separation in an UST. The test was designed to simulate a quick water ingress rate followed by a high degree of mixing such as might occur if a large volume of water was dumped into the tank at a 25% fill height and then fuel was dumped to fill the tank to a 65% fill height. This test was mainly observational in that the test vessel was disturbed quickly with water and fuel and the response of the technology was recorded throughout the test. Three runs of this type were conducted, one for each of the fuel types being evaluated in this verification test. The E0 run was conducted first and used as the baseline for the technology responses to establish the minimum wait time of 30 minutes with E15 and flex fuel.

Battelle staff checked the technology console for status messages continuously until an initial float response was indicated, recorded several instrument parameter values at the time of initial float response and every 10 minutes thereafter during the increment runs, and backed up the collected data each day. No on-site calibrations were performed. Each time that the technology reading was recorded, an independent height measurement was taken from the rulers installed on the glass ends or inside the test vessel.

QA oversight of verification testing was provided by Battelle and EPA. Battelle technical staff conducted a performance evaluation audit, and Battelle QA staff conducted a technical systems audit and a data quality audit of 25% of the test data. An independent technical systems audit was conducted on behalf of EPA. This verification statement, the full report on which it is based, and the Quality Assurance Project Plan (QAPP) for this verification test are available at <u>www.epa.gov/etv</u>.

TECHNOLOGY DESCRIPTION

The following information was provided by the vendor and has not been verified.

The Franklin Fueling Systems TSP-IGF4P Float was designed to detect and measure the level of a dense phase present at the bottom of a fuel storage tank in conjunction with a magnetostrictive level probe and ATG system. The probe is installed in the storage tank by suspending it from a chain such that the bottom of the probe is near the bottom of the tank. Specific versions of the water float are available for use in ethanol blended gasoline with up to 15% ethanol. This float is ballasted to have a net density intermediate to that of the dense phase and the respective fuel such that it is intended to float at the dense phase-fuel interface.

Information acquired during operation of these water detection technologies is transmitted from the floats via a two-conductor signal cable to a data recording and display console. A single console can compile data for several individual floats, and the Franklin Fueling Systems TS-550 was used for this purpose during the verification test. The TS-550 has a touch screen interface that continuously displays fuel levels and water levels graphically in the display. An optional printer is also available and was used during the test. The console also generates an electronic data file and can be connected to a computer using a 10baseT ethernet connection, which enabled data downloads and use through an internet browser.

VERIFICATION RESULTS

The TSP-IGF4P Float responded to the water ingress when the test fuel was E0 and E15, but moved up the probe shaft to the upper fuel float when tested in flex fuel. No clear separated dense phase was formed in the flex fuel when water was added to the test vessel. As a result, the performance parameters defined in the QAPP could not be determined for this technology when flex fuel was employed. The following table provides a summary of verification test results for the Franklin Fueling TSP-IGF4P Float; the calculated performance parameters were determined using the pooled data from the E0 and E15 water ingress runs.

Currently 40 CFR, Section 280.43(a) states water detection technologies should detect "water at the bottom of the tank," which does not address water entrained in the fuel due to increased miscibility with the presence of ethanol. The water sensor, tested according to "EPA's Standard Test Procedures for Evaluating Leak Detection

Methods: Automatic Tank Gauging Systems," did not detect water in the test vessel containing either intermediate (E15) or high (E85) ethanol blends if the water was suspended in the product or the water did not reach the bottom of the tank. Because of this, there is not sufficient data to evaluate whether this technology, when used with UST systems containing intermediate or high ethanol blends, would indicate a potential release under every circumstance.

Performance Parameter	Method of Evaluation	Results		
Accuracy (E0 and E15 only)	Comparison to manual measurements	Bias -0.7	inches	
Sensitivity (E0 and	Comparison to manual	Tolerance Limit0.04	inches	
E15 only)	Comparison to manual measurements	Minimum Detectable 0.07 Level Change	inches	
Precision (E0 and E15 only)	Evaluation of initial response for all runs with responses	St Dev. 0.009	inches inches	
Ease of use	Operator observations	 Initial installation was completed in ~2 hours by vendor Operation is automated upon powering; requires no external intervention Operated unattended except for data downloads Data files are generated automatically and are able to be downloaded and observed through an internet browser 		
Maintenance	Operator observations	No routine maintenance activities were performed during testing		
Consumables/waste generated	Operator observations	• The technology required no consuma	bles and generated no waste	

Signed by Tracy Stenner	9/26/12	Signed by Cynthia Sonich-Mullin	11/27/12	
Tracy Stenner	Date	Cynthia Sonich-Mullin	Date	
Manager		Director		
Environmental Solutions Product Line		National Risk Management Research Laboratory		
Energy, Environment, and Materials Sciences		Office of Research and Development		
Battelle		U.S. Environmental Protection Agency		

NOTICE: ETV verifications are based on an evaluation of technology performance under specific, predetermined criteria and the appropriate quality assurance procedures. EPA and Battelle make no expressed or implied warranties as to the performance of the technology and do not certify that a technology will always operate as verified. The end user is solely responsible for complying with any and all applicable federal, state, and local requirements. Mention of commercial product names does not imply endorsement.