

THE ENVIRONMENTAL TECHNOLOGY VERIFICATION **PROGRAM**

U.S. Environmental Protection Agency

NSF International

ETV Joint Verification Statement

TECHNOLOGY TYPE:	STORMWATER WASTEWA	TER MANA	GEMENT MODEL	
APPLICATION:	WET WEATHER URBAN RUNOFF MODELING			
TECHNOLOGY NAME:	XP-SWMM STORMWATER WASTEWATER MANAGEMENT MODEL, VERSION 8.2, 2000			
COMPANY: ADDRESS:	XP SOFTWARE, INC. 2000 42 nd AVE., SUITE 214 PORTLAND, OR 97213	PHONE: FAX:	(888) 554-5022 (888) 554-5122	
WEB SITE: EMAIL:	http://www.xpsoftware.com sales@xpsoftware.com			

NSF International (NSF), in cooperation with the U.S. Environmental Protection Agency (EPA), operates the Water Quality Protection Center under EPA's Environmental Technology Verification (ETV) As part of the Center's activities in verifying the performance of wet weather flow Program. technologies, NSF evaluated the performance of the XP-SWMM Stormwater Wastewater Management Model, Version 8.2, 2000 (XP-SWMM). This verification statement provides a summary of the test results for the XP-SWMM. Crawford Engineering Associates (CEA) performed the verification test under contract with NSF.

EPA created the ETV Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ETV program is to further environmental protection by accelerating the acceptance and use of improved and cost-effective technologies. ETV seeks to achieve this goal by providing high quality, peer-reviewed data on technology performance to those involved in the design, distribution, permitting, purchase, and use of environmental technologies.

ETV works in partnership with testing organizations and stakeholder advisory groups consisting of buyers, vendor organizations, and permitters, and with the full participation of individual technology developers. The program evaluates the performance of innovative technologies by developing test plans that are responsive to the needs of the stakeholders, conducting field or laboratory tests (as appropriate), collecting and analyzing data, and preparing peer-reviewed reports. All evaluations are conducted in accordance with rigorous quality assurance/quality control (QA/QC) protocols to ensure that data of known and adequate quality are generated, and that the results are defensible.

US EPA ARCHIVE DOCUMENT

TECHNOLOGY DESCRIPTION

The following technology description is provided by the vendor and does not represent verified information.

XP-SWMM is a commercial software package used throughout the United States and around the world for simulation of storm, sanitary and combined sewer systems. It was designed based on the EPA Storm Water Management Model (EPA SWMM), but has enhancements and additional algorithms for the analysis of urban runoff and drainage. Simulation models like XP-SWMM are used for planning new systems, extending existing systems to accommodate growth, and to mitigate undesirable overflows and adverse water quality impacts. Models are also used for the study and design of wet weather facilities, including the sizing of conveyance systems, storage facilities, pump stations and treatment plants. In practice, the model selected to perform an evaluation is often chosen with little understanding of the background processes involved in producing rainfall-runoff responses or conveyance through a collection system.

XP-SWMM is a collection of computer programs that simulate rainfall-runoff processes in urban watersheds in addition to the transport of the runoff through pipes and channels. The programs are referenced by a graphical user interface (GUI) that assists the user in visualizing the system, in adding data needed to perform the simulation, and in extracting and plotting model results. The GUI assists the user to understand the processes and determine the data necessary for adequately simulating system responses. Prior to using XP-SWMM, however, model users should be familiar with basic hydrologic and hydraulic concepts such as: infiltration; conveyance of flow through pipes and channels, including open channel flow; and flow under backwater conditions.

The XP-SWMM GUI creates a 'card-image' data file that is read by a FORTRAN program that is called by XP-SWMM. The FORTRAN program (and additional subprograms that are called when referenced) performs the required analyses and produces results that are stored in text and binary output files. Additional programs called by the XP-SWMM GUI read binary output result files.

The program has many subprograms. They can be grouped into four main categories:

- UTILITIES for processing data and performing statistical analyses (such as long period rainfall event analysis)
- RUNOFF for determining flow generated from rainfall in a defined watershed or catchment. RUNOFF can use user-selected rainfall-runoff algorithms including EPA SWMM Runoff, Santa Barbara Urban Hydrograph, Soil Conservation Service (SCS) Hydrology, and the rational formula. RUNOFF also performs water quality modeling based on land-use and pollutant buildup/wash-off techniques
- SANITARY for performing collection system routing using kinematic wave routing methods
- HYDRAULIC for performing collection system routing using techniques that solve the St. Venant equations for flow continuity and momentum.

The four main categories can be linked, but RUNOFF and HYDRAULIC are the two primary categories used in most modeling studies. Each of these categories has many components, not all of which were tested in this study. The components tested during the ETV evaluation are believed to be the most commonly used components in urban modeling.

PERFORMANCE VERIFICATION

Testing of the XP-SWMM software was conducted from May through July 2002 at the offices of CEA.

In order to verify the performance of XP-SWMM in real world conditions, the software was applied to real systems and monitored data. This verification method provided insight into how the model supports the user, simulates conditions, and presents the results to the user. Since applying software to real-world situations is subject to a variety of calibration and validation parameters and a certain degree of uncertainty, this testing methodology was not intended to calibrate model parameters.

The goals of the verification were to:

- Identify components of the model (XP-SWMM);
- Review key algorithms to insure they are implemented correctly in XP-SWMM; and
- Compare the model results with off-line calculations, where applicable/possible.

RESULTS

Evaluation of the XP-SWMM components provided insight into the interaction of many 'basic' functions commonly used in building models of actual systems. Examples of basic functions include the WIDTH parameter, used in RUNOFF to determine flow rates from a watershed, and infiltration simulations. Relationships between these types of functions are generally not transparent or even recognized by many potential modelers or users of models. Some of these interrelationships were revealed and highlighted during the testing of XP-SWMM to enhance user confidence in the model.

The results from the testing conducted on the model components were comparable overall to results achieved with off-line calculations. In many instances, the model results were identical to the off-line results, as depicted in Table 1. For the model components listed in Table 1, the values in the column titled "% Comparison" reflect the degree of similarity between the results obtained from the model simulations compared to those obtained through off-line calculations. The model's performance for a particular function may or may not be appropriate given that each function is different and has a different level of inherent uncertainty as a calculation or process.

Module	Component	Process	% Comparison	Notes
RUNOFF	Rainfall	Event	100	
		Interface	>99	Small rounding errors encountered
		Continuous	100	Raw data check recommended to
				ensure no deviant data values.
		Standard	99	Standard formats are most likely
		format		changed by collecting agencies.
		Statistics	100	
	Infiltration	Horton	No value	Horton equation represented
		11011011		appropriately. However, infiltratic and excess rainfall were influenced by value used for WIDTH parameter.
		Green-Ampt	>99	Green-Ampt equation represented appropriately. WIDTH parameter
				not an issue with Green-Ampt.
	Runoff	Runoff	90	Clarification on how the WIDTH parameter affects runoff volume for
				pervious areas is needed.
		SBUH	95	Within expected modeling
				technique variation.
		SCS	95	Within expected modeling
				technique variation.
		Calibrated	95	Monitored results duplicated when
		model		model parameters selected with ca and with proper basin definition.
HYDRAULIC -	Node inflows	Diurnal	99	Minor time shift (one hour).
nodes		pattern		
		Gauged	95	Generally appropriate but possible
		inflow		misrepresentation may impact som simulations.
		Interface	100	
	Node loss	Minor loss	90	Calculated head loss greater than
	coefficients	simulations		simulated values.
	Storage node	Constant	98	Water levels predicted are
	2101181 1000	area		dependent on volume used in
				upstream and downstream links.
		Depth-area	95	Time step for reporting flow result
		Dopin area	,,,	has a significant impact on
				spreadsheet accuracy.
		Power	95	spreadsheet accuracy.
		function)5	
	Node inlet	Maximum	99	
		value	77	
	capacity		00	
	Node 1	Rating curve	99	
	Node control	Flooding allowed	99	
		Sealed	100	

Table 1. Summary of XP-SWMM Testing

Module	Component	Process	% Comparison	Notes
		Surface	99	
		ponding		
	Outlet control	Free outfall	100	
		Fixed	95	
		backwater		
		Tidal	90	Generation of tidal values not
		changes		working in program.
		Variable	95	
		water level		
HYDRAULIC -	Manning's	Manning's	100	
links	Roughness	Equation		
	Pressure and	St. Venant's	95-100	
	open channel	Equation		
	flow	*		
	Flow direction	Upstream,	100	
		downstream		
		and free flow		
	Flow routing for	Basic and	90	Misreporting of some maximums
	conduit shapes	user-defined		for some shapes.
	-	shapes		-
	Gauged flow for	Input of	95	
	calibration plots			
	_	for		
		comparison		
		of results.		
HYDRAULIC -	Multiple	Parallel	95	
special links	conduits	pipes		
	Pump	Type 1	Not tested	Not recommended. Use Type 4.
	simulations			
		Type 2	Not tested	Not recommended. Use Type 4.
		Type 3	100	
		Type 4	100	
		Туре 5	No value	Use with caution.
	Weir simulations	Side weir	98	
		Transverse	99	
		weir		
	Orifice	Bottom	98	
	simulations	orifice		
		Side orifice	98	

QUALITY ASSURANCE / QUALITY CONTROL (QA/QC)

During completion of this verification, CEA personnel duplicated program calculations by hand calculations, checked or duplicated data entry into the model to ensure the model data correctly compared to data used in hand calculations, and checked or duplicated entered data and calculations used in spreadsheets (e.g. checked fields referenced in formulas).

Original signed by		Original signed by		
Sally Gutierrez	9/2/05	Thomas G. Stevens	9/7/05	
Sally Gutierrez	Date	Thomas G. Stevens, P.E.	Date	
Acting Director		Program Manager		
National Risk Management Research Laboratory		ETV Water Quality Protection Center		
Office of Research and Development		NSF International		
United States Environmental I	Protection Agency			

NOTICE: Verifications are based on an evaluation of technology performance under specific, predetermined criteria and the appropriate quality assurance procedures. EPA and NSF make no expressed or implied warranties as to the performance of the technology and do not certify that a technology will always operate as verified. The end user is solely responsible for complying with any and all applicable federal, state, and local requirements. Mention of corporate names, trade names, or commercial products does not constitute endorsement or recommendation for use of specific products. This report in no way constitutes an NSF Certification of the specific product mentioned herein.

Availability of Supporting Documents

Copies of the *ETV Protocol for Verification Testing for Urban Runoff Models* dated October 2000, the verification statement, and the verification report are available from the following sources:

ETV Water Quality Protection Center Manager (order hard copy) NSF International P.O. Box 130140 Ann Arbor, Michigan 48113-0140

NSF web site: http://www.nsf.org/etv (electronic copy)

EPA web site: http://www.epa.gov/etv (electronic copy)

(NOTE: Appendices are not included in the verification report. Appendices are available from NSF upon request.)