Response Design

Inland Aquatics Stream Example

Anthony (Tony) R. Olsen
USEPA NHEERL Western
Ecology Division
200 S.W. 35th Street
Corvallis, OR 97333
Phone: 541 754-4790
Email: olsen.tony@epa.gov

Purpose

- Describe elements of response design
- Examples and considerations
- Indicator development and evaluation example
- Focus on process rather than specific examples
- What would you need to think about for your own monitoring program?

Response Design - What Is It?

- Once you have selected a site to visit, how do you sample it for the selected indicators?
- Response design can have both a temporal and a spatial dimension.
- Requires defining the "target population" for which the design is applicable.
- Ultimately, it includes how you collapse the measurements into an "indicator"
- Integrated into a daily operational scenario that can be consistently implemented by a field crew at a lot of different stream types and still provide comparable data

Target Population

- The portion of the systems about which you want information
- e.g. All 1st - 3rd order streams, all streams and rivers on non-private land, all streams and rivers as defined by 1:100,000 map scale, all lakes > 1 ha., emergent palustrine wetlands.
- Response design might vary with subpopulations within the target population
- e.g., wadeable streams versus large rivers.

Response Design: Indicators

- Indicators of Condition:
- Vertebrate Assemblage
- Macro-invertebrate Assemblage
- Periphyton Assemblage
- Indicators of Stress:
- Physical Habitat (in-stream and near-stream)
- Ambient Chemistry (nutrients, major ions)
- Fish Tissue Contamination (mercury, organic contaminants)
- Watershed/Landscape Characteristics
- Indicator can be derived as:
- Direct measure
- Metrics representing structural or functional attributes

Response Design Scales

Response Design: Index Period

- When to sample
- Desirable qualities
- Stable conditions
- Maximize among-site variability, minimize within-site variability of all indicators
- Biota present and amenable to collection
- May require compromises for multiple indicators
- Influenced by logistics
- Number of sites (or sampling trips)
- Number of field crews
- When are they available and for how long?

Response Design - Fish

- 1-pass sampling
- Spread effort throughout reach
- Get "common" species in approx. relative abundance

Response Design: Benthos and Periphyton

Response Design: Benthos

- Composite sample from samples collected throughout reach
- Many small better than a few large
- $1 \mathrm{ft}^{2}$ kick or sweep samples
- Sufficient material to enumerate 500 individuals
- 11 samples
- Obtain sample from every stream
- Sample at each transect
- Comparability with reference site study
- 500μ mesh net
- 8 samples from riffles
- Minimize equipment
- 1 net for all samples

Response Design: Periphyton

- Composite sample from samples collected throughout reach
- Many small better than a few large
- $12 \mathrm{~cm}^{2}$ scrub or slurp samples
- Sufficient material to enumerate 500 diatom valves, filter 50 mL for chlorophyll and biomass
- 11 samples
- Obtain sample from every stream
- Sample at each transect
- Minimize effort
- Sample at same points as for benthos

Essential Stream Physical Habitat Elements

- Channel Dimensions: Nothing may be more important than space
- Without it-- other elements do not matter
- Gradient: hydraulic "energy" of a stream
- used with size to determine stream power and shear stress
- Substrate Size and Type: important for fish, benthos, periphyton
- Complexity \& Cover: Niche diversity, protection from predation

Essential Stream Physical Habitat Elements

- Riparian Vegetation Cover and Structure: Temperature, organic inputs, channel morphology
- Channel-Riparian Interaction: Channel Characteristics altered by riparian and catchment land use, which in turn influence terrestrial-aquatic interactions
- Anthropogenic Alterations: diagnose stream disturbance and "reference condition"
- Note: Chemistry, Nutrients, Temperature:
- Also need other physical and chemical data to interpret biological data

Physical Habitat Characterization (40 channel width study reach)

- Long. Profile at 100 equidistant points:
- Thalweg Depth, Surficial fines, Habitat Class
- Woody Debris Tally (continuous)
- 21 Equidistant Cross-Sections:
- Width, Substrate
- 11 Equidistant Cross-Sections \& Plots:
- Channel Measures: Slope, Bearing, Channel Dimensions, Fish Cover, Canopy Cover, Substrate Embeddedness
- Riparian Measures: Bank Characteristics, Human Disturbance, Riparian Vegetation Type, Structure and Cover
- Whole Reach: Channel Constraint, Flood/Torrent Evidence
- Near X-Site: Discharge

Response Design: Physical Habitat

Riparian Vegetation \& Human Disturbance

Substrate and Channel Measurements

Woody Debris Tally (between transects)

Downstream end of sampling reach

RESEARCH \& DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Physical Habitat "Quality" Metrics

- Riparian Vegetation: Complexity, Cover
- Riparian Disturbance: Proximity-Weighted Tally
- Substrate: Fines, Embeddedness, Bedrock, Macrophytes Algae
- Channel Alts: Pipes, Revetment, Rel. Bed Stability,

Deviation in Resid. Pool Vol

- Volume : Width, Cross-Sectional Area, Residual Pool, \%Dry
- Complexity: CV Depth, Sinuosity
- Cover: Separate and Sum of 6 Cover Types
- Velocity: Slope, Shear Stress

Quantifying Pools Using Residual Pool Concept

 Getting residual pool areas

Area $=$ Sum [Incremental Average Depth * Longitudinal Increament]

- "Residual Pool Area": Depths, slopes used to estimate volume of water remaining at zero flow
- Independent of discharge, sensitive to activities that alter LWD, sediment inputs

"Old growth" 120 yr after torrent

15 yr after torrent

 that deposited LWD, gravel1 yr after torrent that severely scoured channel

Effect of Measurement Spacing

(from Robison, 1998)

Signal to Noise Variance Ratio (MAHA 93-96) Streams : Replicates

The Long and Winding Road...

Interpretation \& Assessment

RESEARCH \& DEVELOPMENT
Building a scientific foundation for sound environmental decisions

An Index - Bringing It All Together

- Eliminate metrics with insufficient range (raw scores 0-2 or less) - 15 metrics fail this test
- Eliminate metrics with high variability (signal:noise ratio < 3) 2 metrics fail this test
- Correct remaining metrics for watershed size if necessary ($\mathrm{n}=$ 15) - these metrics normalized for $100 \mathrm{~km}^{2}$ watershed
- Eliminate redundant metrics (Pearson $r>0.75$) - 2 metrics fail this test
- Analyze metric responsiveness to disturbance - 10 most responsive metrics retained
- Score metrics using reference/test sites in calibration data (1 metric could not be calibrated)
- 9 remaining metrics combined in final IBI
- IBI tested for ability to discriminate known disturbance gradients using test data set

The Process - Data Sets

- Agreement on data - Mid-Atlantic EMAP streams data, 1993-96 (excluding only Coastal Plain sites)
- Calibration data to include all sites with quantitative physical habitat data ($\mathrm{n}=177$)
- Validation data (set aside, and not used in IBI development) includes all remaining sites ($n=119$)
- 57 candidate metrics calculated

NATMFAM
NREPROS NSANGU NSATHER NSBENT2 NSCATO NSCATO2 NSCENT NSCOLU NSCOTT NSCYPR2 NSDART NSDRUMX NSESOXX NSFUND NSGAMB NSICTA
NSINTOL
NSLAMP NSPERCO NSPPER NSSALM
NSUMBR
NTROPH
NUMFSH NUMNATSP NUMSPEC PANOM PATNG

Number of families represented
Number of reproductive guilds number of anguilla species number of atherin species Number of native bent inv species minus 3 taxa number of sucker species
Num of native intolerant Catostomids Sunfish Species Richness number of water colum species number of sculpin species number of intolerant cyprinid species number of darter species number of drumspecies number of esox species number of fundelis species number of gambusia species nurber of ictalurid species
number of intolerant species
number of lamprey species
number of percopsis species
number of perch species
Trout Species Richness
number of unbridae species
number of trophic guilds
number of individuals in sample
number of native species
Total number of fish species
Proportion of indviduals with anomolies prop. of indiv. as attacher non-guarder

PBCLN
PBCST
PBENT
PBENTSP
PCARN
PCGBU
PCOD1
PCOLD2
PCOLSP
PCOTID
PCYPIL
PEXOT
PGRAVEI
PHERB
PINSE
PINMERT
PMACRO
PMCRO
PMCRO2
PNEST
PNTGU
POMN
POMN H
PPISC
PPISANR
PPISAN
PTOE
PTREPRO
prop. of indv. as bcspwn dear substr. prop. of indv. as broadcast spanners prop. of fish as benthic insectivores prop. of benthic hab. sp. in native sp. prop. piscivore-invert.(piscinv+pisciv) prop. of indv. as dear gravel buryers Prop. of cold water individuals Prop. of cold \& cool water individuals prop. of colurm sp. in native sp. prop. of indviduals as cottids prop. of ind. as tolerant cyprinids prop. of indviduals as introduced prop. of simple lithophils prop. of indviduals as herbivores prop. of indiv. as native insectivores prop. of invertivores prop. of macro-omivores prop. of micro-omivores Prop. of micro-omivores minus RHNATRO prop. of indv. as nest associates prop. of indv. as nester guarder prop. Ominore individuals (pmicro+pmacro) prop. omi-herbiv.(ppicro+pmacro+herbiv) prop. of indviduals as carrivores Prop. of piscivore-insectiv. minus SEMDATRO prop. of piscivoreinsectivores prop. of indviduals as tderant prop. tolerant reproductive guild individuals

Range Test

Question: Do all metrics have enough of a range that they will contribute useful information to an IBI?

Answer: No. Several metrics have values (only) of 0, 1 or 2. These metrics were dropped from the candidate list:

NSANGU NSATHER
NSCATO2 NSDRUMX
NSESOXX NSFUND
NSGAMB NSICTA
NSLAMP NSPERCO
NSPPER NSSALM
NSUMBR

Signal:Noise Test

Question: Are all metrics sampled reliably, i.e., do repeated measurements at a single site yield the same results?

Answer: No. Two metrics have signal:noise ratios (ratio of within site variance to between site variance less than 3. These metrics were dropped from the candidate list:

NTROPH
PNEST

Watershed Correction

Question: Do metrics show strong correlations with watershed size, so that their scores need to be normalized (watershed size effect removed?)

Answer: Yes. These metrics need to be corrected for watershed size effects:

NATIVFAM	NUMFISH
NREPROS	NUMNATSP
NSBENT2	NUMSPEC
NSCATO	PATNG
NSCENT	PBENT
NSCOLU	PCARN
NSCYPR2	PINSE
NSDART	PINVERT
NSINTOL	

Watershed Correction

Approach: Use relationships observed at reference sites to define 'natural' element of watershed size effect

Watershed Correction

Approach: Use relationships observed at reference sites to define 'natural' element of watershed size effect

Result: Each metric scored against its expected value in a reference site with watershed area $=100 \mathrm{~km}^{2}$

Redundancy Test

Question: Are all metrics independent?
Answer: No. Two pairs of metrics have Pearson $r>0.75$. Only one of each pair can be used in final IBI. These metrics were dropped from the candidate list:

NCOLD1 (redundant with PCOLD2)
PBCLN (redundant with PMACRO)

Responsiveness Disturbance Metrics (each metric evaluated for response to each of 18 disturbance gradients)

Chemical:

-pH
-sulfate concentration
-total nitrogen concentration
-total phosphorus concentration
-chloride concentration

Integrated Measures:
-Disturbance Class
(Mine Drainage, Acid Rain, Nutrients, etc.)
-Watershed Condition Class
(Bryce et al., 1999)

Habitat:
-Percent Sands and Fines
-Bed Stability
-Density of Large Woody Debris

- Fish Cover
-Riparian Disturbance
- Channel and Riparian Disturbance Index
- Watershed Quality Index
-Watershed \& Riparian Quality Index
-Watershed, Riparian \& Channel Habitat
Quality Index
-Channel Habitat Quality Index
Natural drivers (included as a check):
-Reach Slope

Responsiveness - Example

Number of Intolerant Taxa (Adjusted for Watershed Size)

(Plots outlined in red illustrate good metric response)

RESEARCH \& DEVELOPMENT
Building a scientific foundation for sound environmental decisions

Special Case \#1
 Number of Fish Metric

Result: While this metric passed all of our tests, if scored like all other metrics, more than half of sites would score 10 . The amount of information gained by its use is too small to include it in final IBI

Special Case \#2-‘Fishless’ Sites If fishless sites are scored as $I B I=0$

These zero values may be reasonable

But what about these?

[^0]Building a scientific foundation for sound environmental decisions

Habitat Volume

Conclusion: High probability of 'fishless' streams when Habitat Volume Index falls below 0.4

Minimum Watershed Size

Conclusion: Habitat Volume Index Values <0.4 common in watersheds less than $2 \mathrm{~km}^{2}$. Below this threshold, we cannot confidently expect to encounter fish - set IBI to missing when number of fish is <10.

Final Metrics

Class of Metric	Metric Name	Description	Responds to:
Tolerance Metrics	NSINTOL4	No. Intolerant Taxa	Chemistry, Channel Habitat, Watershed Condition
Count Metrics	NTOLE	Proportion of Tolerant Taxa	Chemistry, Channel Habitat, Watershed Condition
Reproductive Metrics	PGRAVEL	Proportion of Simple Lithophils	Nutrients (positive response)
Habitat Metrics	PCOTTID	Proportion of Cottids	Nutrients, All Habitat measures

Metric Scoring

- All metrics scored on continuous scale, from 0 to 10
- Scoring based on distributions of reference and test site scores in calibration data
- Upper limit (10 set by 50th percentile score in the reference distribution
- Lower limit (0) set by 10th percentile score in the nonreference distribution

IBI Thresholds

How to set thresholds for IBI assessment?

Goal: Use the distribution of IBI scores in reference sites to set thresholds between good, fair and poor IBI scores:

IBI > 25th reference percentile = good
5th $<$ IBI $<$ 25th reference percentile $=$ fair
IBI $<$ 5th reference percentile $=$ poor

One difficulty: There are multiple ways to define reference, and each gives a different reference distribution:

- least restrictive: based on chemical and RBP habitat filters ($\mathrm{n}=27$, good geographic coverage)
- moderately restrictive: adds quantitative habitat filters ($\mathrm{n}=23$, good geographic coverage)
- most restrictive: adds watershed condition class (1 or 2) ($\mathrm{n}=12$, restricted geographic coverage)

Final IBI Responsiveness

Watershed Condition Classes from Bryce et al., 1999, JAWRA

Validation Data Set

Using Reference and Test Site "Filters"

IBI Thresholds

How to set thresholds for IBI assessment?

Goal: Use the distribution of IBI scores in reference sites to set thresholds between good, fair and poor IBI scores:

IBI >25 th reference percentile $=$ good

$$
\begin{aligned}
& 1 \text { st }<\mathrm{IBI}<25 \text { th reference percentile }=\text { fair } \\
& \mathrm{IBI}<1 \text { st reference percentile }=\text { poor }
\end{aligned}
$$

One difficulty: There are multiple ways to define reference, and each gives a different reference distribution:

- least restrictive: based on chemical and RBP habitat filters ($\mathrm{n}=27$, good geographic coverage)
- moderately restrictive: adds quantitative habitat filters ($\mathrm{n}=23$, good geographic coverage)
- most restrictive: adds watershed condition class (1 or 2) ($\mathrm{n}=12$, restricted geographic coverage)

IBI Thresholds

Solution? Use information from all 3 reference definitions to set thresholds - acknowledge uncertainty involved in any one definition

Fish IBI Results

Proportion of Stream Length
RESEARCH \& DEVELOPMENT
Building a scientific foundation for sound environmental decisions

IBI Results

Geographic Distribution

Western Appalachians

Ridge and Blue Ridge
Valleys

RESEARCH \& DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Response Design Summary

- Involves entire process from obtaining measurements at a site through calculation of indicators for the site.
- Field plot design has both spatial and temporal dimensions
- Size of the support for the plot
- Sampling restricted to index period during the year
- Integrated to provide cost-effective, consistent data when implemented by multiple field crews
- Metrics and Indicators are calculated with respect to the elements of the target population
- Indicators must be calibrated so that their scores have the same meaning for any element in the target population
- Assessment decisions are categorical indicators.

[^0]: RESEARCH \& DEVELOPMENT

