Monitoring Design: Component Details

Anthony (Tony) R. Olsen USEPA NHEERL Western Ecology Division Voice: 541 754-4790 Email: olsen.tony@epa.gov

National Water Quality Monitoring Council: Monitoring Framework

- View as an information system
- Monitoring pieces must be designed and implemented to fit together
- Comprehensive monitoring strategy can become central organizing approach to managing all waters in a state

RESEARCH & DEVELOPMENT

Monitoring Components Objectives-Design-Analysis-Report

- Monitoring objectives
- Institutional constraints
- Target population
- Sample frame
- Indicators and response design
- Design requirements
- Specification of survey design
- Site selection

- Site evaluation
- Conduct field and lab measurements
- Indicator results database
- Sample frame summary
- Adjust survey weights based on implementation
- Target population estimation
- **Report results**

RESEARCH & DEVELOPMENT

Identify Monitoring Objectives

- Monitoring program weakness: Objectives for monitoring are not clearly, precisely stated and understood
- Objectives must be linked to management decisions and reporting requirements
- Objectives determine the monitoring design
 - Usual to have multiple objectives
 - Precise statements are required
 - Objectives must be prioritized
 - Objectives compete for samples

RESEARCH & DEVELOPMENT

From Questions to Objectives

- What is the overall quality of waters in the state?
- What is the overall quality of streams with flowing water during summer in the state?
- What is the biological quality of streams with flowing water during summer in the state?
- How many km of streams with flowing water during the summer are impaired, non-impaired, and marginally-impaired within the state?
 - How is impairment determined?
 - What is meant by summer?
 - Are constructed channels, canals, effluent-dominated streams included?

Objectives: Examples

- What is the nitrate concentration at the point of discharge into the receiving waters during normal operation of the facility?
- What is the average nitrate concentration within the mixing zone of the facility point discharge?
- How many km of streams within the Mohawk River watershed have nitrate concentrations greater than 40 μ eq/L?
- What about time?

RESEARCH & DEVELOPMENT

Monitoring Design

- What aquatic resource will be monitored (Target Population)?
- What will be measured (Indicators)?
- How will it be measured (Response Design)?
- Where will it be monitored (Site Selection)?
- How frequently will it be monitored (Time Selection)?
- How will measurements be summarized (Monitoring Analysis)

RESEARCH & DEVELOPMENT

What is a Target Population?

- Target population denotes the ecological resource about which information is wanted.
- Requires a clear, precise definition
 - Must be understandable to users
 - Field crews must be able to determine if a particular site is included
- More difficult to define than most expect.
- Includes definition of what the elements are that make up the target population

RESEARCH & DEVELOPMENT

Target Population: Lake Example

- All lakes (and reservoirs) within the conterminous U.S. excluding the Laurentian Great Lakes and the Great Salt Lake with permanent fish population
- A lake is defined as a permanent body of water of at least one hectare in surface area with a minimum of 1,000 sq m of open (unvegetated) water, and a maximum depth of one meter or more
- Elements are individual lakes
 - Lake is represented as a point
 - Single value for each indicator obtained for each lake

RESEARCH & DEVELOPMENT

Target Population: Lake Example

- All lakes and reservoirs greater than 10 hectares in surface area within the state
 - Elements are all possible points on lake surface
 - Need to define what a lake is
- All lakes and reservoirs less than 10 hectares in surface area within the state
 - Elements are individual lakes treated as points
 - Need to define what a lake is

RESEARCH & DEVELOPMENT

Target Population: Coastal Waters Example

- All estuarine areas within the state
 - Define what is estuarine
 - Is there a minimum depth?
 - Elements are all possible points within estuarine surface area
- All off-shore coastal waters within the state with depth between 30 and 100 meters

RESEARCH & DEVELOPMENT

Target Population: Stream Examples

- All perennial wadeable streams (rivers) within the state
 - How is perennial determined?
 - How is wadeable determined?
 - Elements are all possible points on stream network (infinite number)
- All perennial wadeable stream reaches within the state
 - How are stream reaches defined?
 - Elements are all reaches (finite number)
- All stream channels within the state
 - How is stream channel defined?

RESEARCH & DEVELOPMENT

Subpopulations and Domains

- Subsets of the target population that are of particular interest
- Examples for aquatic ecosystems
 - Ecoregions, biogeographic regions
 - All lentic resources in region with area < 100 ha
 - All lotic resources with with Strahler order < 4
 - Tidal creeks versus open water estuarine areas
 - All lotic resources with < 20% riparian canopy cover
 - All 5-th field HUCs with >10 NWI wetland polygons
 - All 6-th field HUCs with >25% Federal land ownership

RESEARCH & DEVELOPMENT

Subpopulations: Impact on Design

- Objectives identify critical subpopulations with expected sample sizes: Domains
- Survey design addresses domain sample size requirements
 - Explicitly using stratification, unequal weighting
 - Implicitly when other requirements provide sufficient sample sizes
- Other subpopulations can not be defined prior to sample selection

RESEARCH & DEVELOPMENT

What is a Sample Frame?

- A representation of the target population that is used to select the sample sites
 - It consists of sample units that are potential members of the sample
 - Extent (size) of the frame is obtained by summation
- Almost always are not exact representations of the target population
 - may not include some Target Population elements: undercoverage
 - may contain non-target elements, e.g., mis-identified sample units: Overcoverage

RESEARCH & DEVELOPMENT

Sampling Frame: Stream Target Populations

- GIS coverage that includes all streams in the target population
- River Reach File Version 3 (RF3); NHD
- Quality of RF3 as sampling frame
 - Undercoverage: excludes some channels that appear on 1:24,000
 USGS maps and not on maps
 - Overcoverage: includes some channels/features that are not in stream target population
- Impacts survey design
 - Limited information available in RF3 to help define design for domains
 - Other GIS coverages can add some attributes required

RESEARCH & DEVELOPMENT

Sampling Frame: Lake Target Populations

- GIS coverage of lakes and reservoirs
- RF3; NHD; state lists/coverages
- Lakes: two alternatives for elements
 - Each lake is element: lake viewed as a point
 - All points in all lakes are elements: area view
- Quality of RF3 as sampling frame
 - Undercoverage: Excludes some lakes and reservoirs
 - Overcoverage: Includes features that are not a lake or reservoir

RESEARCH & DEVELOPMENT

Sampling Frame: Coastal Waters Target Populations

- GIS coverage of coastal waters in study
 - Estuary open water
 - Tidal streams
 - Near-shore waters
- Elements are all point locations within target population

RESEARCH & DEVELOPMENT

Target Population, Sample Frame, Sampled Population

We Live in an Imperfect World...

Ideally, cyan, yellow, gray squares would overlap completely

RESEARCH & DEVELOPMENT

- All streams and rivers with flowing water during index period
- Collection of all streams and rivers for which we want to make inferences
- Rarely does an implemented monitoring program actually match the target population
 - Sample frame may have left some streams and rivers out
 - Some sites on streams and rivers can not be sampled

RESEARCH & DEVELOPMENT

Sample Frame

- Best representation of target population
 - Some of target population may not be included in frame
 - Frame may include sites not in target population
- Only make inferences to portion of the target population that is included in the sample frame

RESEARCH & DEVELOPMENT

Sampled Population

- Portion of the target population and sample frame
 - that can actually be sampled
 - to which inferences can be made
- Portion of the target population that is within the sample frame may not be sampleable due to
 - Landowner denies access
 - Physical barrier (safety) to reaching
 - Other reasons

RESEARCH & DEVELOPMENT

Site Selection

- Goal is to obtain a "representative" site
 - At least 7 definitions for representative
 - Useful concept and yet difficult to obtain
- Basic Alternatives
 - Authoritative selection
 - Biased to achieve specific objective
 - Judgment based on knowledge
 - Statistical designs
- Objective is to generalize from the selected sites to the target population
- Critical link: Objectives-design-analysis

RESEARCH & DEVELOPMENT

Types of Statistical Designs

- Experimental designs
 - Random allocation of treatments
- Observational studies
 - Factor space designs
 - Gradient studies
 - Available sites
- Survey designs
 - Census
 - Probability survey

RESEARCH & DEVELOPMENT

Survey Design Response Design

- Survey design is process of selecting sites at which a response will be determined
 - Probability model for inference is based on the randomized selection process
 - Has a spatial component and may have a time component
- Response design is process of obtaining a response at a site:
 - A single index period during a year
 - Multiple periods during year: monthly, quarterly

RESEARCH & DEVELOPMENT

The Response Design: Index Period

- Time period within year selected for measurement (ecologically based)
- Measurements may be taken more than once during index period with response design giving protocol for obtaining single value for indicator
- Indicator variability within index period contributes to non-survey sampling error

RESEARCH & DEVELOPMENT

Basic Spatial Survey Designs

- Simple Random Sample
- Systematic Sample
 - Regular grid
 - Regular spacing on linear resource
- Spatially Balanced Sample
 - Combination of simple random and systematic
 - Guarantees all possible samples are distributed across the resource (target population)
 - Generalized Random Tessellation Stratified (GRTS) design

RESEARCH & DEVELOPMENT

Why aren't Basic Designs Sufficient?

- Monitoring objectives may include requirements that basic designs can't address efficiently
 - Estimates for particular subpopulations requires greater sampling effort
 - Administrative restrictions and operational costs
- Ecological resource occurrence in study region makes basic designs inefficient
 - Resource is known to be restricted to particular habitats

RESEARCH & DEVELOPMENT

Stratification: Reasons to Use

- Administrative or operational convenience
 - Regions or states need to be operationally independent
- Particular portions of the target population require different survey designs
 - Design for extensive wetlands (Everglades) may be different from praire pothole wetlands
- Increase precision by constructing strata that are homogeneous

RESEARCH & DEVELOPMENT

More complex Survey Designs

- Spatial strata random sample
 - Don't have a list frame
 - Alternative way to spatially balance sample
- Unequal probability sample
 - Alternative to stratification
 - Requires auxiliary information
- Cluster sample
 - Can decrease field operation
- Multiple stage sample
 - Way to decrease cost of sample frame construction
- Adaptive Sampling

RESEARCH & DEVELOPMENT

Stratification and Unequal Probability Selection

- Stratification: reasons
 - Improve precision of results
 - Operational/administrative efficiency
 - Different subpopulations require different survey designs
- Unequal weighting
 - Allocate sample to subpopulations
 - Improve precision of results
 - Based on auxiliary information

RESEARCH & DEVELOPMENT

State-wide Monitoring: When Multiple Years Required

- Rotating basins
 - Each year monitor subset of state
 - Census
 - Probability Survey
 - Complete all subsets in 5-years
- State-wide
 - Each year sample over entire state
 - Complete all sites to be sampled in 5-years
 - Census: partition all sites into 5 subsets
 - Probability survey over time

RESEARCH & DEVELOPMENT

Status, Change, Trend

- Status
 - How many stream km in Region III meet their designated use?
 - How many stream km have degraded riparian zones?
- Change/Trends
 - Has the status of the streams in Region III changed between two time periods?
 - What is the trend over the last 10 years in the percent of stream km in Region III that meet their designated use?
 - What is the trend in nitrate concentration on the Santiam River at its confluence with the Willamette River.

RESEARCH & DEVELOPMENT

Survey Design Key Components

- Objectives stated precisely and quantitatively
- Target population explicitly, precisely defined
- Sampling frame constructed that represents the target population
- Decision on which survey design meets needs
- Selection of sites using survey design
- Statistical analysis match survey design

RESEARCH & DEVELOPMENT

Example Designs

- Everglades marshes and canals
- Streams and rivers in 12 western states
- Headwater watersheds in coastal plains of Mid-Atlantic
- Prairie pothole wetlands in North Dakota and South Dakota
- 6-th field hydrologic units in Pacific Northwest
- Riverine wetlands associated with the Great Lakes
- All Lakes >1 ha for fish tissue contaminants

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Spatially-Balanced Sample of 6-th Field Hydrologic Units Coastal Region of Oregon

۹

RESEARCH & DEVELOPMENT

projects/emapgis/urquhart/californiabight/figure12-4.ai 4/18/00 smp

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

PRIMARY CANDIDATE SAMPLING SITES: 2000-2003

RESEARCH & DEVELOPMENT

Monitoring Design Information

- Aquatic Resource Monitoring Web Page: http://www.epa.gov/nheerl/arm
 - Overview of survey design
 - Bibliography
 - Design and analysis information
- EMAP Design Team
 - Works with States, Tribal Nations, EPA Regions, Other Federal Agencies
 - Members from ORD ecology divisions, NERL, Office of Water
 - Contact: Web page above

RESEARCH & DEVELOPMENT

