Monitoring Design: Component Details

Anthony (Tony) R. Olsen USEPA NHEERL
Western Ecology Division
Voice: 541 754-4790
Email: olsen.tony@epa.gov

National Water Quality Monitoring Council: Monitoring Framework

- View as an information system
- Monitoring pieces must be designed and implemented to fit together
- Comprehensive monitoring strategy can become central organizing approach to managing all waters in a state

Monitoring Components Objectives-Design-Analysis-Report

- Monitoring objectives
- Institutional constraints
- Target population
- Sample frame
- Indicators and response design
- Design requirements
- Specification of survey design
- Site selection
- Site evaluation
- Conduct field and lab measurements
- Indicator results database
- Sample frame summary
- Adjust survey weights based on implementation
- Target population estimation
- Report results

Identify Monitoring Objectives

- Monitoring program weakness: Objectives for monitoring are not clearly, precisely stated and understood
- Objectives must be linked to management decisions and reporting requirements
- Objectives determine the monitoring design
- Usual to have multiple objectives
- Precise statements are required
- Objectives must be prioritized
- Objectives compete for samples

From Questions to Objectives

- What is the overall quality of waters in the state?
- What is the overall quality of streams with flowing water during summer in the state?
- What is the biological quality of streams with flowing water during summer in the state?
- How many km of streams with flowing water during the summer are impaired, non-impaired, and marginallyimpaired within the state?
- How is impairment determined?
- What is meant by summer?
- Are constructed channels, canals, effluent-dominated streams included?

Objectives: Examples

- What is the nitrate concentration at the point of discharge into the receiving waters during normal operation of the facility?
- What is the average nitrate concentration within the mixing zone of the facility point discharge?
- How many km of streams within the Mohawk River watershed have nitrate concentrations greater than 40 $\mu \mathrm{eq} / \mathrm{L}$?
- What about time?

Monitoring Design

- What aquatic resource will be monitored (Target Population)?
- What will be measured (Indicators)?
- How will it be measured (Response Design)?
- Where will it be monitored (Site Selection)?
- How frequently will it be monitored (Time Selection)?
- How will measurements be summarized (Monitoring Analysis)

What is a Target Population?

- Target population denotes the ecological resource about which information is wanted.
- Requires a clear, precise definition
- Must be understandable to users
- Field crews must be able to determine if a particular site is included
- More difficult to define than most expect.
- Includes definition of what the elements are that make up the target population

Target Population: Lake Example

- All lakes (and reservoirs) within the conterminous U.S. excluding the Laurentian Great Lakes and the Great Salt Lake with permanent fish population
- A lake is defined as a permanent body of water of at least one hectare in surface area with a minimum of $1,000 \mathrm{sq} \mathrm{m}$ of open (unvegetated) water, and a maximum depth of one meter or more
- Elements are individual lakes
- Lake is represented as a point
- Single value for each indicator obtained for each lake

Target Population: Lake Example

- All lakes and reservoirs greater than 10 hectares in surface area within the state
- Elements are all possible points on lake surface
- Need to define what a lake is
- All lakes and reservoirs less than 10 hectares in surface area within the state
- Elements are individual lakes treated as points
- Need to define what a lake is

Target Population: Coastal Waters Example

- All estuarine areas within the state
- Define what is estuarine
- Is there a minimum depth?
- Elements are all possible points within estuarine surface area
- All off-shore coastal waters within the state with depth between 30 and 100 meters

Target Population: Stream Examples

- All perennial wadeable streams (rivers) within the state
- How is perennial determined?
- How is wadeable determined?
- Elements are all possible points on stream network (infinite number)
- All perennial wadeable stream reaches within the state
- How are stream reaches defined?
- Elements are all reaches (finite number)
- All stream channels within the state
- How is stream channel defined?

Subpopulations and Domains

- Subsets of the target population that are of particular interest
- Examples for aquatic ecosystems
- Ecoregions, biogeographic regions
- All lentic resources in region with area < 100 ha
- All lotic resources with with Strahler order < 4
- Tidal creeks versus open water estuarine areas
- All lotic resources with $<20 \%$ riparian canopy cover
- All 5-th field HUCs with >10 NWI wetland polygons
- All 6-th field HUCs with >25\% Federal land ownership

Subpopulations: Impact on Design

- Objectives identify critical subpopulations with expected sample sizes: Domains
- Survey design addresses domain sample size requirements
- Explicitly using stratification, unequal weighting
- Implicitly when other requirements provide sufficient sample sizes
- Other subpopulations can not be defined prior to sample selection

What is a Sample Frame?

- A representation of the target population that is used to select the sample sites
- It consists of sample units that are potential members of the sample
- Extent (size) of the frame is obtained by summation
- Almost always are not exact representations of the target population
- may not include some Target Population elements: undercoverage
- may contain non-target elements, e.g., mis-identified sample units: Overcoverage

Sampling Frame: Stream Target Populations

- GIS coverage that includes all streams in the target population
- River Reach File Version 3 (RF3); NHD
- Quality of RF3 as sampling frame
- Undercoverage: excludes some channels that appear on 1:24,000 USGS maps and not on maps
- Overcoverage: includes some channels/features that are not in stream target population
- Impacts survey design
- Limited information available in RF3 to help define design for domains
- Other GIS coverages can add some attributes required

Sampling Frame: Lake Target Populations

- GIS coverage of lakes and reservoirs
- RF3; NHD; state lists/coverages
- Lakes: two alternatives for elements
- Each lake is element: lake viewed as a point
- All points in all lakes are elements: area view
- Quality of RF3 as sampling frame
- Undercoverage: Excludes some lakes and reservoirs
- Overcoverage: Includes features that are not a lake or reservoir

Sampling Frame: Coastal Waters Target Populations

- GIS coverage of coastal waters in study
- Estuary open water
- Tidal streams
- Near-shore waters
- Elements are all point locations within target population

Target Population, Sample Frame, Sampled Population

We Live in an Imperfect World...

Ideally, cyan, yellow, gray squares would overlap completely

Target Population

- All streams and rivers with flowing water during index period
- Collection of all streams and rivers for which we want to make inferences
- Rarely does an implemented monitoring program actually match the target population
- Sample frame may have left some streams and rivers out
- Some sites on streams and rivers can not be sampled

Sample Frame

- Best representation of target population
- Some of target population may not be included in frame
- Frame may include sites not in target population
- Only make inferences to portion of the target population that is included in the sample frame

Sampled Population

- Portion of the target population and sample frame
- that can actually be sampled
- to which inferences can be made
- Portion of the target population that is within the sample frame may not be sampleable due to
- Landowner denies access
- Physical barrier (safety) to reaching
- Other reasons

Site Selection

- Goal is to obtain a "representative" site
- At least 7 definitions for representative
- Useful concept and yet difficult to obtain
- Basic Alternatives
- Authoritative selection
- Biased to achieve specific objective
- Judgment based on knowledge
- Statistical designs
- Objective is to generalize from the selected sites to the target population
- Critical link: Objectives-design-analysis

Types of Statistical Designs

- Experimental designs
- Random allocation of treatments
- Observational studies
- Factor space designs
- Gradient studies
- Available sites
- Survey designs
- Census
- Probability survey

Survey Design
 Response Design

- Survey design is process of selecting sites at which a response will be determined
- Probability model for inference is based on the randomized selection process
- Has a spatial component and may have a time component
- Response design is process of obtaining a response at a site:
- A single index period during a year
- Multiple periods during year: monthly, quarterly

The Response Design: Index Period

- Time period within year selected for measurement (ecologically based)
- Measurements may be taken more than once during index period with response design giving protocol for obtaining single value for indicator
- Indicator variability within index period contributes to non-survey sampling error

Basic Spatial Survey Designs

- Simple Random Sample
- Systematic Sample
- Regular grid
- Regular spacing on linear resource
- Spatially Balanced Sample
- Combination of simple random and systematic
- Guarantees all possible samples are distributed across the resource (target population)
- Generalized Random Tessellation Stratified (GRTS) design

Why aren't Basic Designs Sufficient?

- Monitoring objectives may include requirements that basic designs can't address efficiently
- Estimates for particular subpopulations requires greater sampling effort
- Administrative restrictions and operational costs
- Ecological resource occurrence in study region makes basic designs inefficient
- Resource is known to be restricted to particular habitats

Stratification: Reasons to Use

- Administrative or operational convenience
- Regions or states need to be operationally independent
- Particular portions of the target population require different survey designs
- Design for extensive wetlands (Everglades) may be different from praire pothole wetlands
- Increase precision by constructing strata that are homogeneous

More complex Survey Designs

- Spatial strata random sample
- Don't have a list frame
- Alternative way to spatially balance sample
- Unequal probability sample
- Alternative to stratification
- Requires auxiliary information
- Cluster sample
- Can decrease field operation
- Multiple stage sample
- Way to decrease cost of sample frame construction
- Adaptive Sampling

Stratification and

Unequal Probability Selection

- Stratification: reasons
- Improve precision of results
- Operational/administrative efficiency
- Different subpopulations require different survey designs
- Unequal weighting
- Allocate sample to subpopulations
- Improve precision of results
- Based on auxiliary information

State-wide Monitoring: When Multiple Years Required

- Rotating basins
- Each year monitor subset of state
- Census
- Probability Survey
- Complete all subsets in 5-years
- State-wide
- Each year sample over entire state
- Complete all sites to be sampled in 5-years
- Census: partition all sites into 5 subsets
- Probability survey over time

Status, Change, Trend

- Status
- How many stream km in Region III meet their designated use?
- How many stream km have degraded riparian zones?
- Change/Trends
- Has the status of the streams in Region III changed between two time periods?
- What is the trend over the last 10 years in the percent of stream km in Region III that meet their designated use?
- What is the trend in nitrate concentration on the Santiam River at its confluence with the Willamette River.

Survey Design Key Components

- Objectives stated precisely and quantitatively
- Target population explicitly, precisely defined
- Sampling frame constructed that represents the target population
- Decision on which survey design meets needs
- Selection of sites using survey design
- Statistical analysis match survey design

Example Designs

- Everglades marshes and canals
- Streams and rivers in 12 western states
- Headwater watersheds in coastal plains of Mid-Atlantic
- Prairie pothole wetlands in North Dakota and South Dakota
- 6-th field hydrologic units in Pacific Northwest
- Riverine wetlands associated with the Great Lakes
- All Lakes >1 ha for fish tissue contaminants

RESEARCH \& DEVELOPMENT

National Fish Tissue Contaminant Lake Survey

Spatially-Balanced Sample of 6-th Field Hydrologic Units Coastal Region of Oregon

projects/emapgis/urquhart/california bight/figure12-4.ai
4/18/00 smp

RESEARCH \& DEVELOPMENT

Building a scientific foundation for sound environmental decisions

PRIMARY CANDIDATE SAMPLING SITES: 2000-2003

Monitoring Design Information

- Aquatic Resource Monitoring Web Page: http://www.epa.gov/nheerl/arm
- Overview of survey design
- Bibliography
- Design and analysis information
- EMAP Design Team
- Works with States, Tribal Nations, EPA Regions, Other Federal Agencies
- Members from ORD ecology divisions, NERL, Office of Water
- Contact: Web page above

