


ESTIMATION METHOD 11:  Cumulative Distribution Function and Variance for
Proportion of a Resource;  Simulation-Extrapolation Method  

1  Scope and Application

This report describes an estimation procedure called Simulation-Extrapolation (Cook and
Stefanski, 1994) used to estimate a population cumulative distribution when sample units
are measured with error.  Estimates obtained when the measurement error is ignored are
biased and may be misleading.  The Simulation-Extrapolation(SIMEX) method reduces
the bias induced by measurement error by establishing a relationship between
measurement error-induced bias and the variance of the error.  Extrapolating this
relationship back to the case of no measurement error, an estimator with smaller bias is
produced.  The method assumes that the variance of the measurement error in the observed
sample is known or at least well estimated.  A variance estimator of the SIMEX estimator
is also described.

2  Statistical Estimation Overview

Let  be the true (unobserved) data subject to measurement error and
 denote the observed data where Xi is a measure of Ui.  A functional

measurement error model with additive independent normal error is assumed.  That is,
, for 1, , n, where  are mutually independent, independent of

random sampling, and identically distributed standard normal random variables.  Hence,
the measurement errors in the observed sample have mean zero and variance .

The estimand F(t) is the cumulative distribution of some population of interest.  Let
, where T(U) is a function of the data , denote the unbiased

estimator of F(t) that would be calculated in the absence of measurement error and let
 be an unbiased estimator of the variance of .  The naive estimator

 obtained when the measurement error is ignored is biased for F(t). 

Estimates of F(t) with even greater bias can be obtained by adding additional measurement
error in known increments to X.  From these estimates, a relationship may be established
between the bias induced by the measurement error and the variance of the added
measurement error.

The first step of the procedure consists of computing a large number B of pseudo data sets
 for different values of 8, where  for i = 1, þ,

n and b = 1, þ, B, and  are mutually independent, independent of the
data , and identically distributed standard normal pseudo-random variables.  For 
fixed 8, the measurement error variance of the additional errors  
is .  Therefore, the total measurement error in  for 1 # i # n and 1 # b # B has
variance .  The estimates  are then calculated for 
b = 1, þ, B.  The average of these estimates is used to estimate the expectation of 
with respect to the distribution of the pseudo-random variates .  This is the
simulation step of the SIMEX method.



Next the expectation, , is modeled by a quadratic

function in 8.  That is,  is estimated by .  Estimates of
the model parameters $0,   $1, and $2   are obtained by least squares estimation of 
on 8.  Note that the error in the data  has variance , hence,
taking 8 = -1 corresponds to the case of no measurement error.  The SIMEX estimator is
obtained by extrapolating the assumed model back to 8 = -1 (i.e., the case of no
measurement error). The resulting estimator is given by .
Different parameter estimates must be calculated for each value of t.

For additional information on the SIMEX estimator see Cook and Stefanski (1994).

3  Conditions Under Which This Method Applies
 
! Data observed with error.
 
! Additive independent and normally distributed measurement errors with mean zero

and common variance .

4  Required Elements

4.1. Input Data

 = probability sample of size n, where X   is a measured value of Ui and
 is the true (unobserved) sample subject to measurement error.

= measurement error variance.
= variance estimate of  when  is estimated;  zero otherwise.

5  Formulas and Definitions

Let t denote a fixed argument in the following definitions and formulas.  Define:

 !  = estimator of the population cumulative distribution (CD) in the  absence of
measurement error.

!  = estimator based on the data , where  is the
observed sample,  are standard normal pseudo-random variables,  is the
measurement error variance, and 8 > 0 is a constant.

 !  = estimator of the variance of .

!  = estimator of the expectation of  with respect to the  distribution of
the pseudo-random errors .

!  = estimator of the expectation of  with respect to the distribution of
 only.



 !  = estimator of .

!  = estimator based on the data , where 

is the observed sample,  are standard normal pseudo-random variables,   
is the measurement error variance, and , > 0 (, . 0) and 8 > 0 are  constants.

!  = estimator of the expectation of  with respect to the  distribution

of  only.

!  = estimator of the derivative of  with respect to the measurement  error
variance .

!  = SIMEX estimator.

!  = variance estimator of the SIMEX estimator. 

!  = lower 100(1)% confidence limit for .

!  = upper 100(1)% confidence limit for .

The formulas for the above definitions are as follows:

!  = 

!  = 

!  = 

!  = 

!  = 

!  = 

!  = 

!  = 



!  = 

!  = 

If  is known,

!  = 

If  is estimated,

!  = 

!  = 
 
!  = 

where

U =  = (true) unobserved data values,

X =  = sample observed with error,

 = independent and identically distributed standard normal
pseudo-random variables,

 = variance of measurement error,

 = variance estimate of  when  is estimated,

  = a function of the data  that is unbiased for the population
cumulative distribution from which the data was sampled,

  = a function of the data  that is unbiased for

,

,

,



th percentile in the standard Normal distribution.

6  Procedure

6.1 Generate a sequence of k grid points, , spanning the range of  the
observed data .

For example, suppose  and .  We
could let  k = 51 and define .

 
6.2 Generate a sequence of  values .

See Section 8.1 for more information.

6.3 For each grid point ,

6.3.1 For each ,

6.3.1.1 For ,

6.3.1.1.1 Generate n standard normal pseudo-random variates .

6.3.1.1.2 Calculate the pseudo-data set .

 for 

6.3.1.1.3 Calculate .

 = 

6.3.1.1.4 Calculate .

 = 

6.3.1.1.5 If  > 0,

6.3.1.1.5.1 Calculate the data set .

 =  for 



6.3.1.1.5.2 Calculate .

 = 

6.3.1.2 Calculate .

 = 

6.3.1.3 Calculate .

 = 

6.3.1.4 Calculate 

 = 

6.3.1.5 If  > 0,
  
6.3.1.5.1 Calculate .

 = 

6.3.1.5.2 Calculate .

 = 

6.3.2 Calculate .

 = 

where

 such that 



6.3.3 Calculate .

If  is known, i.e.,  = 0,

 = 

where

 is defined above

If  is estimated, i.e.,  > 0,

 = 

where

 and 0 are defined above

6.3.4 Calculate approximate 100(1 - ")% confidence limits,  and .

 = 
 

 = 

where  is the 100(1 - "/2)th percentile in the standard Normal distribution.

6.4 Apply isotonic regression to  on 

 While1  is NOT non-decreasing

Let i = 1 and j = 2

While2 j < n

While3  > 

Let j = j + 1

End of While3



For h = 1, þ, j - 1,

 = 

End of For

Let i = j and j = j + 1

End of While2

End of While1

6.5 Restrict range of  to [0, 1].

Set h = 1

While  < 0

 = 0

h = h + 1

End of While

Set h = k

While  > 1

 = 1

h = h ! 1

End of While

 (Note, isotonic regression simply ensures that  is a non-decreasing function on
.  This is accomplished by averaging function values on intervals where  is

decreasing.  The procedure is repeated until  is non-decreasing.   For more
information on isotonic regression see Barlow et al (1972).

6.6 Apply isotonic regression to  on  and restrict range of

 to [0, 1].

See Sections 6.4 and  6.5 above.



6.7 Apply isotonic regression to  on  and restrict range of

 to [0, 1].

See Sections 6.4 and  6.5 above.

7  Associated Methods

A similar procedure of estimating the cumulative distribution of a finite population in the
presence of measurement error is described in Estimation Method 9: The Parametric
Jackknife Estimator.  This method assumes a particular sampling model that allows the
expectation of the sample cumulative distributions to be obtained analytically, rather than
by simulation as in the SIMEX method.

8  Notes

The procedure outlined in Section 6 requires specification of 0 < 81 < þ < 8m  .  Cook and
Stefanski (1994) propose taking equally spaced values over the interval [0.05, 2.00].  They
also suggest using m $ 5, although the exact number of values is not critical.

The algorithm in Section 6 is designed for calculating estimates of the cumulative
proportion.  A slight variation of this algorithm would allow for estimating the cumulative
total.  In this case we assume that  is an unbiased estimator of the
cumulative total.  The algorithm is modified by changing the upper bound of the SIMEX
estimate and the confidence limits from one to the population size, if the population is

finite, or 4, if the population is infinite.  This modification is required in Sections 6.5
through 6.7.
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