


ESTIMATION METHOD 9:  Cumulative Distribution Function and Variance for
Proportion of a Finite Population;  Parametric Jackknife Estimator 

1  Scope and Application

An important aspect of environmental statistics is to measure specific indicators in order
to monitor the status of the environment.  Frequently these indicators are subject to
measurement error.  When sample units are measured with error, the naive estimator of the
population cumulative distribution obtained when  the measurement error is ignored are
biased and may be misleading.  The purpose of this report is to describe a bias-adjusted
estimator proposed by Stefanski and  Bay (1996) for the cumulative distribu tion of a finite
population in  the presence of measurement error.   This estimato r, called the parametric
jackknife, reduces much of the bias induced by the measurement error.  A variance
estimator for the parametric jackknife estimator is obtained using Horvitz-Thompson
estimation.

2  Statistical Estimation Overview

A sampling model is assumed in which a sample of size n is selected from a population
 with inclusion probabilities  and joint inclusion

probabilities .  The observed data consis ts of , where Xi is a measured
value of Ui   and is subject to measurement error.  It is assumed that  for

, where  are mutually independent, independent of random sampling,
and identically distributed standard normal random variables.  Thus, the measurement
errors in the observed sample are normally distributed with mean zero and variance .

The estimation procedure involves adding additional measurement error in known
increments to the observed data, computing cumulative distribution estimates from these
contaminated data, establishing a relationship between these estimates and the
measurement error variance, and extrapolating this relationship back to the case of no
measurement error.

Computing , where  is a standard normal
pseudo-random variable and  is a constant, increases the variability of the
measurement error.  The total measurement erro r variance of the resulting data is

.  Cumulative distribution estimates are calculated at a fixed argument from
 over a range of values of . The expectation o f these estimates is

approximated by a quadratic function in .  Least squares regression of the cumulative
distribution estimates on  estimates the  parameters o f this quadratic model. 
Extrapo lation to the case of no  measurement error, i.e., , gives the parametric
jackknife estimator.

Refer to Section 8.3. for a more detailed explanation of this estimation procedure and for
details on calculating a variance estimate of a parametric jackknife estimate.



3  Conditions Under Which This Method Applies

! Probability sample with known inclusion and joint inclusion probabilities.
! Finite population.
! Data observed with error.
! Additive independent and normally distributed measurement errors with mean zero

and common variance .

4  Required Elements

4.1 Input Data

N = population size.
 = probability sample of size n, where Xi is a measured value o f Ui, the ith

element in population U.
 = vector of inclusion probabilities, where  is the probability of selecting    

element Ui from population U.
 = matrix of joint inclusion probabilities, where  is the

probability of selecting elements Ui and Uj from population U; , and
.

= measurement error variance.
= variance es timate of , when  is estimated;  zero otherwise.

5  Formulas and Definitions

Let t denote a fixed argument in the following definitions and formulas.  Define:

!  = estimand (i.e., the population cumulative distribution (CD)).

!  = estimator of the population CD in the absence of measurement error.
  
!  = the CD estimator based on the data , where  is

the observed sample,  are standard normal pseudo-random variables, and
 is a constant.

!  = parametric jackknife estimator.

!  = variance estimator of the parametric jackknife estimator.
 
!  = lower  confidence limit for .

!  = upper  confidence limit for .



The formulas for the above definitions are as follows:

!

!

If  is known,

!

If  is estimated by ,

!

If  is known,

!

If  is estimated by ,

!

If  is known,

!

If  is estimated by ,

!

!

!



where

= indicator function,

N = population size,

U = population o f interest,

n = number of elements sampled from U,

= sample observed with measurement error,

= probability of selecting Ui from U, where Ui is the true (unobserved) value of
Xi,

= probability of selecting Ui and  Uj from U, where Uk is the true value of X k, 
k = i, j,

= measurement error variance,

= variance es timate of , where  is the estimate  of ,

th percentile in the standard normal distribution,

= standard normal cumulative distribution function,

= standard normal density function,

 (i.e., least squares solution)

with  and ,

with D as defined above and



6  Procedure

6.1 Generate a  sequence of k grid points, , spanning the range of  the
observed data .

For example, suppose  and .  We
could let  k = 51 and define .

 
6.2 Generate a sequence of  values .

See Section 8.1 for more information.

6.3 For each grid point ,

6.3.1 For each data value ,

6.3.1.1 Calculate  or , when  is estimated).

where

,

(Note,  is the standard normal cumulative distribution function).

6.3.1.2 If  is estimated, calculate .

where D is defined in Section 6.3.1.1 above, and

(Note,  is the standard normal density function).



6.3.2. Calculate .

If  is known, then

If  is estimated by ,

6.3.3 Calculate .

If  is known,

If  is estimated by ,

6.3.4 Calculate approximate  confidence limits, .

where th percentile o f the standard normal distribu tion. 
  
6.4 Apply isotonic regression to .

While1  is NOT a non-decreasing sequence

Let i = 1 and j = 2

While2 j < n

While3 

Increase j by 1  (i.e., j = j + 1)



End of While3

For ,

End of For

Let i = j and j = j+1

End of While2

End of While1

(Note, isotonic regression simply ensures that the function  is
non-decreasing on [t1, tk].  This is accomplished by averaging the function values on

intervals where the function is decreasing.  The procedure is repeated until 

is non-decreasing.  For more information on isotonic regression see Barlow et al.
(1972).)

6.5 Restrict range of  to [0, 1].

Set h = 1

While 

h = h + 1

End of While

Set h = k

While 

h = h - 1

End of While



6.6 Apply isotonic regression to  and restrict range of

 to [0, 1].

See Sections 6.4 and 6.5 above.

6.7 Apply isotonic regression to  and restrict range of

 to [0, 1].

See Sections 6.4 and 6.5 above.

7  Associated Methods

A related method for estimating a cumulative distribution in the presence of measurement
error is described in  Estimation Method 11, the simulation-extrapolation  method.  This
method does  not assume a particu lar sampling model nor does it requ ire a finite
population.

8  Notes

The algorithm given in Section 6 requires spec ification of .  Stefanski
and Bay (1996) propose taking equally spaced values over the interval [0.05, 2.00].  They
also suggests , although the exact number of values is not critical.

The algorithm in Section 6 calculates estimates of the cumulative proportion.  Estimates of

the cumulative total may be obtained by multiplying the estimates  by N,

the population size.  The variance estimator for the cumulative total is equal to the
variance estimator for the cumulative proportion times N2.  Confidence limits would need
to be recalculated.  Additionally, the range of the es timates of the cumulative to tal and its
confidence limits would be [0, N] rather than [0, 1] as specified for the cumulative
proportion.

This method of bias-adjustment is closely related to Quenouille's jackknife.  The usual
jackknife increases sampling variance by decreasing sample size.  In this method
measurement error variance is increased by adding pseudo-random errors to the observed
data, achieving the same “variance-inflation'' effect as in the jackknife method.  This is
done by calculating , where  is the observed
sample with measurement error variance ,  are standard normal
pseudo-random variables, and  is a constant. The variance of the additional error is

, and the variance of the total measurement error in  is .  The usual CD
estimator based on these data  is given by



Taking the expectation with respect to the pseudo-random error d istribution, we obtain

It can be shown that

where  denote the expectation with respect to the error and sampling
distributions, and

The model  is used to approximate .  Parameters are

estimated by least squares regression of  on , where

 are fixed constants.  Extrapolating to , we obtain

which may also be expressed as

where

 = the inclusion probability for selecting the ith element in population U,

such that



.

When  is known, the variance of  is estimated by the Horvitz-Thompson
estimator (Sarndal et al., 1992, p. 43):

where
 and G are given above,

 = joint inclusion probability for selecting elements i and j from population U.

When  is estimated, the Horvitz-Thompson estimator is still used to estimate the
variance of the parametric jackknife estimate.  However, the additional variation due to
estimating    must also be accounted for.  Hence, when  is estimated, the variance
estimator is  given by:

where
, , and G are given above,

See Stefanski and Bay (1996) for more details.
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