


ESTIMATION METHOD 2:  Estimation of the Cumulative Distribution Function for the Total
Number of a Discrete Resource;  Horvitz-Thompson Estimator, Normal Approximation

1  Scope and Application

This method calculates the estimate of the cumulative distribution function (CDF) for the total
number of a discrete resource that has an indicator value equal to or less than a given indicator
level.  The method applies to any probability sample and presents two estimators.  An estimate can
be produced for the entire population or for an arbitrary subpopulation with known or unknown
size.  This size is the number of units in the subpopulation.  Suggestions for estimating the CDF
over the range of the indicator are included.  Alternatively, the CDF can be calculated at the
indicator levels found in the probability sample.  The method uses the Normal approximation to
provide confidence bounds or intervals for the true cumulative distribution function.  This method
does not include variance estimators for the estimated CDF.  For information on appropriate
variance estimators, refer to Section 7.
   
This method has been applied in:

The 1991 Surface Waters Pilot Report

2  Statistical Estimation Overview

A sample of size na units is selected from subpopulation a with known inclusion probabilities
  The indicator is evaluated for each unit and represented by

 

Estimates of the cumulative distribution function are obtained for the indicator levels of interest,
  Several alternatives are available for choosing x.  The recommended

alternative is the use of equally spaced values across the range of the indicator.  Ideally, this range is
known a priori and extends beyond the range of any particular data set.  A second alternative is to
use the set of unique values in the data set.  This alternative gives the classical empirical cumulative
distribution function.  A third alternative is to use the midpoints of adjacent ordered values in y for
the levels x.  

To obtain the estimated cumulative distribution function, , the Horvitz-Thompson estimator

of a cumulative total is calculated for each xk by summing up the number of indicators which are
less than or equal to the xk value.  Alternatively, when the subpopulation size is known, first form
the Horvitz-Thompson ratio estimator by dividing this cumulative total by the estimated

subpopulation size,  , and then multiply this ratio by the known subpopulation size, Na , to obtain

. 

The Horvitz-Thompson ratio estimator may perform better than the estimator which does not use
the known subpopulation size Na .  Some of the conditions under which this ratio estimator is



recommended are given in Section 9.  This ratio estimator cannot be used in the case of missing
data.

Confidence limits for  are produced by assuming a Normal distribution.  These limits may

be used to construct either a lower confidence bound, an upper confidence bound, or a confidence

interval for .  Computation of these limits requires an estimated variance of  which is

not provided in this method.  Details for computing a suitable estimated variance of  are

found in other methods referenced in Section 7.  

The output consists of the estimated cumulative distribution function values with either a one-sided
confidence bound (upper or lower) or a confidence interval for .

3  Conditions Under Which This Method Applies

! Probability sample with known inclusion probabilities
! Discrete resource 
! Arbitrary subpopulation
! All units sampled from the subpopulation must be accounted for before applying this method
! When the indicator value is missing, exclude this missing value and the corresponding

inclusion probability;  use the Horvitz-Thompson estimator of a total

4  Required Elements

4.1  Input Data

yi = value of the indicator for the ith unit sampled from subpopulation a.
= the inclusion probability for selecting the ith unit of subpopulation a.  

4.2  Additional Components 

na = number of units sampled from subpopulation a.
xk = kth indicator level of interest.  
Na = subpopulation size, if known.

4.3  Graphical Display Considerations

Two issues should be resolved before graphing the CDF: 1) how many points to use and 2) what are
the first and last points on the plot.  The following are guidelines for the three alternatives
mentioned in Section 2.  In all three approaches, the plotted points are connected by line segments. 
The sample y is understood to be in ascending order for this discussion.

If the empirical CDF is chosen, the number of points plotted is at most na+2.  The first plotted point
is (0,0) when the indicator takes on only positive values.  Otherwise, choose a point smaller than y1

as the abscissa and assign zero as the ordinate.  Where there is more than one occurrence of an



indicator level in the data set, plot only one point using the largest cumulative distribution function
value associated with this level as the ordinate.

If the midpoints of adjacent values in y are used for the levels x, at most na+1 points are plotted.  To
determine the first plotted point, calculate the distance between y1 and y2.  Take half this distance
and subtract it from y1 to obtain the abscissa.  If this abscissa is a negative number and the indicator
can never be negative, instead assign zero as the abscissa.  Use zero as the ordinate.  Similarly, to
determine the last plotted point, calculate the distance between the largest y values,  and  

Halve this distance, add it to  and plot this abscissa using the cumulative total number associated

with  as its ordinate.

The recommended approach uses equally spaced levels across the potential range of the indicator. 
The levels used should be potential real values that the indicator could attain.  In this case of
discrete data, integer values should be used.  As mentioned previously, ideally this range is known a
priori and extends beyond the range of any particular data set.  If an informed guess cannot be made
for this range, one suggested range would be to use the midpoint approach for obtaining the first
and last plot points as explained in the previous paragraph.  How many points to use is a subjective
decision and should take into account the chosen range, the size of the data set, and sometimes the
data distribution itself must be examined.  The following suggestions are given to help decide how
many points to use.  

In most cases, using the same number of points as used in the empirical distribution, na+2 points,
will be sufficient for plotting the CDF.  Extreme outliers in a particular data set may have a great
influence on the graph.  In this case, more points may be needed to achieve greater resolution within
the body of the data.  In the case of large data sets, plotting less than na+2 points should be
adequate.  Begin by using 100 points for these larger data sets.  The range of the indicator will have
a part in determining if this is an adequate number of points.  Trying the plots with differing
numbers of points may be useful to see if the graph changes significantly.

The y-axis (CDF) should range in values from zero to either the known or estimated subpopulation
size, depending on the estimator used.  This size will be the cumulative total number associated
with .  This method may result in confidence limits which drop below zero or exceed the

applicable subpopulation size.  These limits should not appear on the plot.  Instead, truncate the

plotted upper limit at  .  Truncate the plotted lower limit at zero.



5  Formulas and Definitions

The estimated CDF (total number) for indicator value xk in subpopulation a, ;  Horvitz-

Thompson estimator of a total is

The estimated CDF (total number) for indicator value xk in subpopulation a,  , with known

subpopulation size, Na , and estimated subpopulation size, ;  Horvitz-Thompson ratio estimator is

The one-sided  upper confidence bound, BU(xk) is 

The one-sided  lower confidence bound, BL(xk) is 

The two-sided  confidence interval, C(xk) is 

For these equations: 

= estimated variance of the estimated CDF (total number) for indicator value xk in

subpopulation a. 

xk = kth indicator level of interest.  
yi = value of the indicator for the ith unit sampled from subpopulation a.

= the inclusion probability for selecting the ith unit of subpopulation a.  

na = number of units sampled from subpopulation a.



= z-score from the standard Normal distribution.

= level of significance.

6  Procedure  

6.1 Enter Data

Input the sample data consisting of the indicator values, yi , and their associated inclusion
probabilities, .  For example,

Calcium

yi

Inclusion

Probab ility

1.5992 .07734

2.3707 .00375

1.5992 .75000

2.0000 .75000

7.0000 .00375

2.8196 .02227

1.2204 .01406

1.5992 .03750

2.9399 .00586

.7395 .00375



6.2 Sort Data

Sort the sample data in nondecreasing order based on the yi indicator values.  Keep all occurrences of an indicator value

to obtain correct results.

Calcium

yi

Inclusion

Probab ility

.7395 .00375

1.2204 .01406

1.5992 .07734

1.5992 .75000

1.5992 .03750

2.0000 .75000

2.3707 .00375

2.8196 .02227

2.9399 .00586

7.0000 .00375

6.3 Obtain Subpopulation Size 

If using the Horvitz-Thompson ratio estimator, input Na and calculate  from the sample data. 

Sum the reciprocals of the inclusion probabilities, , for all units in the sample a to obtain   

 = (1/.00375) + (1/.01406) + (1/.07734) + . . . + (1/.00375) = 1128.939 for this data set.

6.4 Input Indicator Levels of Interest

Assign indicator levels of interest, x, based on graphical display considerations.  Choose one of the
three methods previously discussed in Section 4.3.

6.4.1  The Recommended Approach — Levels of Interest

Form an expected range of the indicator before looking at the data.  Next, examine the data set to
see if the estimated range encompasses all y values.  If not, increase the range to encompass the
outlying y values.  If there are large outliers, more points than na+2 may be needed to retain good
resolution in the body of the plot.  Determine evenly spaced x values across the chosen range.
  
For this example, the estimated range was .5 to 9.5 mg/L.  The range does not have to be adjusted
because it includes the observed yi values.  The point spacing interval for x, xint = (xmax ! xmin)/(na !
1) = (9.5 ! .5)/(10 ! 1) = 9/9 =  1.0.  The 10 x  values = (xmin , xmin+1.0, xmin+2(1.0), ... ) = (.5, 1.5,



2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5).  Try obtaining the CDF first with these x values and then again
with an increased number of x values spaced closer together.  More points across the range may be
needed because all but one of the yi values are less than 3.0.

6.4.2  The Empirical CDF — Levels of Interest

For the empirical CDF, x values = (.7395, 1.2204, 1.5992, 2, 2.3707, 2.8196, 2.9399, 7).  Duplicate
values in the data set, 1.5992, do not have to be repeated when forming x . 

6.4.3  The Midpoint Approach — Levels of Interest

Calculate the midpoints of each pair of yi values to form x .  The first x value is (.7395+1.2204)/2 =
.9800.  In this particular data set, there are three occurrences of 1.5992.  As a result, there are two
midpoints of 1.5992.  Regardless of how many times a midpoint is repeated, include it only once in
x.  The x values = (.9800, 1.4098, 1.5992, 1.7996, 2.1854, 2.5952, 2.8798, 4.9700).

6.5 Compute Cumulative Distribution Function Values

Calculate  for each element in x using the formulas from Section 5.

To calculate , compare each yi to x1.  If yi is less than or equal to x1, then  is added to

the computation of  until yi exceeds x1 (when using sorted data).  Multiply the cumulative

sum of these  by Na /  to obtain  if using the Horvitz-Thompson ratio estimator. 

Otherwise, this cumulative sum is  if using the Horvitz-Thompson estimator of a total.

  

Similarly, to calculate , compare each yi to x2, add the  until yi exceeds x2, and then

multiply this sum by Na /  if applicable.

  
Do this for every value in x.  

Below is an example for obtaining the cumulative sum for each .  Complete results for the

example data are in Section 6.7.



Calcium

yi

Inclusion

Probab ility

Indicator Level

of Interest
Cumulative Sum  for 

.7395 .00375 .7395 1/.00375

1.2204 .01406 1.2204 1/.00375+1/.01406

1.5992 .07734 1.5992 1/.00375+1/.01406+1/.07734+1/.75000 +1/.03750

1.5992 .75000

1.5992 .03750

2.0000 .75000 2.0000 1/.00375+1/.01406+1/.07734+1/.75000+1/.03750+1/.75000

6.6 Compute Confidence Limits

Calculate the confidence bound (upper or lower) or confidence interval for each  using the

formulas from Section 5.

Estimate the variance of  using an applicable method listed in Section 7.  Next, take the

square root of the variance and multiply this square root by the 
z-score from the standard Normal distribution corresponding to the desired confidence level.  

Add this quantity to  to obtain the upper bound, BU(xk).  Subtract this quantity from  

to obtain the lower bound, BL(xk).  For the confidence interval, obtain both BL(xk) and BU(xk).  For
example, 1.645 would be the  for a one-sided 95% upper or lower confidence bound, and the 
for a two-sided 90% confidence interval.  A two-sided 95% confidence interval would use 1.96 for

6.7 Output Results

Output the indicator levels of interest, the associated CDF value, and either a confidence bound
(upper or lower) or a confidence interval for .  If the output generated will be used for

graphing the CDF, append the first and last graph points to this output as directed for the three
methods below.  The tables in Section 6.7.1 – 6.7.3 contain results for the ratio estimator applied to
the example data.  A hypothetical variance is used in confidence bound and interval calculations.  

Lower bounds less than zero are set equal to zero.

6.7.1 The Recommended Approach — Results

Append the point (0,0) to the output file for graphing purposes.  Since xmax , 9.5, exceeds the
maximum yi , 7, no other points are appended.



Calcium

 

xk

CDF for Total

Num ber, Ratio

Estimator

Hypothetical

Variance

One-sided 95%

Lower Conf.

Bound 

BL(xk)

One-sided 95%

Upper Conf.

Bound

BU(xk)

Two-sided 90%

Conf. Interval

 

C(xk)

0*   0*   0*   0*  0*   (0,0)*

0.5  0  0  0 0  (0,0)

1.5 338.10 58744     0** 736.80 (0,736.80)

2.5 647.38 67138 221.14 1073.62 (221.14,1073.62)

3.5 863.09 57090 470.04    1130** (470.04,1130)

4.5 863.09 57090 470.04    1130** (470.04,1130)

5.5 863.09 57090 470.04    1130** (470.04,1130)

6.5 863.09 57090 470.04    1130** (470.04,1130)

7.5 1130  0  1130 1130 (1130,1130)

8.5 1130  0 1130 1130 (1130,1130)

9.5 1130  0 1130 1130 (1130,1130)

*appended **set to 0 **set to 1130



6.7.2 The Empirical CDF — Result

Append the point (0,0) to the output file for graphing purposes.  

Calcium

xk

CDF for Total

Num ber, Ratio

Estimator

Hypothetical

Variance

One-sided 95%

Lower Conf.

Bound 

BL(xk)

One-sided 95%

Upper Conf.

Bound

BU(xk)

Two-sided 90%

Conf. Interval

 

C(xk)

0*   0*   0*  0*  0*   (0,0)*

0.7395 266.91 57090    0** 659.96 (0,659.96)

1.2204 338.10 58744    0** 736.80 (0,736.80)

1.5992 379.12 59316    0** 779.76 (0,779.76)

2.0000 380.36 59334    0** 781.06 (0,781.06)

2.3707 647.38 67138 221.14 1073.62 (221.14,1073.62)

2.8196 692.24 66666 267.51 1116.98 (267.51,1116.98)

2.9399 863.09 57090 470.04    1130** (470.04,1130)

7.0000 1130 0 1130 1130 (1130,1130)

*appended **set to 0 **set to 1130



6.7.3 The Midpoint Approach — Results

Determine the first plotted point by calculating the distance between the first two yi values, .7395
and 1.2204.  Take half this distance and subtract it from .7395 to obtain .7395 ! [(1.2204
!.7395)/2] = .4991.  Append to the output (.4991,0) as the first plotted point.  If a negative number
were obtained and the indicator can never be negative, append (0,0) as the first plotted point. 
Similarly, to determine the last plotted point, calculate the distance between the two largest yi

values, 2.9399 and 7.  Take half this distance and add it to 7 to obtain 7 + [(7!2.9399)/2] = 9.0301. 
Because the distance between these last two yi values is relatively large, choosing the last point

slightly above 7 with an ordinate of  may be preferable over appending (9.0301, ) to

the output.  For this example, (7.5,1130) was appended. 

Calcium

 

xk

CDF for Total

Num ber, Ratio

Estimator

Hypothetical

Variance

One-sided 95%

Lower Conf.

Bound 

BL(xk)

One-sided 95%

Upper Conf.

Bound

BU(xk)

Two-sided 90%

Conf. Interval

 

C(xk)

  .4991* 0* 0*  0*  0* (0,0)*

.9800 266.91 57090    0** 659.96 (0,659.96)

1.4098 338.10 58744    0** 736.80 (0,736.80)

1.5992 379.12 59316    0** 779.76 (0,779.76)

1.7996 379.12 59316    0** 779.76 (0,779.76)

2.1854 380.36 59334    0** 781.06 (0,781.06)

2.5952 647.38 67138 221.14 1073.62 (221.14,1073.62)

2.8798 692.24 66666 267.51 1116.98 (267.51,1116.98)

4.9700 863.09 57090 470.04    1130** (470.04,1130)

 7.5000* 1130* 0*  1130*   1130* (1130,1130)*

*appended **set to 0 **set to 1130

7  Associated Methods

An appropriate variance estimator for this estimated CDF for discrete resources may be found in
Method 6 (Horvitz-Thompson Variance Estimator). 



8  Validation Data

Actual data with results, EMAP Design and Statistics Dataset #2, are available for comparing
results from other versions of these algorithms.

9  Notes

The method which uses the ratio estimator may perform better under certain conditions and may be
used only if the subpopulation size is known.  Sampling done with variable probability and variable
sample size, na , are two of these conditions.  The ratio estimator retains a stability under these cases
and tends to have smaller variance than the other estimator because the numerator and denominator
tend to be positively correlated.  

In the case of missing data, the ratio estimator cannot be used because the size of the subpopulation
is not known.  All graphs should be labeled as applying only to the population that was sampled and
not to the original target population. 
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