US ERA ARCHIVE DOCUMENT

Chemistry of Secondary Organic Aerosol Formation from the Oxidation of Aromatic Hydrocarbons

Outline

- Background
- · Project Objectives & Expected Results
- · Experimental Apparatus and Methods
- · Reactions of Aromatic Hydrocarbons + OH Radicals
- Results
- Future Plans

Secondary Organic Aerosol (SOA) Formation

Major Organic Compound Classes

Major anthropogenic sources of SOA

Major biogenic sources of SOA

Urban Areas

Alkanes ~40%
Aromatics ~20-30%

Alkenes ~10%

Oxygenates & Unidentified

Atmospheric Chemical Lifetimes of Hydrocarbons

Lifetimes

Hydrocarbon	ОН	NO_3	O ₃
<i>n</i> -decane	1.1 d	240 d	>4500 y
toluene	<u>2.1 d</u>	1.8 y	>4.5 y
<i>m</i> -xylene	<u>6.0 h</u>	180 d	> 4.5 y
lpha-pinene	2.7 h	5.4 min	4.7 h

 $[OH] = 12-h daytime ave. = 2.0 x 10^6 molecules cm⁻³ (0.08 pptv)$

 $[O_3] = 24$ -h ave. = 7 x 10¹¹ molecules cm⁻³ (30 ppbv)

 $[NO_3] = 12$ -h nighttime ave. = 5 x 10⁸ molecules cm⁻³ (20 pptv)

Project Objectives & Expected Results

 Identify and quantify first- and multi-generation gas-phase and SOA products and rates of formation from OH radical-initiated reactions for the following systems:

- Effects of NO_x, RH, particle acidity, NH₃, other VOCs
- Provide quantitative yields & kinetics for development of gas-phase & SOA formation mechanisms for use in atmospheric models

Experimental Apparatus & Methods

On-Line Analyses

- Thermal Desorption Particle Beam Mass Spectrometer (particle composition & volatility)
- Atmospheric Pressure Ionization Tandem Mass Spectrometer (gas composition)
- Scanning Mobility Particle Sizer (particle number and mass concentrations)

Off-Line Analyses

- Denuder (with derivatization), Tenax, Filter Sampling
- Gas and Liquid Chromatography-Mass Spectrometry

Presented Results

- Cresol yield
- Effect of NO₂ on 1,2-dicarbonyl yields
- Peroxide SOA yields
- Identification & quantification of unsaturated 1,4-dicarbonyls
- Contributions of unsaturated 1,4-dicarbonyl reaction products, 1,2-dicarbonyls, and dimethylalcohols to SOA
- SOA functional group and elemental composition

Cresol (Alcohol) Yield from m-Xylene + OH

30

Toluene

Effect of NO_2 on glyoxal/methylglyoxal yields from aromatics + OH/NO_x

- O, - Glyoxal
- ∇, **▼** Methylglyoxal
- ◆ 3-Hexene-2,5-dione

No glyoxal/methylglyoxal from OH-aromatic + NO_2 -maybe 123 & 124 TMB

m-Xylene + OH CH_3 ,OH dimethylalcohols (11-21%) + HO₂ ÇH₃ + O₂ 00 CH₃ NO OH-aromatic adduct CH₃C(O)CH=CHCH=C(CH₃)CHO di-unsaturated dicarbonyl -only at high (ppmv) NO low NO_x high NO_x ~OH ÇH₃ multifunctional O_2 hydroxynitrate peroxides HOO-O₂NO CH₃ peroxide carbonyls HO_2 00 alcohols NO ÇH₃ RO₂ + others -OH unsaturated 1,4-dicarbonyls 1,2-dicarbonyls (12-34%)CH₃C(O)CH=CHCHO (52%) CH₃C(O)CHO and $HC(0)C(CH_3)=CHCHO$ (5-14%) $(CHO)_2$ and $CH_3C(O)CH=C(CH_3)CHO$ (1-2%)

011.	with NO _x			without NO _x				
OH + Aromatic	HC (ppm)	MN/NO (ppm)	SOA Yield (%)	Peroxide (mass %)	HC (ppm)	TME/O ₃ (ppm/ppm)		d Peroxide (mass %)
toluene	1	1	6.8	5.7	2	2/1	17.0	19.7
	4	4	33.6	6.2	4	2/1	36.2	14.6
m-xylene	2	2	21.2	6.8	2	2/1	36.2	21.3
p-xylene	4	4	17.0	6.4	2	2/1	31.4	21.0
1,3,5-trimethylbenzer OH benzaldehyde	10	10	3.4	NM	10	50/10	13.0	16.4
Denzaidenyde								

Identified 1,2-Dicarbonyls and Unsaturated 1,4-Dicarbonyls

ring approduct	toluene	xylene		trimethylbenzene			
ring-opened product		0-	m-	p-	1,2,3-	1,2,4-	1,3,5-
(CHO) ₂	X	X	X	X	X	X	
CH ₃ C(O)CHO	X	X	X	X	X	X	X
CH ₃ C(O)C(O)CH ₃		X			X	X	
HC(O)CH=CHCHO	X	X					
CH ₃ C(O)CH=CHCHO	X	X	X		X		
HC(O)C(CH ₃)=CHCHO	X		X	X		X	
CH ₃ C(O)C(CH ₃)=CHCHO		X			X	X	
CH ₃ C(O)CH=C(CH ₃)CHO			X			X	X
CH ₃ C(O)CH=CHC(O)CH ₃				Х		X	
HC(O)C(CH ₃)=C(CH ₃)CHO ^a		a				а	
$CH_3C(O)C(CH_3)=C(CH_3)CHO$					X		
$CH_3C(O)C(CH_3)=CHC(O)CH_3$						Х	

Quantified 1,2-Dicarbonyls and Unsaturated 1,4-Dicarbonyls

Quantified 1,2-Dicarbonyls and Unsaturated 1,4-Dicarbonyls

SOA Yields: per Reacted VOC & Reacted Unsaturated 1,4-Dicarbonyl

	SOA/AVOC (SOA/AUDC)				
NO	NO ₂ (ppm)	ΔVOC (ppm)	<i>m</i> -xylene	3-methylfuran	2-methylfuran
Υ	0.6	0.5 / 0.4 / 0.4	1.4 (15)	0.3 (1.8)	0.5 (3.8)
N	2.4	2.6 / 1.0 / 1.0	26 (<mark>50</mark>)	3.5 (2.9)	5.5 (<mark>5.8</mark>)
Υ	0.8	0.4 / 0.5 / 0.4	3.1 (<mark>43</mark>)	0.4 (2.2)	0.2 (2.3)
Υ	1.7	1.8 / 0.8 / 0.7	4.6 (<mark>22</mark>)	0.5 (0.7)	0.5 (1.1)
Υ	3.7	2.7 / 1.0 / 1.0	30 (<mark>55</mark>)	4.6 (1. 9)	5.8 (7.2)

 $SOA/\Delta UDC$ for m-xylene >> methylfurans: UDC reaction products not major SOA source

Real-time TDPBMS

Very different spectra: UDC reaction products not major SOA source

TPTD

High desorption temperatures: oligomers

m-Xylene + OH + NO $_{\times}$

SOA Analysis

functional group		mole fraction
carbonyl	C=O	0.048
hydroxyl	СНОН	0.039
nitrate	CHONO ₃	0.103
carboxyl	C(O)OH	0.013
ester	C(O)OR	0.060
peroxide	СНООН	0.001
methylene	CH ₂	0.735

	functional group	elemental analysis	
O/C	0.48	0.94	
N/C	0.09	0.10	
H/C	1.63	1.43	
~[CHOH] _{0.4} [CO] _{0.2} [CHONO ₂] _{0.1} [CH ₂] _{0.3}			

Future Plans

- Improved quantification of yields of unsaturated
 1,4-dicarbonyls from OH + aromatic and furan reactions
- OH kinetics, products, and photolysis of unsaturated
 1,4-dicarbonyls formed in situ from OH reactions of furans
- SOA formation & products from reactions of various recipes of aromatics & aromatic + OH products
- Effects of RH, particle acidity, & NH₃
- SOA mass spectral, functional group, and elemental analysis
- Joint experiments with real-time gas and SOA analysis