US ERA ARCHIVE DOCUMENT

Site Remediation with Iron NanoParticles

Interagency Workshop: Nanotechnology and the Environment: Applications and Implications September 15, 2003

Wei-xian Zhang
Associate Professor
Civil & Environmental Eng.
Lehigh University

Nanotechnology holds great promise for meeting environmental challenges

Environmental Technologies at the Nanoscale Nanotechnology could substantially enhance environmental quality and sustainability through pollution prevention, treatment, and remediation. WEI-XIAN ZHANG LEHIGH UNIVERSITY

© 2003 American Chemical Society

102 A ■ ENVIRONMENTAL SCIENCE & TECHNOLOGY / MARCH 1, 2003.

Site Remediation Industrial Waste Treatment

Lab and Field Experience

- Small size for easy subsurface injection
- Large surface area
- Extremely high reaction rates
- Low temperature reaction
- Added Catalytical functions

 $QuickTime^{TM}$ and a Sorenson Video 3 decompressor are needed to see this picture.

Methods of Synthesis

Size (50-100 nm)

50 nm nanoparticle

QuickTimeTM and a TIFF (Uncompressed) decompressor are needed to see this picture.

Iron particles (100-200 nm)

QuickTimeTM and a TIFF (Uncompressed) decompressor are needed to see this picture.

Iron particles (3-5 nm)

Nano Iron Wire (dia 50-75 nm,10-20 µm long)

 $\mathsf{QuickTime^{TM}}$ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Iron Rod (dia ~50 nm)

Iron Tube (~ 50 nm)

Nano Iron Antenna (~50 nm)

Contaminant Transformation With Reactive Iron Nanoparticles

Organic solvents (TCE, PCE)
Pesticides (DDT, lindane)
Fertilizers (nitrate)
Heavy metals (Pb, Hg, Cr, As)
Explosives (TNT, RDX)
Radioactive materials (U)
Perchlorate (ClO₄-)

Initial perchlorate concentration 200 mg/L

Field Test -1 (1.7 kg nanoFe applied, 2000)

- A 27-acre NJ manufacturing site
- Continuous production since 1930s
- C₂HCl₃ (TCE), CCl₄ (CT), etc.
- >\$1.0 million has been spent on the site
- Active remedy is needed

Test Area Schematic

- 2-165 gal tanks
- Recirculation from PZ-3S,
 3D to DGC-15 or
 storage tank
- Dedicated low-flow pumps in each well
- Goal = Gravity Feed!

The Nano Fe Slurry

TCE Reduction %

Field Test - 2 (Nano Fe 10 kg, 2002)

Total volume injected = 1,600 gallons (6,056 L) Nano Fe concentration = 1.9 g/l Average injection rate = 0.6 gpm

Injection Well B-4 Monitoring Wells

B-3: 20 feet north of B-4

B-2: 40 feet northeast of B-4

GW-4: 63 feet north-northeast of B-4

Conceptual Geologic/Hydrogeologic Model

Conceptual Model - Injection Area

Acknowledgments

- U.S. EPA
- NSF
- PITA

- Dr. C.B. Wang
- Dr. H.L. Lien
- Dr. J. Cao
- D. Daniel Elliott
- Xiao-qin Li
- Y.P. Sun
- Steve Spear
- Yu Xue
- Steph Kravitz
- Patrick Clasen
- Tim Marks

Research Group

