US ERA ARCHIVE DOCUMENT

NANOTECHNOLOGY APPLICATIONS FOR TREATMENT: COST EFFECTIVE AND RAPID TECHNOLOGIES; SMART MATERIALS OR ACTIVE SURFACE COATINGS

Wilfred Chen

Chemical and Environmental Engineering
University of California, Riverside

Why Nanomaterials?

- Ability to manipulate, control and build materials at the atomic and molecular level
- Provide novel affinity, capacity, and selectivity because of their unique physical, chemical and biological properties.
- Create large structures with new molecular organization that will facilitate recovery

Types of Nanomaterials for Environmental Treatments

- 1. Smart modified surfaces or membranes
- 2. Nanostructured materials
- 3. Molecularly imprinted polymers
- 4. Nanoscale Biopolymers

Smart Surfaces or Membranes

Active Membranes for Heavy Metal Removal

Fig. 3. Functionalization and derivatization steps for cellulose acctate microfiltration membranes.

Types of modifying peptides

poly-L-glutamate or aspartate

poly-L-lysine or arginine

poly-L-cysteine

Metal Chelating Behavior

TABLE 3. Metal Complex Stability Constants (log K) of Various Metals with Amino Acids^a

	aspartic acid	glutamic acid	cysteine
Ca ²⁺	1.6	1.4	NA^b
Cd_{5+}	4.4	3.8	10.1¢
Cu ²⁺	8.9	8.3	NΑ ^b
Ni^{2+}	7.2	5.6	9.7
Pb ²⁺	5.9ª	4.4 ^e	12.2
Hq^{2+}	NA^{b}	NA^{b}	14.2

^a Data taken from ref 20. All stability constants at 25 °C and 0.1 M ionic strength (μ) except where noted. ^b Not applicable, NA. ^c 37 °C and $\mu = 0.15$ M. ^d $\mu = 1.0$ M. ^a $\mu = 0.5$ M.

poly-L-lysine or arginine - oxyanion such as As

Results with poly-cysteine membrane

Tunable Surfaces for Biofouling

Nanostructured Materials

Poly(amidoamine) Dendrimers

Binding properties

Polymeric Nanoparticles

Enhance PAH Desorption

FIGURE 4. Apparent solubility of PHEN as a function of APU particle concentration.

Amphiphilic Polyurethane Nanoparticles

Kim et al. Journal of Applied Polymer Science 2004

Enhanced PAH Solubility

Figure 3 Enhanced solubility of phenanthrene in the aqueous phase in the presence of Triton X-100 or APU particles: (♠) Triton X-100, (\blacktriangledown) APU700-2, (\blacksquare) APU700-3, and (\bullet) APU1000

PHEMA Beads containing N-Methacryloylhistidine

Figure 2. Molecular formula of p(HEMA-MAH) beads.

Say et al. Macromol. Mater. Eng. 2002

Metal Removal

Table 2. Heavy metal ions adsorption capacity of p(HEMA-MAH) beads after repeated adsorption-desorption cycle. Initial concentrations of metal ions 50 mg/L; pH: 6.0; temperature: 20 °C.

Cycle no	Cu(II)		Pb(II)		Cr(III)		$Hg(\Pi)$		Cd(II)	
	Adsorption mg/g	Desorption %	Adsorption mg/g	Desorption %	Adsorption mg/g	Desorption %	Adsorption mg/g	Desorption %	Adsorption mg/g	Desorption %
1	122.7 ± 9.5	96.5 ± 4.8	714.1 ± 9.5	95.6 ± 4.5	468.8 ± 8.2	96.5 ± 6.0	1234.4 ± 11.4	94.5 ± 5.8	639.4 ± 8.6	97.6 ± 9.5
2	121.5 ± 8.8	98.2 ± 4.1	713.5 ± 8.8	97.4 ± 5.0	468.4 ± 8.5	98.2 ± 7.8	1232.2 ± 10.6	93.2 ± 6.1	638.2 ± 8.8	96.4 ± 9.0
3	121.4 ± 8.3	97.8 ± 4.9	712.6 ± 8.9	96.2 ± 5.1	468.1 ± 8.7	98.7 ± 7.1	1230.0 ± 11.3	92.8 ± 6.9	637.9 ± 8.9	95.2 ± 9.1
4	121.0 ± 9.2	96.5 ± 4.3	712.0 ± 9.8	96.4 ± 5.9	467.2 ± 9.5	97.4 ± 7.4	1229.4 ± 12.2	98.9 ± 7.3	637.0 ± 9.2	93.4 ± 9.9
5	120.7 ± 9.7	99.1 ± 4.5	711.6 ± 9.6	97.3 ± 6.1	465.6 ± 9.6	96.8 ± 7.8	1229.0 ± 12.7	97.5 ± 7.5	636.5 ± 9.0	96.3 ± 9.1

Molecularly Imprinted Polymers

Atrazine-Imprinted Polymers

Fig. 1 Variation of the recoveries obtained for triazines (500 ng mL⁻¹) loaded in toluene (A) or in acetonitrile (B) on imprinted (solid lines) and non-imprinted (dashed lines) polymers as a function of the percentage of acetonitrile or methanol present in the washing solution

Imprinted Polymers for Virus Removal

Infection Frequency of

Spodoptera frugiperda 9 (Sf9) cells

Reactive Polymer Hydrogel for Phosphate Removal

FIGURE 1. PAA·HCI Hydrogel synthesis by chemical cross-linking with EPI cross-linker.

Efficiency of Removal

FIGURE 2. PO_4^{3-} binding from aquaculture wastewater using PAA-HCI hydrogels.

Perchlorate Removal

Figure 1 Hydrogel synthesis by chemical crosslinking with EPI.

Kioussis et al. Journal of Applied Polymer Science 2001

Efficiency of Removal

Figure 2 Measurement of ClO $_4$ -binding capacity of PAA·HCl gel in AP standard solution. PAA·HCl concentration: 20% w/v, $M_n=9750$ g/mol; NaOH: 0.28 g/g PAA·HCl; EPI: 1.88×10^{-3} mol/g PAA·HCl.

Tunable Biopolymer with Metal-Binding Property

Elastin Domain Metal Binding Domain

Fine tune ΔT by controlling amino acid sequence and no. of repeating unit $(VPGXG)_n$

Genetic and Protein Engineering Methodology

Metal Removal

Recycling

Production of Biopolymers

Biopolymer	Protein yield (mg/3 L)
Ela38H6	289
Ela58H6	295
Ela78H6	207
Ela78	191
Ela78H12	168

A, Ela38H6
B, Ela58H6
C, Ela78H6
D, Ela78
E, Ela78H12

MerR can serve as a specific mercury binding domain

MerR-Hg complex

Selective Binding of Mercury by Ela153-MerR Biopolymer

Acknowledgement

Exploratory Research: Nanotechnology