US ERA ARCHIVE DOCUMENT

Reduced Atmospheric Methane Consumption by Temperate Forest Soils Under Elevated CO₂: Causative Factors

S.C. Whalen and L.L. Dubbs

Department of Environmental Sciences and Engineering

University of North Carolina

Chapel Hill, NC 27599

Background – Atmospheric CH₄

- •Preindustrial mixing ratio: ~700 nmol mol⁻¹
- •Current mixing ratio: 1780 nmol mol⁻¹

Source: http://www.esrl.noaa.gov/gmd/ccgg/iadv/

Background – Atmospheric CH₄

Radiatively active

- Accounts for 20% of radiative forcing over past 200 yr
- GWP = 62 X CO₂ on 20 yr time horizon

Photochemically active

- Oxidized by OH
- Intermediate product = CO (sink for OH)
- Low $NO_x \rightarrow O_3$
- Involved in stratospheric chemistry

Atmospheric CH₄ Budget

<u>Sources</u>	Tg CH ₄ yr ⁻¹
Wetlands	145
Rice	80
Oceans, freshwater	20
Termites	20
Ruminants	115
Landfills	40
Wastewater treatment	25
Biomass burning	40
Energy-related	<u>110</u>
	$\Sigma = 600$
<u>Sinks</u>	
Tropospheric OH	510
Stratospheric loss	40
Soils	30
	$\Sigma = 580$
Source: Lelieveld et al. (1998)	

Atmosphere

Forest response to elevated CO₂ that could impact rates of atmospheric CH₄ consumption

Response	CH ₄ oxidation rate
Increased water use efficiency	decrease
Increased root mass, fine root production	decrease
Increased N use efficiency	increase
Δ Microbial community composition	?
Increased rhizodeposition, belowground C allocation	ation ?
Increased belowground release secondary meta	abolites ?
Δ chemistry of root exudates, throughfall, stem	flow ?

Duke Forest Free-Air CO₂ Enrichment (FACE) Site

- Direct CO₂ enrichment of intact ecosystem
- ~25 yr old loblolly pine forest in Durham, NC
- Operational since August 1996
- Realistic evaluation of feedbacks/interactions between atmosphere and plant/soil systems under projected future climates
- Design
 - 1. 6 x 30 m diameter rings
 - 2. Each ring consists of 4 quadrants = 24 total quadrants
 - 3. 3 rings at ambient CO_2 (~380 μ L L⁻¹) = control
 - 4. 3 rings at elevated CO₂ (~580 μL L⁻¹)

Previous Research – Soil CH₄ oxidation at Duke Forest FACE site (design)

Field

- 24 flux collars located at FACE site
- One collar permanently emplaced per quadrant
- = 12 collars at ambient CO₂, 12 collars at elevated CO₂
- CH₄ flux determinations at 2 week intervals
 - 1. Calendar years 1998, 1999
 - 2. April 2001 through March 2002

Laboratory

Influence of N salts on CH₄ consumption

Previous Research – Soil CH₄ oxidation at Duke Forest FACE site (results)

Field (Phillips et al. 2001a, Whalen, unpublished)

- No difference in soil moisture or pH between treatments
- 16% (1998), 30% (1999) and 13% (4/01 3/02) reduction in soil CH₄ consumption in CO₂-fertilized rings

Laboratory (Phillips et al. 2001b)

 No difference in sensitivity between treatments to addition of N salts

Significance:

- A 25% reduction in the 30 Tg yr⁻¹ upland soil CH₄ sink (7.5 Tg)
 ≈ 50% of annual increase in atmospheric burden (14 Tg yr⁻¹)
- If response is sustained → increased atmospheric [CH₄]

STAR Research (1/04-present) Overall Questions

Relative to decreased soil atmospheric CH₄ consumption under elevated CO₂:

- 1. Is this a sustained response?
- 2. What are the physicochemical and/or biological factors responsible?

Hypotheses

 \underline{H}_1 : Reduced soil CH_4 consumption is sustained response of forests to elevated atmospheric CO_2

H₂: Differences in throughfall chemistry between elevated and ambient CO₂ sites do not impact rates of CH₄ oxidation

<u>H</u>₃: Rates of CH₄ oxidation are decreased by chemical compounds released to soils by plants growing under elevated CO₂

 $\underline{\mathsf{H}}_4$: Reduced atmospheric CH_4 consumption by soil microbes under elevated CO_2 is related to rate of CH_4 supply to or structure of the CH_4 -oxidizing community

STAR Research (1/04-present) Hypotheses/Approaches

 \underline{H}_1 : Reduced soil CH_4 consumption is sustained response of forest to elevated atmospheric CO_2

Approach: Biweekly CH₄ flux determinations at previously established fixed sites

H₂: Differences in throughfall chemistry between elevated and ambient CO₂ sites do not impact rates of CH₄ oxidation.

Approach: Jar experiments; Compare rates of CH₄ oxidation in soils amended with throughfall or deionized water.

<u>H</u>₃: Rates of CH₄ oxidation are decreased by chemical compounds released to soils by plants growing under elevated CO₂

Approach: Jar experiments; Amend homogenized soil samples with duff leachate or chemical compounds known or predicted to to be released by plants under elevated CO₂

Date and CO₂ treatment of leaf collection

H₄: Reduced atmospheric CH₄ consumption by soil microbes under elevated CO₂ is related to rate of CH₄ supply to or structure of the CH₄-oxidizing community

Approaches: Field and jar experiments; (a) homogenized soils in 5 cm increments analyzed for CH₄ oxidation, NH₄+ oxidation and methangenic potentials; (b) determine profiles of soil CH₄; (c) assess

relationship between soil moisture and CH₄ oxidation; (d) determine ²²²Rn-based effective soil diffusivity

Conclusions

- 1) Reduced atmospheric CH₄ consumption under elevated CO₂ is a sustained response.
- 2) Causes remain difficult to identify
 - a) Limits of detection approached wrt instrumentation
 - b) Limited destructive sampling
 - Few lab studies can be performed
 - Few treatment reps
- 3) Probably not due to:
 - a) Δ structure or locus of CH₄-oxidizing community
 - b) Inhibitory chemicals
- 4) Likely due to combination of:
 - a) Reduced rates of CH₄ diffusion into soil
 - b) Localized zones of CH₄ production in soil

Ambient CO₂

Elevated CO₂

High rate of CH₄ oxidation

Low rate of CH₄ oxidation

Elevated CO₂

Ambient CO₂

Ongoing and Planned Work

- Seasonal comparison of ²²²Rn-based effective diffusivities vs. rates of atmospehric CH₄ consumption
- SF₆-based rates of effective diffusivity

<u>Acknowledgements</u>

Funding: U.S. EPA- STAR Program grant no. RD-83145101-01-0

<u>FACTS-1 staff:</u> Robert Nettles, David Cooley, Jeff Pippen, Office of the Duke Forest (aerial photos)

<u>UNC Shop:</u> Glenn Walters, Randy Goodman, Fred Bevin, and Cliff Burgess

Whalen lab group: Joelene Diehl, Lauren Elich, Eric Fischer, Marsha Fisher, Ken Fortino, Dendy Lofton, Gina Panisak, David Singleton, Rich Phillips, and Chris Geron

Source: Chip Bok editorial cartoons (copyrighted)