US ERA ARCHIVE DOCUMENT

University of Washington Center for Clean Air Research (CCAR)

SCHOOL OF PUBLIC HEALTH

University of Washington Center for Clean Air Research (CCAR)

Overall focus:

the cardiovascular health effects of near-roadway pollution

What is near-roadway pollution?

a complex <u>mixture</u> of particle, vapor and gas phase components that vary by vehicle emission source, road surface, extent of physical aging and the type and degree of atmospheric processing and photochemical reactions

a cause of <u>cardiovascular disease</u>

a prototypical case for developing research approaches to dealing with <u>multi-pollutant</u> exposure-effect relationships

Roadway proximity and left ventricular mass (LVM) in the Multi-ethnic Study of Atherosclerosis (MESA) cohort

	Δ LVMi		
distance to road (m)	(g/m ² [95% CI])	p-value	
>150	referent		
101-150	1.9 (0.6, 3.2)	0.003	
50-100	1.6(0.4, 2.9)	0.01	
< 50	2.3 (1.2, 3.4)	< 0.001	

Pollutant concentrations (PM_{2.5}, ultrafine, NO₂, VOCs) near major roadway (Highway 401 - Toronto, Aug 5, 2004)

Distance to Expressway (m)

Observations:

- distance from roadway
- upwind vs. downwind
- 3. variability by site

Distance to Expressway (m)

CCAR investigators

University of Washington

Sverre Vedal (director);

Tim Larson (deputy director);

Joel Kaufman; Lianne Sheppard;

Paul Sampson; Adam Szpiro;

Mike Yost; Chris Simpson; Mike

Rosenfeld

Lovelace Respiratory Research Institute Jake McDonald (deputy director);

Amie Lund

University of New Mexico

Matt Campen

Washington State University

Tom Jobson; Tim VanReken

CCAR Science Advisory Committee

exposure and atmospheric science

Michael Brauer (UBC)

Tom Peters (U Iowa)

Barbara Turpin (Rutgers)

toxicology

Ian Gilmour (EPA)

Jake Lusis (UCLA)

Sanjay Rajagopalan (Ohio State)

human clinical / epidemiology

John Balmes (UCSF)

Nick Mills (U Edinburgh)

Arden Pope (BYU)

biostatistics

Brent Coull (Harvard)

CCAR projects

Project 1

roadway exposure characterization

M Yost (PI), T Larson, C Simpson, T Jobson, T VanReken

Project 2

exposure atmosphere generation

J McDonald (PI), T Larson

Project 3

toxicology

M Campen (PI), M Rosenfeld, A Lund, J McDonald

Project 4

human clinical studies

J Kaufman (PI)

Project 5

epidemiology cohort study

J Kaufman (PI), S Vedal

Project 6

multipollutant exposure modeling

L Sheppard (PI), A Szpiro, P Sampson

Project 1 Objectives

- Characterize spatial gradients in four MESA cities
 - Mobile monitoring in four cities over two seasons.
 - Concurrent fixed site monitoring
- Characterize near-source, downwind aging of traffic related air pollutants
 - Physical aging using mobile platform
 - Chemical aging using laboratory mixtures
- Provide detailed laboratory characterization of diluted and aged engine exhaust mixtures available for toxicology testing

Planned Measurements

- Field Measurements
 - mobile platform
 - passive 'snapshot' samplers
- Laboratory Measurements
 - Mass spectroscopy (WSU)
 - VOC and iVOC information
 - particle composition
 - Field instruments moved to lab

Mobile Platform

- Four MESA cities
- 30-sec averages, ~ 10 sampling days/season
- 2 seasons (heating, non-heating)
- Companion fixed site
- Measure distributional properties of "fuzzy points"

"Fuzzy Points"

- Trace a cloverleaf at each intersection (~5-8 minutes)
- Determine the distribution properites of 30sec adjusted readings*

r
$$= \frac{O}{3} - s$$
 $= \frac{a_1}{a_1} - s$ $= \frac{a_2}{a_1} - s$ $= \frac{a_2}{a_1} - s$ $= \frac{a_2}{a_2} - s$ $= \frac{a_$

LUR Model Predictions of Light Absorption Based on Fuzzy Points

Vancouver, BC

(late summer)

c.v. $R^2 \sim 0.7$

Larson et al (2009) *Environmental Science and Technology* 43(13), 4672-4678.

Tacoma, WA (winter & summer)

c.v. $R^2 \sim 0.8$

Park et al (in preparation, 2011)

Extend Field Measurements to Include Multiple Pollutants

- Simultaneous measurement of a number of pollutants allows multivariate analyses
- Mobile platform (fuzzy points)
- Passive samplers (2-wk avgs, 20 sites)
- Goal is to decompose traffic-related pollution into primary vs. aged components

CCAR Field Measurements

Mobile Platform

30-sec averages*

Particle light scattering coefficient

Particle light absorption coefficient

Optical particle size distribution (300 – 32,000 nm)

Particle number concentration

Particle-bound PAHs

O₃, NO, NO2, CO, CO₂

VOCs (photo-ionization)

Mobility median diameter (25 – 100 nm)

X-Y Location

Fixed Sites**

2-wk averages Benzene Isoprene Toluene N-Decane Nonane 2-methylpentane M-Xylene Undecane i-Pentane N-Pentane O-Xylene Coarse PM

^{*} Includes companion fixed site for temporal adjustments

^{* 20} sites per season, 2 seasons

Laboratory Exposure Characterization

- Mass spectroscopy (WSU)
 - VOC and iVOC information
 - particle composition
- Photochemical aging chamber
- Simultaneous measurements with mobile platform and passive 'snapshot' samplers

Mass Spectroscopy

WSU Proton Transfer Reaction Mass Spectrometer

Measurement principle $H_3O^+ + R \rightarrow RH^+ + H_2O$

- Full mass scans or multiple ion monitoring
- Quantitative.
- VOC detection limits ~ 50 pptv

Two sampling modes, alternate between

1. VOC Mode:

Formaldehyde Acetaldehyde BTEX compounds Others ...

2. IVOC mode:

long chain alkanes monocyclic aromatics polycyclic aromatics

WSU High Resolution Aerosol Mass Spectrometer (AMS)

- Particles 50 < Dp < 1000 nm
- 'Non-refractive': Only material that volatizes below ~600 C is measured.
- Time-of-Flight Mass Spectrometer allows high resolution mass spectral data.
- Complex fragmentation patterns- chemical patterns can be identified but organic speciation is not possible.

Source Characterization with the AMS

Mohr et al. 2009

- Known sources can be characterized with a spectral 'fingerprint'.
- This fingerprint can later be compared with ambient factors derived via PMF.
- The High Resolution AMS offers a much higher mass spectral resolution, allowing for more refined source characterization.

Proposed Sampling Schedule

Activity	Study Period	Location
Pilot Testing	June, 2011	Seattle
Field Sampling	Oct-Nov, 2011	St. Paul
Field Sampling	Jan, 2012	Los Angeles
Lab Characterization	April, 2012	Albuquerque
Field Sampling	June, 2012	Los Angeles
Field Sampling	Aug, 2012	St Paul
Lab Characterization	Oct, 2012	Seattle
Field Sampling	Jan, 2013	Winston-Salem
Field Sampling	Feb, 2013	Baltimore
Field Sampling	June, 2013	Baltimore
Field Sampling	Aug, 2013	Winston-Salem

UW Center for Clean Air Research

Project 2: Simulated Roadway Exposure Atmospheres for Laboratory Animal and Human Studies

Project 3: Cardiovascular Consequences of Immune Modification by Traffic-Related Emissions

Project 2: McDonald, Larson, Lund

Project 3: Campen, Rosenfeld, Lund, McDonald www.LRRI.org

Objectives

- Simulate ambient exposures in the laboratory
 - Bridge these exposures to ambient measurements/modeling (Project 1)
- Compare toxicity of exposures
 - Use these results to define priorities and atmospheres for human exposures (Project 4)
- Define mechanisms of biological response

Conceptual Paradigm: Exposures

Background

O₃, (NH₄)₂SO₄, NH₄NO₃,VOC, NI, V

+ Traffic Emissions

Tailpipe,
Evaporative,
Tire & brake,
Resuspended Dust

100 m 500 m 1 km ?? Distance From Roadway

Exposures

Chemical Transformation

OH⁻, Sunlight

Aging
Nucleation,
Agglomeration

Conceptual Paradigm: Toxicology Mechanisms

Exogenous Toxicants

X = -H, -OH Y = - O, -OH Z = choline, inosital, -H, etc

Comparative Exposure/Toxicology

Hypothesis:

- 1. Motor vehicle emissions toxicity decreases when transformed in the atmosphere.
- 2. Background air and non-exhaust roadway emissions (road surface dust, tire and brake wear material, inorganic ions, metals, and ozone) do not contribute significantly to roadway-associated cardiovascular morbidity

Methodology

- Laboratory generated simulated atmospheres
 - Gasoline + Diesel
 - Physical and/or Chemical Transformation
 - Urban air simulated mixture (0₃, Inorganic Ions, Road dust)
 - Paved Road Dust (non-motor vehicle roadway emission)
- Detailed Characterization (complements Project 1 Ambient Measurements)
 - Particle size, number, mass, composition
 - Gas composition

Unique Resources

Biological Mechanisms

Hypothesis:

Emissions-induced oxidation of certain endogenous phospholipids, presumably in the pulmonary surfactant, can <u>stimulate the activity</u> of immune cells and in turn promote the <u>monocytic invasion of existing vascular lesions</u>.

Motivation: MVE Shows Most Prominent Response of Lipid Oxidation

Motivation: Phospholipid Expression is Enhanced in Mice

Motivation: Lipid Peroxidation is Blunted with LOX-1 Antibody Treatment

Project 4 PI: Kaufman

Vascular Response to Traffic-Derived Exhaust in Humans

UW Controlled Exposure Facility

Human Controlled Exposure Study

- Crossover Design (target n = 24)
- Years 3-5 of Center
- Exposures Chosen Based on Project 3 results
- Project 2 Provides Exposure Generation and Characterization Leadership
- Randomized Latin-Square
 - FA / Placebo
 - FA / Pharmacologic Agent
 - Traffic Pollution Low Toxicity/ Placebo
 - Traffic Pollution High Toxicity / Placebo
 - Traffic Pollution High Toxicity / Pharmacologic Agent
- Genotype-Stratified Trial

Human Controlled Exposure Study

- 2 hr at 200 mcg/m³ simulated traffic exposure or filtered air
- Monitor blood pressure
- Serial cytokine measurements
- Mononuclear cell gene expression
- Brachial artery dimensions and flow mediated dilation
- DNA methylation
- Evaluate effects of genotypic difference
- Evaluate effects of pharmacologic intervention

Timeline of exposure day

Ultrasound Measurement of Brachial Artery Diameter

Change in Brachial Artery Diameter

Vasoconstriction with Diesel Exhaust Inhalation

- A. Changes in brachial artery diameter (BAd) following exposures to $200\mu g/m^3$ DE or FA; lines represent mean Δ BAd (pre-to-post) at each exposure level.
- B. Dose-response relationship of diesel exhaust effect on brachial artery diameter. Bars show mean and 95% confidence interval for vasoconstrictive effect for two study sub-populations and overall group. Wide confidence intervals for healthy group reflect small sample size and not higher variance.

DE Impact on Blood Pressure

Mean Diesel-Exhaust Effect on SBP (48 patients in 4 experimental batches)

Project 5 PI: Kaufman

Effects of long-term exposure to TRAP on subclinical measures of CVD in the Multi-Ethnic Study of Atherosclerosis

Background: The Multi-Ethnic Study of Air Pollution (MESA Air)

- To prospectively examine the relation between an individual assessment of long-term air pollution exposures and the progression of subclinical CVD
- To assess individual-level exposure to specific particulate and gaseous ambient-derived air pollutants
- To assess the relation between individual assessments of long-term air pollution exposures and incidence of CVD events, including MI and CVD mortality

Our Approach in MESA Air

- Pair state-of-the-art cardiovascular epidemiology with state-of-the-art exposure estimation
 - Unusual dedication of resources
- Encourage extensive collaborations and promote opportunities for ancillary studies
 - MESA Air as research platform

Adjudicated clinical events

- Myocardial Infarction
- Stroke/TIA
- Congestive Heart Failure
- Coronary Revascularization
 - PTCA
 - CABG
- Angina
- Peripheral Vascular Disease
- Cardiovascular Death

Extensive interviews

- Medical History
- Medications
- Personal History
- Family History
- Health and Life
- Physical Activity
- Diet
- Neighborhood Characteristics
- Residential History
- Sleep History
- Cognitive Assessment

Other Measures and Specimens

- Anthropometry
- Resting Blood Pressure
- Ankle/Brachial Blood Pressure Index
- ECG
- Spirometry (MESA Lung)
- Cardiac MRI
- Retinal Photography (MESA Eye)
- Quantitative Lung CTs (MESA Lung)

- Urine Collection
- Blood Collection
- Genomics/Epigenomics
 - MESA Family
 - Candidate Genes
 - CARe
 - SHARe
 - DNA methylation
 - Gene Expression

CCAR Project 5

- <u>Aim 1:</u> To build a multi-pollutant exposure model for traffic-derived air pollutants for use in epidemiological analysis
- Aim 2: To develop and validate individual-level exposure estimates for traffic-derived air pollutants, including a determination of the effect of time in transit
- Aim 3: To estimate the effect of individual-level exposure to traffic-derived air pollution on subclinical cardiovascular disease in MESA Air

Aim 1: Generate individual-level predictions of outdoor pollutant levels

- Predictions of long-term average multipollutant concentration fields achieved by combining the predictions from two seasonal co-kriging models in each city: Baltimore, Winston-Salem, Chicago, Los Angeles
- Predictions of the impact of traffic patterns and roadway class on pollutant concentrations

Aim 2: Understand in-vehicle exposures

- Recruit 144 participants from Winston-Salem and LA to participate in 2 two-week sampling events
 - Indoor, outdoor, personal, and in-vehicle monitoring
 - NO_x , NO_1 , NO_2 , SO_2 , O_3 , and a suite of up to 11 VOCs

- GPS data-logging devices to track location
- Information learned from the in-vehicle monitoring study will be applied to all participants, including VOC infiltration efficiency and the relationships between:
 - total personal exposure and in-vehicle exposure
 - reported time-in-transit and measured time-in-transit

Aim 3: Epidemiologic Analysis in the MESA cohort

• To understand the relation between exposure to traffic-derived air pollutants and change in the company of th

CCA R

GRANE 34B

CCINE

CCA R

Project "6": exposure modeling in a multipollutant context

Goal

Develop set of tools to:

- specify baseline multipollutant mixtures
- calculate RRs for alternative mixtures

Details

Integrated methodology to:

- construct multivariate exposure model
- account for correlations in space and time between mixture components
- reduce mixture exposure dimensions
- correct for measurement error using bootstrap methods

A "sum is greater than its parts" approach to investigating the health effects of a multipollutant air pollution exposure