US ERA ARCHIVE DOCUMENT

A Bioengineering Approach to Environmental Remediation

<u>Daniel Strongin¹</u>, Trevor Douglas², and Martin A. Schoonen³

- (1) Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA
- (2) Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT
- (3) Department of Geosciences, SUNY-Stony Brook, Stony Brook, NY

ACS-PRF

Acknowledgments

Hazel-Ann Hosein - Temple Univ.

Mark Allen - Montana State Univ.

Dan Ensign - Montana State Univ.

Horse Spleen Ferritin (HSF)

Listeria Innocua Ferritin-like Protein (LFLP)

- 24 polypeptide subunits
- Spherical protein cage (120 Å dia.)
- Cavity (<u>80 Å dia.</u>)
- Accommodates up to <u>4500 Fe atoms</u>
 Stores Fe as hydrated Fe₂O₃ (rust)

- 12 polypeptide subunits
- Spherical protein cage (<u>90 Å dia.</u>)
- Cavity (<u>56Å dia.</u>)
- Accommodates up to <u>500 Fe atoms</u>

Glutamate (COO[—])

12 distinct sites

10 Glu residues (at each site)

Small Heat Shock Protein Cage

From the thermophile

Cloned Mutant used

24 subunit cage with large 3nm

Diameter pores

Goals of EPA - Funded Research

Ferritin as a (photo)catalyst

Ferritin as a Template for The growth of oxide and Metallic nanoparticles

Functionalization of the ferritin shell

Ferroxidase catalysed (important early on in the mineralization process)

Hwang, J., Krebs, C., Huynh, B. H., Edmondson, D. E., Theil, E. C. & Penner-Hahn, J. E. (2000). Science 287, 122

Mineral catalysed
(autocatalytic Fe(II) oxidation
and hydrolysis

Ferritin as a Photocatalyst

TiO₂ vs. Ferric oxides

- TiO₂
 - Bandgap=3.2 eV
 - uv lamps needed to maximize photochemistry
 - very high stability

- Ferric oxides (e.g., FeOOH
 - Bandgap=2.2 2.8eV
 - can utilize a significant part of solar spectrum
 - low stability photocorrosion

Xenon vs. Solar spectrum

Xenon: The Full Spectrum vs. Deuterium Plus Tungsten *by Robert A. Capobianco*, http://opto.perkinelmer.com/library/papers/tp9.asp

Experimental

Can we tailor a nanoparticle system having a bandgap In the visible with high stability for application in environmental remediation?

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} 7H_2O$$

Cr(III)

The decrease of the absorbance at 372 nm. The final concentration of the species: $Na_2Cr_2O_7$: $5x10^{-6}M$; tartrate: $3x10^{-2}M$; Ferritins: 0.25mg/ml; Buffer: 0.1M. Tris, pH8.5. a, CoOOH-Fn; b, MnOOH-Fn; c, FeOOH-Fn.

Stability of catalytic ferritin particles

 $\text{Cr}_2\text{O}_7^{2-}$ (4.0x10⁻⁴ M)

Reductant – tartrate $(3.2x10^{-3} \text{ M})$

pH 7.5, tris buffer

Ferritin catalyzed reduction

Photocorrosion and aggregation of protein free FeOOH

Ferritin as a Template for The growth of oxide and Metallic nanoparticles

Loading of metal controls ultimate nanoparticle size

General synthetic scheme for Fe metal production

The PSD-UV uses high intensity UV radiation to vaporize and remove the protein portion

The high pressure cell coupled to UHV chamber where reduction of metal oxide to metal occurs and accompanying transfer apparatus.

Acoustic AC mode AFM Characterization of FeOOH nanoparticles

FeOOH nanoparticles prepared by UV-ozone treatment of 100 Fe loaded ferritin for 60 mins at 100°C under oxygen (<5psi)

Relative height distribution of particles

AC Mode AFM Images: Apoferritin + FeFn mixtures

Apoferritin + 500 FeFn mixture

Apoferritin + 2000 FeFn mixture

TM-AFM Characterization of Iron nanoparticles

- **ISOLATED NANOPARTICLES**
- Peak-to-valley height differences for the large features in the cross-section are in the 4-6 nm range.
- Full range of height values = 8.0 nm
- RMS roughness = 1.47 nm

6.0 5.0

0.0

Height (nm)

Height mode; 286 x 286 nm

Fe nanoparticles prepared by heating FeOOH nanoparticles in H₂.

80

z: 8.1 nm

TM-AFM Characterization

of Co₃O₄ nanoparticles

Narrow Distribution of particle sizes: 2.5-3.0 nm

RMS roughness = 1.07 nm

Co₃O₄ nanoparticles on SiO₂ prepared by UV-ozone treatment of LFLP for 1 hr at 100°C under oxygen (<5psi)

Photocatalytic Synthesis of Cu nanoparticles

500 Cu/Fn

2000 Cu/Fn

 $31 \pm 8 \text{ nm}$

Atomic Force Microscopy

Sequestration of Aqueous As(III) by FeOOH nanoparticles

Wide scan

Functionalization of the ferritin Visible Light-Induced Production of

Singlet Oxygen

Ground triplet state ${}^{3}\Sigma_{g}$ First excited singlet state ${}^{1}\Delta_{g}$ Second excited singlet state ${}^{1}\Sigma_{g}$

Why?

- Delivery of photosensitizers to cells
 - Illumination produces ¹O₂
- ¹O₂ is about 1 V more oxidizing than ³O₂

Visible Light-Induced Production of Singlet Oxygen

Ru(phen)(bpy)₂²⁺ covalently linked to HSP G41C = photosensitizer Excitation of the Ru(II)-HSP complex increases the rate Of singlet oxygen production by a factor of 50 compared To the Ru(II) complex alone!

SUMMARY

Ferritin facilitates

Reduction of Cr(VI) to Cr(III)

Ferritin as a Template for the growth of oxide and metallic nanoparticles

Fe and Co oxides / Fe, Co, and Cu metals

Functionalization of the ferritin-like protein shell to form photosensitizer

Acknowledgments

Hazel-Ann Hosein - Temple Univ. Mark Allen - Montana State Univ. Dan Esign - Montana State Univ.