Effects of Cattle Manure Handling and Management on Fate and Transport of Hormones in the Feedlot and the Field

EPA-G2006-STAR-M1: Fate and Effects of Hormones in Waste From Concentrated Animal Feeding Operations (CAFOS)
Research Team

- **Dan Snow**, SNR Water Sciences Laboratory
- **Shannon Bartelt-Hunt**, Civil Engineering
- **Bill Kranz**, Biological Systems Engineering
- **Terry Mader**, Animal Science
- **Charles Shapiro**, Soil Scientist - Crop Nutrition
- **David Shelton**, Biological Systems Engineering
- **Tian Zhang**, Civil Engineering
- **Simon von Donk**, Water Resources Engineer
- **David Tarkalson**, USDA-ARS NW Irrigation and Soils Research Lab, Kimberly, ID
- **Steve Ensley**, College of Veterinary Medicine, Iowa State University, Ames, IA
EPA Request for Proposals
Purpose of Program

• “Characterize the occurrence, magnitude, and extent of the impact of natural and synthetic steroid hormones in liquid and solid animal waste from concentrated animal feeding operations (CAFOs) on the environment and human health”

• “Determine the impact of current CAFO waste management strategies (i.e. storage and disposal) on the transport, fate, and effects of steroid hormones originating from CAFOs”
Background

- Estimated 1.3 million livestock operations in the U.S.
- Roughly 20% confined generate ~500 million tons of waste annually.
- Large facilities have limited land available for effective use of the generated waste as fertilizer.
- Potential for natural and synthetic steroid hormones in livestock waste to reach groundwater and surface waters through many pathways (e.g. surface runoff, leaching from holding tanks and lagoons and composting facilities).
2000 Census
People 1.7 million head
Hogs 3.0 million head
Cattle 6.2 million head
Steroid Hormones

- Steroids (terpinoid lipids) that act as hormones
- Hormone is a chemical messenger from one cell or group of cells to another (3 classes)
- Natural steroid hormones are generally synthesized from cholesterol
Steroid Hormones in Cattle Waste

- **Endogenous (natural)**
 - Estriodiol
 - Estrone
 - Estriol
 - Testosterone
 - Androstenedione
 - Progesterone

- **Exogenous (synthetic)**
 - Trenbolone
 - Zearalonaol
 - Melengestrol Acetate
Steroid hormones excreted in livestock manure

- Levels are highly variable
 - up to 1 μg/g
 - <100 ng/g
 - depends on compound, sex, diet, reproductive status
- Conjugated forms can be converted back to free hormones
Chemical Properties

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Aqueous solubility (µg/L)@ 25°C</th>
<th>Log P<sub>ow</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17β-estradiol</td>
<td>12,960</td>
<td>4.01</td>
</tr>
<tr>
<td>Estrone</td>
<td>12,420</td>
<td>3.13</td>
</tr>
<tr>
<td>Estriol</td>
<td>13,250</td>
<td>2.45</td>
</tr>
<tr>
<td>Androgens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testosterone</td>
<td>5,570</td>
<td>3.23</td>
</tr>
<tr>
<td>Androstenedione</td>
<td>27,000</td>
<td>2.9</td>
</tr>
<tr>
<td>Androsterone</td>
<td>8,750</td>
<td>3.69</td>
</tr>
<tr>
<td>Progestins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progesterone</td>
<td>6,600</td>
<td>4.0</td>
</tr>
<tr>
<td>Synthetic Steroids/progestins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trenbolone</td>
<td>20,000</td>
<td>--</td>
</tr>
<tr>
<td>Zearalanol</td>
<td>--</td>
<td>3.9</td>
</tr>
<tr>
<td>Melengestrol Acetate</td>
<td>1,060</td>
<td>3.67</td>
</tr>
<tr>
<td>Ethinylestradiol</td>
<td>483</td>
<td>3.67</td>
</tr>
</tbody>
</table>

Atrazine solubility = 30,000 µg/L Log Pow=2.3
Persistence

Project Objectives

1) Quantify hormones in various stages of the manure pathway in cattle feedlots.

2) Determine the effects of different handling practices of cattle feedlot wastes on the stability and availability of hormones.

3) Determine the effects of different land application strategies on the fate and transport of hormones in vadose zone soils.

4) Determine if grasses grown in conservation buffers assimilate hormones.
Environmental Fate and Transport of Steroid Hormones

- Implant 36 mg Z
- 140 mg TBA
- 16 mg E2

- Feed Supplement 0.45 mg/day MGA

- Metabolism + Endogenous production ~50 mg E

- Fresh Manure ~25 kg/day
 - ~0.5 mg/day excretion
 - ~20 ug/kg maximum

- Accumulation & degradation

- Run-off to wastewater lagoon

- Degradation in stockpiled and composted manure

- Run-off and leaching from fertilized fields

- Uptake in grasses

145 day feeding period
Research Hypotheses

1) Hormone levels in manure are greater for cattle treated with hormones compared to untreated cattle.

2) Composting manure will facilitate the degradation of hormones in manure compared to stockpiling.

3) Hormone losses in runoff will be greater when manure is surface applied compared to when it is incorporated into the soil.

4) Hormone losses in runoff will be related to the duration and timing of rainfall events with respect to land application of manure.

5) Grasses commonly used in conservation buffer strips will assimilate hormones.

6) Hormones will persist in soils and will leach through soils toward groundwater.
Project Tasks

- Task 1: Survey existing feedlots and agricultural fields to determine the fate of hormones in the manure handling pathway over a climatic gradient.
- Task 2: Quantity the fate of hormones as influenced by manure handling practices such as stockpiling, composting, and runoff retention basins.
- Task 3: Conduct runoff studies with controlled rainfall simulators to determine the effect of manure application strategies on hormone transport.
- Task 4: Quantify the uptake of hormones applied in manures to selected grass species commonly used in grass buffer strips.
- Task 5: Determine the fate and transport of hormones in vadose zone soil after land application of manure.
Task 1. Survey of hormones in pens, run-off basins, stockpiles and fertilized cropland

- Where: Four University of Nebraska feedlots and manure-fertilized crop land
 - Collect manure from 3 pens and 2 stockpiles
 - Composite liquid from 2 run-off basins
 - Collect 12 composite samples at 3 depths from fields having received manure application within 1 month, 1 year, 2 year, and 3 years

- Collect data on feeding strategies, pen cleaning history, implant history, and manure handling

Figure 2. Locations of University of Nebraska Feedlots that will be used for Task 1.
Task 2. Measure differences in cattle waste as influence by handling practices

- Where: Haskell Ag Lab
- 96 heifers split between six pens
- 48 will receive implants (TBA, Z, E) and MGA supplement
- Composite pen surface samples and fresh manure collected at 0, 7, 45, and 125 days after implanting
- Waste removed after 150 days, stockpiled and composted
- Samples of stockpiled and composted manure will be collected to determine changes in hormone levels
- Reactors used to characterize degradation rates and products

14C-labelled estradiol, testosterone, trenbolone

Aerobic vs anaerobic bioreactors
Task 3. Effect of tillage on hormones levels in field run-off

- Where: Haskell Ag Lab
- Five manure sources
 - treated compost and stockpile manure
 - untreated compost and stockpile manure
 - control with no manure applied
- Compare surface application (no-till), single disk incorporation, mold-board plow
- Simulated rainfall
Task 4. Uptake of hormones applied in manures to selected grass species commonly used in grass buffer strips

- Where: Haskell Ag Lab
- Hormone concentrations measured in buffer strip grasses receiving manure from steroid treated cattle
- Grass harvested after 30, 60, 90, 180, and 365 days after manure application
Task 5. Fate and transport of hormones in vadose zone soil

• Where: WREC North Platte
• Lysimeter-instrumented test plots will be fertilized with stockpiled and composted manure from treated cattle
• Soil water will be collected from lysimeters over a 6-month period
Method Development: Extraction and analysis of steroid hormones

Solid Samples
- Homogenize, weigh and equilibrate with organic solvent (using agitation, sonication, microwave, etc)
- Separate by centrifuging/filtration
- Purify extract with suitable clean-up
- Evaporate solvent/add internal standards
- Redissolve in mobile phase
- Analyze by liquid chromatography-tandem mass spectrometry

Liquid Samples
- Weigh and add internal standard
- Filter and run through SPE
- Elute and purify with suitable clean-up
LC/MS/MS of Steroid Hormones

Estrone

a-Zearalonol

Estradiol

Melengestrel Acetate

Progesterone

Testosterone

b-Trenbolone (1st)

a-Trenbolone (2nd)

Quattro micro triple quadrupole
LC/MS/MS Detection Limits

<table>
<thead>
<tr>
<th>Compound</th>
<th>Direct Injection (ppb)</th>
<th>on-line SPE (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17β-estradiol</td>
<td>1.07</td>
<td>0.0036</td>
</tr>
<tr>
<td>Estrone</td>
<td>0.77</td>
<td>0.0034</td>
</tr>
<tr>
<td>17α-ethynyl estradiol</td>
<td>0.92</td>
<td>0.0056</td>
</tr>
<tr>
<td>Estriol</td>
<td>1.00</td>
<td>0.0064</td>
</tr>
<tr>
<td>α-Zearalonol</td>
<td>0.64</td>
<td>0.0032</td>
</tr>
<tr>
<td>Testosterone</td>
<td>1.46</td>
<td>0.0011</td>
</tr>
<tr>
<td>11-Ketotestosterone</td>
<td>0.58</td>
<td>0.0040</td>
</tr>
<tr>
<td>4-Androstenedione</td>
<td>1.71</td>
<td>0.0005</td>
</tr>
<tr>
<td>Progesterone</td>
<td>1.00</td>
<td>0.0008</td>
</tr>
<tr>
<td>Melengestrel Acetate</td>
<td>1.03</td>
<td>0.0016</td>
</tr>
<tr>
<td>17β-trenbolone</td>
<td>0.93</td>
<td>0.0018</td>
</tr>
<tr>
<td>Androsterone</td>
<td>3.16</td>
<td>0.0038</td>
</tr>
</tbody>
</table>

Spark Holland Symbiosys Environ Extraction System
LC/MS/MS of steroid hormones

- Steroids
 - difficult to ionize by electrospray (ESI)
 - matrix effects severe
- Atmospheric pressure photoionization (APPI)
 - more selective
 - improved ionization efficiency
 - better for steroid analysis

Preliminary On-Column Detection Limit (pg)

<table>
<thead>
<tr>
<th>Compound</th>
<th>ESI</th>
<th>Recovery</th>
<th>APPI</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testosterone</td>
<td>36.5</td>
<td>116 %</td>
<td>30.5</td>
<td>97 %</td>
</tr>
<tr>
<td>11-Ketotestosterone</td>
<td>14.5</td>
<td>91 %</td>
<td>13.8</td>
<td>103 %</td>
</tr>
<tr>
<td>4-Androstenedione</td>
<td>42.8</td>
<td>118 %</td>
<td>33.5</td>
<td>156 %</td>
</tr>
<tr>
<td>Progesterone</td>
<td>25.0</td>
<td>99 %</td>
<td>23.3</td>
<td>104 %</td>
</tr>
<tr>
<td>Melengestrol Acetate</td>
<td>25.8</td>
<td>96 %</td>
<td>20.5</td>
<td>125 %</td>
</tr>
<tr>
<td>17β-Trenbolone</td>
<td>23.3</td>
<td>154 %</td>
<td>18.0</td>
<td>142 %</td>
</tr>
</tbody>
</table>
Contact Information

Daniel D. Snow
Director and Associate Professor
202 Water Sciences Laboratory
University of Nebraska – Lincoln
Lincoln, NE 68583-0844
dsnow1@unl.edu
402-472-7539