MINERAL SPECIFIC PROTEINS SYNTHESIZED BY BACTERIA

Steven Lower
Ruchi Yongsunthon
Brian Lower
Michael Hochella, Jr.

Ohio State University Virginia Tech

***This research has been published in Science, Geochimica et Cosmochimica Acta, Advances in Agronomy, Geomicrobiology Journal, and Eos.

bacterium-mineral interface

interfacial forces and proteins

*forces control, and are themselves modulated by, the expression of biopolymers on a bacterium's surface

A comparison of two organisms that work in the realm of the nanometer.

Microorganisms		Humans
# of cells	10 ³⁰	10 ⁹
# of species	10 ⁶	100
# years	10 ⁹	10 ⁶

Shewanella interactions with Fe oxyhydroxides metal reducing bacteria & oxides

- primitive form of respiration using Fe(III) solids
- remediation of organic and inorganic pollutants in surface and subsurface environments

Cell-material interface

discover forces
and proteins

force
microscopy

theory
electrophoresis

mimic and utilize information

biological force microscopy

Force-distance curves using different minerals, bacteria, and solutions

electrostatic and van der Waals forces

DLVO Theory

$$F(d) = \frac{4 \pi \sigma_1 \sigma_2 R}{\varepsilon \varepsilon_0 \kappa} e^{-\kappa d} - \frac{HR}{6 d^2}$$

 σ = surface charge

R = radius

 ε = dielectric constant

 ε_{o} = vacuum permittivity

d = distance

 $\kappa = 1$ / Debye length ~(salt concentration) $^{-1/2}$

H = Hamaker constant

R = radius

d = distance

subsurface transport in the environment

(approach measurements between G-bacterium and a silicate)

0.0 20.0 40.0 60.0 80.0 100.0 distance (nm)

Force-distance curves (retraction forces between Shewanella and AlOOH vs FeOOH)

energy values between Shewanella and mineral

(as function of oxygen concentration)

attoJoules (10⁻¹⁸ J)

Control experiment with nonviable cells ~6 aJ (did not change with mineral, oxygen concentration, or contact time)

outside

Fe(III) oxide

Protein folding/unfolding Worm-like Chain Model

$$F(d) = (kT/b) [0.25 (1 - d/L)^{-2} - 0.25 + d/L]$$

d = distance or extension

k = Boltzmann's constant

T = temperature

 $b = persistence length (0.38nm C_{\alpha}-C_{\alpha} in protein)$

L = contour length (length of stretched protein chain)

OM protein expression patterns Shewanella and AlOOH or FeOOH

2D Gel Electrophoresis of OM Proteins

terminal electron acceptor - O₂ vs Fe(III)

Cell-material interface

discover forces and proteins

mimic and utilize information

peptide phage library expose to target mineral

wash away unbound phage elute bound phage

isolate clones, sequence DNA to find mineral-binding motif,

biological cell lithography

biological cell lithography

bacterium-mineral interface

nanoscale forces and proteins

- quantify natural forces of affinity between inorganic crystalline phases and proteins synthesized by bacteria
- use theoretical models and protein expression patterns to identify putative mineral specific proteins
- mimic natural specificity by attempting to fabricate peptides with unique mineral-binding motifs
- use living microbial cells as a lithographic tool

Acknowledgements

Acknowledgements

Terry Beveridge, John Smit, Courtney Crummett, Graeme Bowles

National Science Foundation (GEO & ENG)

Department of Energy

American Chemical Society

***This research has been published in Science, Geochimica et Cosmochimica Acta, Advances in Agronomy, Geomicrobiology Journal, and Eos.

Steven Lower – Ohio State University – Lower.9@osu.edu