

Formation of Secondary Organic Aerosol

John H. Seinfeld California Institute of Technology EPA STAR September 21, 2010

- •About 5 years ago: Higher SOA Levels in the atmosphere than models predicted. Finding "missing SOA" is no longer the issue. We need to understand the complete life cycle of the VOC/SOA system.
- We have learned in the last 5 years:

– Gas-phase oxidation chemistry is critical in establishing path to SOA formation; role of NO_x key

-Laboratory chamber experiments do not account fully for ambient aging; functionalization vs. fragmentation, gas-phase aging vs. OH surface reactions uncertain

- Role of aerosol acidity, aqueous-phase uptake and reaction of small molecules like glyoxal, and heterogeneous chemistry in overall SOA formation not yet fully understood
- Models now have the machinery to represent SOA formation and aging but at present the parameterization of aging awaits experimental input

Fate of Peroxy (RO₂) Radicals Determines Product Volatility

Changes to vapor pressure of a VOC upon addition of common functional groups

Functional group	Structure	Change in vapor pressure (298 K) ^a
Ketone Aldabyda	-C(O)-	0.10
Hydroxyl	-OH	5.7×10^{-3}
Hydroperoxyl Nitrate	-OOH $-ONO_2$	2.5×10^{-3} 6.8×10^{-3}
Carboxylic acid	-C(O)OH	3.1×10^{-4} 3.2×10^{-3}
Acyl peroxynitrate	-C(0)00H $-C(0)00NO_2$	2.7×10^{-3}
Extra carbon ^b	-CH ₂ -, etc.	0.35 ^b

Pankow and Asher (2007)

Level of NO_x (= NO + NO₂) Determines Fate of RO₂ Radicals:

Small VOCs - ↑NO_x yields high-volatility fragmentation products (e.g., alkyl radical + small carbonyls) ≤ C10 NO_x yields lower-volatility products (e.g., hydroperoxides) Higher SOA Yields

Large VOCs - **NO**_x yields low-volatility products (large organic nitrates + isom. products) **Higher SOA Yields** C15 **NO**_x yields higher-volatility products

Comparison of Atmospheric AMS Components

- SV-OOA has larger variability in 43/org; Increasing photochemical age collapses variability, OOA components become increasingly similar to each other
- 44/org ratios of the LV-OOA components similar to those from HULIS collected in filter samples
- Increasing photochemical age: increasing O/C, 44/43 ratio

Ng et al., ACP (2010)

SOA Formation from Isoprene

• Previously Assumed Not to be Significant Source of SOA Despite High Emissions:

• Laboratory Experiments Confirm Isoprene as SOA Source

[Kroll et al., 2006;Surratt et al, 2006]

• Isoprene Estimated to Contribute Significantly to Global SOA Burden

Role of NO_x in Isoprene Oxidation

Peroxy radical chemistry: RO₂+HO₂ vs RO₂+NO

Less volatile products

Kroll et al., ES&T (2006)

OH-initiated Oxidation of Isoprene: First-Generation Products

Formation of Isoprene Low-NO_x SOA Constituents and Oligomers

Products Characterized by GC/ITMS with prior derivatization:

- Photooxidation of 49 and 40 ppb of isoprene in presence of **acidified** or **neutral** sulfate seed aerosol, respectively.
- RO_2 + HO_2 reactions dominate.
- 9 ppb to 0.6 ppb of IEPOX was measured in the **neutral** and **acidic** cases, respectively; no other differences observed for other isoprene oxidation products
- Mixing ratios of other gas-phase products: ROOH ~ 12 ppb, and diols, hydroxycarbonyls, and tetrols all < 0.8 ppb

- SOA mass yield increased from 1.3% for the **neutral** case to 28.6% for the **acidic** case.
- All particle-phase products substantially increase in presence of **acidic** seed; for example, 2-methyltetrols increased from 0.1 μ g m⁻³ for the **neutral** case to 5.1 μ g m⁻³ for the **acidic** case.
- Particle-phase IEPOX could be due to un-reacted IEPOX that partitioned favorably into wet aerosol.

Surratt et al., PNAS (2010)

(=)CIMS Time Traces Further Demonstrate Role of IEPOX

• Synthesized BEPOX standard, which is butadiene derivative of IEPOX, shows exact same reactive uptake behavior as that found for BEPOX produced from butadiene photooxidation and IEPOX produced from isoprene photooxidation in presence of acid seed

• <u>Conclusion</u>: Significant loss of epoxydiols (i.e., BEPOX and IEPOX) to highly acidic seed aerosol results from acid-catalyzed particle-phase reactions

• All of the detected particle-phase constituents in BEPOX or butadiene SOA are exact analogues of isoprene low-NO_x SOA (i.e., differ by a mass of 14 amu, which corresponds to CH_2 group)

ISOPRENE PHOTOOXIDATION: HIGH NO_X

- Aerosol yields of 0.9–3% [Kroll et al., 2005]
- High-NO_x: SOA formation proceeds via methacrolein (C₄-aldehyde)

 Objective: to understand the mechanism by which methacrolein forms SOA

Methacrolein photooxidation

- HONO + hv \rightarrow OH + NO
- CH₃ONO (no net NO production):
 - − $CH_3ONO \rightarrow CH_3O + NO$
 - $CH_3O + O_2 \rightarrow HO_2 + HCHO$
 - − $HO_2 + NO \rightarrow OH + NO_2$
- Not an effect of enhanced HNO₃

→ Total amount of SOA trends with NO_2/NO ratio

Chan et al., ACP (2010)

SOA COMPOSITION FROM METHACROLEIN PHOTOOXIDATION

Online chemical composition analysis (HR-ToF-AMS):

Identification by online and offline high-resolution mass spectrometry are consistent

Chan et al., ACP (2010)

MPAN AS SOA INTERMEDIATE

Why does SOA formation from methacrolein depend on NO₂/NO? Aldehyde chemistry

MPAN AS SOA INTERMEDIATE

- SOA formed from MPAN+OH
- Similar compositions
- AMS shows similar oligomers at high m/z's
- MPAN is the precursor to isoprene and methacrolein SOA

Summary of NO_x on Isoprene SOA

Other unsaturated aldehydes

Chan et al., ACP (2010)

SOA formation from aldehydes/alcohols

Chan et al., ACP (2010)

2-Methyl-3-Buten-2-Ol (MBO-232)

- Emitted from pine trees [Goldan et al., 1993, Harley et al., 1998, Baker et al., 1999]
- Effects on local photochemistry
 - Can be more important than isoprene locally
 - \blacktriangleright Increases production of HO_x and O_3 [Steiner et al., 2007]
- Important biogenic compound in the Western United States

MBO PHOTOOXIDATION: PAN INTERMEDIATE

► SOA formation not observed, even under high NO₂ conditions:

MBO-231/CH₃ONO vs MBO-232/CH₃ONO

Chan et al., ACP (2010)

Low-Volatility Organics

Recent work (CMU) indicates there is a large potential for low-volatility organic compounds ($C^* < 10^6 \,\mu g/m^3$) to form organic aerosol

NAPHTHALENE

- Most abundant polycyclic aromatic hydrocarbon (PAH)
- Sources:
 - Wood burning
 - Diesel exhaust
 - Gasoline exhaust
- Sinks:
 - Reaction with OH (lifetime of 5.5 hours)
- Objective: to study SOA formation from PAHs and calculate the contribution of PAH oxidation to SOA formed from semivolatile emissions

Gas-phase mechanism: Naphthalene high NO_X

Kautzman et al., J. Phys. Chem. (2010)

Gas-phase mechanism: Naphthalene low NO_X

- Fraction of naphthalene reacted = 0.67
- Fragmentation products still dominate, but relative amounts of ring-retaining products are larger

Kautzman et al., J. Phys. Chem. (2010)

SOA YIELDS

SOA from biomass burning: A case for studying methoxyphenols

FIGURE 2. Mass balance on the carbonyl, semivolatile, and particulate organic compounds emitted from the fireplace combustion of oak wood.

Laboratory SOA

• Data from chamber experiments fall into the same space as ambient data; 44/org of most of the chamber data are < 0.1, indicating that chamber SOA is not as oxidized as ambient aerosol Ng et al., ACP (2010)]

The Future

- Seek to bridge the gap between detailed molecular mechanisms of VOC oxidation leading to SOA and the ultimate ambient state that is characterized by O:C, H:C, volatility, polarity.
- Laboratory chamber experiments are the essential source of information on SOA formation; need to devise ways to extend the chemical lifetime of such experiments (within the confines of inevitable wall loss) to simulate ambient aging.
- Atmospheric models need to be able to track the sources of SOA; the challenge is to retain this identification in view of the evolution of SOA towards its highly oxidized state.