US ERA ARCHIVE DOCUMENT # Release of *Cryptosporidium* and *Giardia* (Oo)cysts From Dairy Calf Manure: Impact of Solution Salinity Scott A. Bradford¹ and Jack F. Schijven² ¹George E. Brown, Jr., Salinity Laboratory USDA, ARS ²National Institute of Public Health and the Environment (RIVM) Bilthoven, The Netherlands # Prevalence in herds of veal calves versus age of veal calves # Average concentrations in positive samples of fresh manure from veal calves versus age ## Major pathways of *Cryptosporidum* and *Giardia* to surface waters in The Netherlands #### Introduction - •Cattle manure, especially from calves, form an enormous source of *Cryptosporidium* and *Giardia*. - •Due to animal waste application to agricultural land, large numbers of (oo)cysts may reach groundwater and surface water. - •Release rates of (oo) cysts from manure are important boundary conditions for loading rates into the environment. - •Manure is exposed to a wide range of solution salinities (rain or urine). #### Holstein dairy cattle (Chino, CA) Manure phase concentrations of (oo)cysts, m_{ip} , N g⁻¹ | | Cryptosporidium | Giardia | |---------|-------------------|-------------------| | Average | 7.1×10^4 | 9.5×10^4 | | S.D. | 1.7×10^4 | 3.0×10^4 | | N | 6 | 12 | #### Manure Drip Experiments #### **Experimental conditions** | Manure | Water | Q | EC | Temp. | |-----------------|-------------|-------------------------|-----------------------|-------| | | application | [ml min ⁻¹] | [dS m ⁻¹] | [°C] | | Calf | Mist | 10 | 0.3 | 5 | | Calf | Mist | 2.9 | 0.3 | 5 | | Calf | Drip | 2.4 | 0.3 | 5 | | Calf + Cow 1:10 | Drip | 2.7 | 0.3 | 5 | | Calf + Cow 1:1 | Drip | 3.0 | 0.3 | 5 | | Calf | Drip | 2.6 | 0.3 | 23 | | Calf | Drip | 2.0 | 0.3 | 23 | | Calf | Drip | 2.5 | 5.0 | 23 | | Calf | Drip | 2.0 | 9.5 | 23 | | Calf | Drip | 2.1 | 15 | 23 | $\rho_i = 1.1 \text{ g cm}^{-3} \text{ from } Vm \text{ (34.4 ml)} \text{ and initial weight of manure disk (g).}$ #### Detection of Cryptosporidium and Giardia - FITC Monoclonal Antibody - Direct Enumeration via Microscopy # Manure Release # Giardia Release # Cryptosporidium Release #### Theory $$\frac{dm}{dt} = k_{wm} \left[m_{eq} - m \right] \rightarrow -k_{wm} m \rightarrow -\alpha \left(\frac{m}{m_i} \right)^{\beta} m$$ $$m(t) = m_i \cdot \left(1 + \alpha \beta t \right)^{\left(-\frac{1}{\beta} \right)}$$ $$M_w(t) = V_m \cdot \left(m_i - m(t) \right)$$ $$C_m(t) = \frac{dM_w}{Qdt} = \frac{m_i \alpha V_m}{Q} (1 + \alpha \beta t)^{-\left(\frac{\beta+1}{\beta}\right)}$$ $$C_o = C_{io} \cdot C_m \cdot E_{ro}$$ α - fitting parameter (T⁻¹) β - fitting parameter (-) C_m - aqueous phase manure concentration (M L⁻³) C_{io} - initial manure phase (00)cyst concentration (N M⁻¹) C_o - aqueous phase (00) cyst concentration (N L⁻³) E_{ro} - (00)cyst release efficiency (-) k_{wm} - lumped manure mass transfer coefficient (T-1) m - bulk manure phase concentration (M L-3) m_{eq} - manure phase concentration in equilibrium with the aqueous phase (M L-3) m_i initial bulk manure concentration (M L⁻³) M_w - cumulative manure mass in the aqueous phase (M) Q - aqueous phase flow rate (L³ T⁻¹) t - time (T) V_m - volume of manure (L³) #### Conclusions - Effluent concentrations of manure and (oo)cysts were initially several orders of magnitude below their initial concentration in the manure. - Increasing the solution salinity tended to decrease the manure and (oo)cyst concentrations and, hence, the cumulative amount released into the aqueous phase. - Increasing salinity was hypothesized to stabilize the manure by compression of the diffuse double layer thickness between negatively charged colloidal material in the manure. - (Oo)cyst release efficiencies tend to decrease with increasing salinity. - A conceptual model was developed to predict manure and (oo)cyst release and loading rates from manure.