US ERA ARCHIVE DOCUMENT

Objectives

- Quantify relationships among differing land use, amphibian community structure and composition in the prairie pothole region
 - hydroperiod (semi-permanent v. seasonal)
 - crop v. grassland
- Quantify relationships among physical and chemical wetland attributes on amphibian organismal and community responses.

 - hydroperiod thermal regime
 - рΗ

Objectives, cont.

- 3. Quantify the effects of multiple stressors on health and organismal responses of Rana pipiens.
 - shortened hydroperiod
 - increased UV-B radiation
- Predict potential effects of multiple stressors on prairie pothole wetlands and associated amphibian communities.

Stressor Effects on Amphibians

Accelerated Hydroperiod (warmer, less water)

- faster development
- · smaller metamorphs
- reduced fat stores = reduced fitness

Increased UV-B radiation (ozone depletion, +/- reduced DOC)

- malformations
- impaired immune function
- mutagenic effects

Atrazine (most commonly used herbicide)

- endocrine disruption (?)
 gonadal dysmorphogenesis (♂♀)
 laryngeal muscle reduction (♂)
 developmental delays

Approach

Landscape scale (Extensive study)

 relationships among amphibian community structure, land use, and wetland hydrologic regime

Wetland scale (Intensive study)

- relationships among individual wetlands (hydroperiod, physico-chemical), land uses (e.g. pesticides), UV-B, amphibian abundance, community structure, and health

effects of multiple stressors (hydroperiod and pesticide) on *Rana pipiens* development and health

Multiple Stressors Study Extensive study: Prairie Pothole Region 2 hydroperiod categories: goal = 120 wetlands seasonal (2004 = 63 wetlands) • 2004, 2005 semi-permanent 2 use classes: Intensive study: row crop Prairie Coteau ecoregiongoal = 60 wetlands grazing/pasture (2003 = 27 wetlands) a portion under study in Mesocosm study: an ongoing hydrological 2003 pilot study 2004 – 2005 full-scale research program • 2003 - 2005

Intensive Study (2003 – 2005)		
Category	Parameter	
Wetland morphology	size; configuration; depth profile; hydrologic regime	
Habitat	vegetative cover maps; land use; distance to wetlands, fields, roads & structures	
Water column	continuous temp; sp. conductance; pH; depth (weekly); spectral scans; UV attenuation; pesticide analysis (atrazine); chlorophyll-A	
Microclimate	temperature; humidity; precipitation; cloud cover; wind speed	
Amphibian community	calling surveys; VES surveys & trapping for amphibian larvae (biweekly)	

Malformations - 2003 Survey • 27 wetlands • 7 dry • 8 with < 10 metamorphs captured (n = 14) • 12 with >10 metamorphs captured (n = 1475) (avg. = 123; range = 22 - 155) Malformation prevalence: • metamorphs 1475 • malformed individuals 45 • prevalence range 0 - 7.8% • overall prevalence 3.1% (Midwest study = 2.0%)

Extensive Study (2004 – 2005)		
Category	Parameter	
Wetland morphology	size; configuration; depth profile; hydrologic regime	
Habitat	vegetative cover maps; land use; distance to wetlands, fields, roads, & structures	
Water column	temperature; pH; spectral scans; water color @ 440 nm	
Microclimate	temperature; humidity; precipitation; cloud cover; wind speed	
Amphibian community	calling surveys; VES surveys & trapping for amphibian larvae	

Mesocosm Scale

Goal – replicate environmentally relevant multiple stressor exposure under controlled conditions:

- 1. accelerated hydroperiod
- 2. atrazine

- normal hydroperiod drawdown tied to field conditions
 accelerated hydroperiod drawdown at increased rate

- 1. $0.1 \mu g/L$ found by Hayes and others to cause
- gonadal dysmophogenesis

 2. 20 μg/L commonly found in ground and surface water in corn-growing areas

 3. 200 μg/L occasionally found in surface water

Mesocosms - 2003

"Pilot year" for mesocosms (late start limited options)

- temperature
- feeding
- atrazine exposure tests:
 - control, no addition
 solvent (acetone)

 - 3) atrazine, 20 μ g/L 4) atrazine, 200 μg/L

- - no metamorphs

Interpretation:

- ect water source
- · late collection of tadpoles
- long holding time in aquariumhigh temperatures in mesocosms

Mesocosms - 2004

Modifications:

- lake water
- addition of shade cloth
- insulated tubs with straw
- successful early egg mass collection
- limited holding time (larvae transferred at Gosner stage 20+)

Mesocosms - 2004

Treatments (stressors):

hydrology: normal or accelerated atrazine: 0, 0.1, 20,200 µg/L

9 treatment categories:

- 1. normal hydrology,
- accelerated hydrology,
 normal hydrology,

- no additions no additions
- solvent control (acetone)
- atrazine 0.1 μg/L atrazine 20 μg/L atrazine 200 μg/L
- atrazine 0.1 µg/L
- atrazine 20 µg/L
- normal hydrology,
 normal hydrology,
 normal hydrology,
 normal hydrology,
 accelerated hydrology,
 accelerated hydrology,
 accelerated hydrology,
 accelerated hydrology, atrazine 200 µg/L

Modeling Multi-basin wetland complex model based on WETSIM (Poiani et al. 1996) WETSCAPE Consists of interacting submodel components: WETLAND SURFACE WATER surface water, groundwater, SUBMODEL (WetSim 2.0) Stage and vegetation.Simulates changes in water △ Volume/Stage -ET (Blaney-Criddle) -Snowpack (Century) level and vegetation cover for **EPIC** prairie wetland complexes that include 3 hydrologic Wettand GROUNDWATER SUBMODEL · semi-permanent, △ Groundwater elevatio temporary HADCM3 climate scenarios will be used to parameterize

Challenges

- 1. Site availability and landowner cooperation.
 - farmer/rancher sensitivity to researchers
 lack of "crop" wetland sites
- 2. Who would do wetland research in a drought?
- 3. UV monitoring in continually windy conditions.
- 4. Availability of target frog (*Rana pipiens*) eggs for mesocosms; variability due to local weather & short-term climate conditions.
- 5. Mesocosms:
 - frog survival
 - metamorph development

Acknowledgments

Dr. Catherine Johnson, National Forest Service Dr. Nels Troelstrup, South Dakota State University

Jennifer Olker Milan Angela Rohweder

Dena Shelley Katie Brown **Deborah Endriss** Chandler Schmutzer
Denise Gregorie Janna Goldrup Sarah Syria Patti Kramer

