US ERA ARCHIVE DOCUMENT

Advanced Nanosensors for Continuous Monitoring of Heavy Metals

Wunmi Sadik, Daniel Andreescu, Adam Wanekaya Department of Chemistry State University of New York at Binghamton Binghamton, NY 13902-6000

> Joseph Wang Department of Chemistry New Mexico State University Las Cruces, NM

2004 EPA Nanotechnology Workshop, August 18-20, 2004 Philadelphia, PA.

Metal Polymer Nanocomposites

- Applications
 - ◆Sensors
 - ◆Catalysis
 - ◆Nanoelectronics
 - Magnetic recording and information storage
 - MRI enhancement and medical diagnostics

Polyamic Acid

$$\begin{array}{c|c} & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Objectives

■ To synthesize Au nanoparticles in organic medium using a short, simple and convenient method.

■ To study the potential of the PAA-metal nanoparticle films for the analysis and removal of heavy metals from aqueous medium

PAA Synthesis and Chemistry

MeCN, rt Stir, 1 hr, filter

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Mw = 10,000 (by GPC)

One Pot Synthesis of Stable NPs

PAA-capped Gold nanoparticles-Single phase, stable and monodispersed

Synthesis

PAA was dissolved in DMF and solid AuCl₃ was added to it. The reaction was allowed to proceed at room temperature

PAA capped gold nanoparticles

Characterization

- UV/Visible Spectroscopy
- SEM
- TEM
- Electrochemical(conductivity, electroactivity)
- EDS(elemental composition)

Absorption Spectrum

Time-dependent Absorbance Spectra

Time dependent UV-VIS spectrum after the addition of 1.5 mg AuCl₃ to a 4 mL dimethylformamide solution containing 1 mg of PAA to form PAA-capped gold nanoparticles: a) 1 min b) 5 min c) 10 min d) 15 min e) 20 min f) 25 min g) 30 min h) 35 min i) 40 min j) 45 min k) 50 min.

PAA Characterization Infrared

Amide Vibes

Pyromellitic dianhydride - PMDA

$$H_2^N \longrightarrow O \longrightarrow NH_2$$

4,4'-Oxydaniline-ODA

$$\begin{bmatrix} NH & C & C & N & \\ NH & C & C & N & \\ HOOC & COOH & \\ Poly(amic acid)- PAA & \\ \end{bmatrix}_n$$

¹HNMR of PAA

PAA in DMSO at 360 MHz 03/01/2004

NMR of PAA oxidized by Au Nanoparticles

Particle Size and Distribution

TEM of the well dispersed Au nanoparticles from reduction of 1.5 mg AuCl₃ by 6mL of 0.16 mg/mL PAA in DMF

Average particle size: 5.11 ± 0.89 nm (from 200 particles)

TEM and SEM Images

SEM Images of Au Nanoparticle agglomerates on PAA film deposited on GCE x 600

SEM and Elemental Analysis

Energy dispersive spectrum of the Au Nanoparticles on PAA film deposited on GCE

Ag Nanoparticles

Energy dispersive spectrum of the Ag Nanoparticles on PAA film deposited on RVC

Pd Nanoparticles

Energy dispersive spectrum of the Au Nanoparticles on PAA film deposited on GCE

Co Nanoparticles

Energy dispersive spectrum of the Ag Nanoparticles on PAA film deposited on RVC

Preliminary Environmental Application

Metal Sensing

CV of PAA-Au-Cyst-Cu in Acet Buffer pH 4. Accumulation time = 20 min in 1ppm Cu in buffer. Scan Rate = 50 mV/s

DPASV of PAA-AuNP-Cys-Cu in acetate buffer pH 4. Accumulation time = 20 min in acetate buffer. Voltammetric conditions: reduction potential= -1 V, scan rate = 50 mV/s

Screen-Printed Electrodes

PAA Modified Screen Printed Electrode

DPASV of SPE 6% PAA-Cys- Cu (1ppm) in acetate buffer pH 4. Acc time = 20 min in acetate buffer.

Voltammetric conditions: reduction pot = -1V, scan rate = 50 mV/s

Selective Removal of Copper

Cysteine modified Au Nanoparticle + Polymer composite

Selective Removal of Copper

PGN		% Cu	RSD	Other	% Metal
oxida	tion	Removed		Metals	Removed
				removed	
10s		34.72	10.46	Mn	34.45
					±13.35%
100s		75±4.1%	5.47%	Zn	14.75
					±13.45%
200s		83.9±16.	19.19%	Cu	99.1%
		1			±40.3%
500s		99.7 ±0.3	0.003%		

Biosensing Applications

Summary

- ◆ Rapid, simple and convenient method of synthesizing Au nanoparticles in organic medium by the use of PAA which acts both as a reducing and a capping agent.
- **◆** The process takes about 30 min and the gold particles are stable and can be well dispersed or agglomerated depending on the concentration of the reactants.
- **◆** The potential of the PAA-metal nanoparticle films in the analysis and removal of heavy metals from aqueous medium is demonstrated
- ◆ Other metals salts of Co(II), Pd(II) and Ag(I) can also form metal nanoparticles on reduction with PAA and applied potential
- Preliminary applications for metal testing evaluated

Further Work

Investigate the reduction of other metal salts with PAA

Investigate the use of these metal nanoparticles in environmental and other applications

Acknowledgements

Bill Blackburn - Geology Department Deborah Dittrich – Geology Department Henry Eichelburger – Biology Department

