ASSESSING SUBSURFACE FILTRATION AND DILUTION PROCESSES IN RIVERBANK FILTRATION TREATMENT

V. Partinoudi
M. R. Collins
A. B. Margolin
L. K. Brannaka

New England Water Treatment Technology Assistance Center
Department of Civil Engineering
University of New Hampshire

Meeting on Crypto Removal by Riverbank Filtration
Reston, Virginia September 9-10, 2003
Processes Taking Place at an RBF site

River

Subsurface Filtration

(Adsorption + Biodegradation)

RBF Extract

Dilution

Groundwater
ASSESSING REMOVAL CAPABILITIES OF RBF

Difficult to assess removal capability:

– What is the travel time from the river to the well?
– due to subsurface filtration?
– due to groundwater dilution?
PROJECT OBJECTIVES

• To assess riverbank filtration as a viable treatment and pretreatment option;

• To quantify the contribution of river water and groundwater to the RBF extraction water;

• To compare riverbank filtration to slow sand filtration in terms of particulate, organic precursors and microbiological removal capabilities expressed in log removal credits.
OPERATIONAL FIELD SITES SELECTED

- Pembroke, NH (8/01-11/02, n=19)
- Milford, NH (11/01-11/02, n=13)
- Jackson, NH (5/02-11/02, n=3)
- Louisville, KY (9/01-5/03, n=11)
- Cedar Rapids, IA (9/02-4/03, n=5)
<table>
<thead>
<tr>
<th>Sampling Site</th>
<th>Source river water</th>
<th>Distance between the RBF well and the river</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembroke (NH)</td>
<td>Soucook River</td>
<td>54.9m</td>
</tr>
<tr>
<td>Milford (NH)</td>
<td>Souhegan River</td>
<td>22.9m</td>
</tr>
<tr>
<td>Jackson (NH)</td>
<td>Ellis river</td>
<td>5 infiltration galleries each: 6.1m long, 1.2m deep, 1.2m wide</td>
</tr>
<tr>
<td>Louisville (KY)</td>
<td>Ohio River</td>
<td>Horizontal well RBF sampling lateral 12.2m below the riverbed</td>
</tr>
<tr>
<td>Cedar Rapids (IA)</td>
<td>Cedar River</td>
<td>19.5m</td>
</tr>
</tbody>
</table>
What is the estimated travel time from the river to the well?

<table>
<thead>
<tr>
<th>Sampling Site</th>
<th>Travel Time</th>
<th>Evaluation of Travel Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembroke, NH</td>
<td>5 days</td>
<td>Darcy’s Law in terms of seepage velocity</td>
</tr>
<tr>
<td>Milford, NH</td>
<td>1 day</td>
<td>Darcy’s Law in terms of seepage velocity</td>
</tr>
<tr>
<td>Jackson, NH</td>
<td><2hrs</td>
<td>Infiltration Gallery</td>
</tr>
<tr>
<td>Louisville, KY</td>
<td>1 day</td>
<td>Information provided by the LWC (AWWARF, 2002)</td>
</tr>
<tr>
<td>Cedar Rapids, IA</td>
<td>5 days</td>
<td>Information provided by the City of Cedar Rapids Water Department (Schulmayer, 1999)</td>
</tr>
</tbody>
</table>
How much removal is due to filtration and how much due to dilution with groundwater?

<table>
<thead>
<tr>
<th>Location</th>
<th>% river water in RBF well</th>
<th>% Groundwater in RBF well</th>
<th>Parameter upon which ratio is based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembroke, NH</td>
<td>40.7±3.7</td>
<td>59.3±3.7</td>
<td>Conductivity</td>
</tr>
<tr>
<td>Milford, NH</td>
<td>40.8±6.4</td>
<td>59.2±6.4</td>
<td>Sulfate</td>
</tr>
<tr>
<td>Jackson, NH</td>
<td>100</td>
<td>0</td>
<td>Infiltration Gallery</td>
</tr>
<tr>
<td>Louisville, KY</td>
<td>78.1±4.4</td>
<td>21.9±4.4</td>
<td>Hardness</td>
</tr>
<tr>
<td>Cedar Rapids, IA</td>
<td>70</td>
<td>30</td>
<td>Groundwater Flow Modeling</td>
</tr>
</tbody>
</table>
SELECTED WATER QUALITY PARAMETERS REMOVALS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>% Total Removal Range</th>
<th>Weighted % average of RBF total removals observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOC</td>
<td>18-92</td>
<td>63</td>
</tr>
<tr>
<td>UV254 abs.</td>
<td>23-100</td>
<td>73</td>
</tr>
<tr>
<td>True Color</td>
<td>50-100</td>
<td>89</td>
</tr>
<tr>
<td>Particle Counts</td>
<td>70-99</td>
<td>94</td>
</tr>
<tr>
<td>Turbidity</td>
<td>72-99</td>
<td>87</td>
</tr>
</tbody>
</table>
INFLUENCE OF GROUNDWATER DILUTION ON SELECTED PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>% TOTAL Removal</th>
<th>% Removal due to DILUTION</th>
<th>% Removal due to SUBSURFACE FILTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>87</td>
<td>10</td>
<td>77</td>
</tr>
<tr>
<td>DOC</td>
<td>63</td>
<td>29</td>
<td>34</td>
</tr>
</tbody>
</table>
MICROBIAL ANALYSES

- Total coliforms and *E.coli*
- Aerobic Spore Forming Bacteria
- Virus indicators (male specific & somatic bacteriophage)
- Enteric Viruses
 - Adenovirus Type 40 and 41
 - Astrovirus
 - Enterovirus (poliovirus, coxsackie virus, rotavirus and echovirus)
TOTAL COLIFORMS (CFU/100mL)

Typical Total Coliforms (CFU/100mL) Variations (n=19) as a Function of River Discharge in Pembroke, NH (8/01-11/02) Including Groundwater Dilution Impacts

<table>
<thead>
<tr>
<th>Sampling site</th>
<th>Total removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembroke, NH</td>
<td>>2.1 log</td>
</tr>
<tr>
<td>Milford, NH</td>
<td>>2.6 log</td>
</tr>
<tr>
<td>Jackson, NH</td>
<td>>0.5 log</td>
</tr>
<tr>
<td>Louisville, KY</td>
<td>>1.0 log</td>
</tr>
<tr>
<td>Cedar Rapids, IA</td>
<td>>1.4 log</td>
</tr>
</tbody>
</table>
Typical Variations of E. Coli (CFU/100mL) (n=19) as a Function of River Discharge in Pembroke, NH (8/01-11/02) Including Groundwater Dilution Impacts

<table>
<thead>
<tr>
<th>Sampling site</th>
<th>Total removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembroke, NH</td>
<td>>0.6 log</td>
</tr>
<tr>
<td>Milford, NH</td>
<td>>0.8 log</td>
</tr>
<tr>
<td>Jackson, NH</td>
<td>>0.4 log</td>
</tr>
<tr>
<td>Louisville, KY</td>
<td>>0.3 log</td>
</tr>
<tr>
<td>Cedar Rapids, IA</td>
<td>>0.7 log</td>
</tr>
</tbody>
</table>
AEROBIC SPORE FORMING BACTERIA (CFU/100mL)

Typical Aerobic Spore Forming Bacteria (CFU/100mL) Variations (n=19) as a Function of River Discharge in Pembroke, NH (8/01-11/02) Including Groundwater Dilution Impacts

<table>
<thead>
<tr>
<th>Sampling site</th>
<th>Total removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembroke, NH</td>
<td>>1.9 log</td>
</tr>
<tr>
<td>Milford, NH</td>
<td>>2.1 log</td>
</tr>
<tr>
<td>Louisville, KY</td>
<td>>3.5 log</td>
</tr>
<tr>
<td>Cedar Rapids, IA</td>
<td>>2.6 log</td>
</tr>
</tbody>
</table>
VIRUS INDICATORS
(PFU/100mL)

- Male Specific Bacteriophage (including MS2)
- Somatic Bacteriophage
- Intensive sampling (Dec 2002): Louisville (n=4) Cedar Rapids (n=5)

<table>
<thead>
<tr>
<th>Sampling site</th>
<th>Total removal of MS</th>
<th>river water</th>
<th>RBF extracted water</th>
<th>Groundwater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louisville, KY</td>
<td>≥0.2 log</td>
<td>4622 ±25</td>
<td>3703±22</td>
<td>3402±18</td>
</tr>
<tr>
<td>Cedar Rapids, IA</td>
<td>≥ 0.7 log</td>
<td>3453±20</td>
<td>753±9</td>
<td>BDL</td>
</tr>
</tbody>
</table>

Where Range=average ± analytical error
VIRUSES

- None detected (ICC-RT-nPCR method) in the samples collected in Louisville, KY nor in Cedar Rapids, IA.

<table>
<thead>
<tr>
<th>Sampling site</th>
<th>Liters of water collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louisville, KY (3/03)</td>
<td>100L 1000L</td>
</tr>
<tr>
<td>Cedar Rapids, IA (1/03)</td>
<td>362L 995L</td>
</tr>
</tbody>
</table>
Processes Taking Place at an RBF site

River → Subsurface Filtration → (Adsorption + Biodegradation) → RBF Extract → Dilution → Groundwater
TREATMENT PROBABILITY DUE TO SUBSURFACE FILTRATION (most conservative estimation for RBF)

TURBIDITY, NTU (n=37)

AEROBIC SPORE FORMING BACTERIA, CFU/100mL (n=43)
TREATMENT PROBABILITY DUE TO SUBSURFACE FILTRATION (most conservative estimation for RBF)

TOTAL COLIFORMS, CFU/100mL (n=48)

E.coli, CFU/100mL (n=41)
Subsurface Filtration Microbial Probability Removals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>>70% (probability of exceedance)</th>
<th>>90% (probability of exceedance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>73%</td>
<td>55%</td>
</tr>
<tr>
<td>Total coliforms</td>
<td>2.1 log</td>
<td>1.7 log</td>
</tr>
<tr>
<td>E. coli</td>
<td>0.8 log</td>
<td>0.4 log</td>
</tr>
<tr>
<td>ASFB (spores)</td>
<td>2 log</td>
<td>1.5</td>
</tr>
</tbody>
</table>
SUMMARY OF MOST CONSERVATIVE AVERAGE SITE REMOVALS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum removal*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>>74%</td>
</tr>
<tr>
<td>Total coliforms</td>
<td>>1.0 log</td>
</tr>
<tr>
<td>E.coli</td>
<td>>0.3 log</td>
</tr>
<tr>
<td>Aerobic Spores</td>
<td>>1.9 log</td>
</tr>
</tbody>
</table>

*based on subsurface filtration only, limited by river water concentrations, and RBF site of lowest average removals.
Comparing RBF vs. SSF Removals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RBF</th>
<th>SSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOC</td>
<td>41-85%</td>
<td>8-20%</td>
</tr>
<tr>
<td>Total coliforms</td>
<td>>1-1.6 log</td>
<td>1-2 log</td>
</tr>
<tr>
<td>E. coli</td>
<td>>0.3-0.8 log</td>
<td>2-3 log</td>
</tr>
<tr>
<td>Aerobic spores</td>
<td>>1.9-3.5 log</td>
<td>2.1-2.3 log</td>
</tr>
</tbody>
</table>
CONCLUSIONS

RBF shows potential to be a viable pretreatment and treatment process and warrants log removal credits for microbial pathogen removal.
AKNOWLEDGEMENTS

• EPA for funding this project through the New England Water Treatment Technology Assistance Center
• N. Ballester & J. Fontaine, UNH
• The Pembroke, NH Waterworks personnel
• The Louisville Water Company, KY
• The Milford, NH Fish Hatchery personnel
• The Jackson, NH Waterworks personnel
• The Cedar Rapids Water Department, IA
• M. Smith, UNH
QUESTIONS?