

Welcome to the Next Industrial Revolution

National Science Foundation September 15, 2003

Today's Headlines

EPA Eases Clean Air Rules on Power Plants

Washington Post, 8.27.2003

TVA Is Free to Ignore EPA Orders

Washington Post, 6.26.2003

Senate Rejects Bill on Fuel Economy

San Francisco Chronicle, 7.30.2003

Utilities Aim to Postpone Mercury Emissions Targets Until 2018

Washington Post, 6.29.2003

7 States Vow to Sue U.S. on Pollution Policy

Washington Post, 2.1.2003

EPA Drops Chemical Security Effort

Washington Post, 10.3.2002

Lead Hazards Brushed Aside

Boston Globe, 2.1.2003

EPA Seeks Leeway in Rules About Dirty Water

Washington Post, 8.8.2002

Efforts to Ease Air Rules Decried

Washington Post, 10.19.2002

But in a Parallel Universe

Mass customization
Distributed manufacturing
Build-to-order
Real-time enterprise
Personalization of production
Evolutionary design
Autonomic systems
Little BANG (Bits-Atoms-Neurons-Genes)

The Next Industrial Revolution

Imagine Waking Up in 2020

Surprise! The Next Revolution is Over

A Revolution in:

How things are made

Where things are made

And whether they are made

So, What is the Next Big Thing?

Different Worlds/Different Challenges

First Industrial Revolution

Second Industrial Revolution

Adapt

Atoms
Sharp boundaries
Incremental change
Science of discovery

Shape

Bits/Atoms/Neurons/Genes (convergence)
Fluid, mobile, interconnected
Exponential change
Science of disruption

TINA - There is no alternative

"Revolutions are cruel precisely because they move too fast for those whom they strike."

Jacob Bronowski

Tempo Challenge

Moore's Law
The logic density of silicon

integrated circuits doubles every 18 months

Displays = Moore's Law Storage = 1.5X's Moore's Law

Bandwidth = 2X's Moore's Law GPU's = 2-3X's Moore's Law +

Metcalfe's Law

Monsanto's Law

The amount of useful genetic information doubles every 18-24 months.

Dawkin's Law

The cost of sequencing DNA base pairs halves every 27 months.

Convergence Challenge

Now

Shape the next industrial revolution to co-optimize for environmental benefits

But how?

Change the Learning Paradigm

Environmental Learning Model

1870 - 2010 Learning too Late

1970 - ??? Learning through Mandate

1990 - ??? Learning by Doing

Learning by Doing Faster

1995 - ??? Learning before Doing

Learning Strategies & the Production Life Cycle

- Capital investment
- System inertia
- Risk aversion
- Number of careers at stake
- Number and extent of special interests

Two Scenarios

Rip van Winkle Scenario Slow Learning/Adaptation

Environmental impacts are an unintended consequence of technology development and deployment and

Regulation must be applied, after the fact, to reduce impacts

Vulcan ScenarioFast Learning/Shaping

Environment is co-optimized as a part of technology development and deployment, or is the <u>primary</u> goal, and,

Mechanisms to deal with unintended consequences are implemented aggressively and early

A Third Scenario: The Leap

Adapted from: Anderson, J. (1996): "Leaps of the Imagination: Interstellar Flight and the Horizon Mission Methodology," *Journal British Interplanetary Society*, Vol. 49.

Address Key Failure Modes

1. Failure of Imagination

We fail to anticipate a problem, think around problems and limitations, or develop innovative solutions.

2. Failure of Perception

Once the problem arrives, we fail to perceive it.

3. Failure of Nerve

After we perceive the problem, we may fail to address it.

4. Management Failure

We may address it, but use the wrong techniques, and fail to solve it.

Radically Expand the Toolbox

"Those who avoid new remedies can expect new evils, for time is the greatest innovator."

Francis Bacon

Further Information

For more information:

http://www.wilsoncenter.org/foresight/

Also: www.foresightandgovernance.org

or: rejeskidw@wwic.si.edu

or: http://rejeski.blogspot.com

