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Thermoelectrics
� Solid-State Technology 

¾ Solid-state Reliability
¾ No Moving Parts
¾ Vibration/Noise free  
¾ CFC-free 

� Heat or Cool
¾ Thermal Management

� Power Generation
� Thermal control functions

¾ Chemistry, Biology, 
Physics

� In 1960’s, semiconductor thermoelectrics were considered to replace mechanical 
refrigerators and diesel-generators!!
¾ Hope back then – if transistors can replace vacuum tubes for electronics!
¾ Biggest problem then – materials efficiency  or figure-of-merit (ZT)
� Had to improve from ~0.9 to  3 or higher
� Identified as a Key Military Technology again in 1992

9 New Materials, especially nano-structures to the rescue?



What makes a good Thermoelectric Material?
� Figure of Merit = ZT = (α2σ/k)T
¾ T = Absolute Temperature
¾ α2 = (Seebeck coefficient)2

� Tells how much average thermal energy is 
transported by each carrier

¾ σ = electrical conductivity
� Tells how much the carriers can transport 
energy without Joule loss

¾ k = thermal conductivity
� Tells how small is the reverse flow of heat 
from the cold-side to the hot-side, opposing the 
electron-transport of heat

� Minimize thermal conductivity and maximize electrical 
conductivity
¾ Has been the biggest dilemma for the last 40 
years
� Can the conflicting requirements be met by 
nano-scale material design?



The Big Challenge
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Some of the Approaches
� New Bulk Materials

¾ Skutterudites (Rensselaer, Oak Ridge, JPL, 1992)
� Cage-structures with rattling atoms to scatter phonons

¾ Novel Chalcogenides  and Clathrates (Michigan State and Arizona, 1994)
� Complex Variations of Bi2Te3 to reduce phonon mean-free paths

� Nano-scale Materials
¾ Low-Dimensional Structures (MIT, MIT Lincoln Labs, 1992)

� Quantum-confinement to Enhance Density of states which increase 
Seebeck coefficient

¾ Nano-scale Superlattices (RTI, 1992)
� Phonon-blocking from acoustic mismatch between superlattice

components but electron-transmitting due to negligible electron-
energy offsets

¾ Heterostructure Thermionics (UCSB, Oak Ridge, 1996)
� Thermionic-like effects using energy barriers that can be controlled in 

hetero-structures



Some Bulk Material and Nano-Material Progress
� Cs Bi4Te6 (Michigan State University)

¾ Bulk Materials with a ZT~ 0.8 at 225K but less than 0.8 at 300K
(Science 287, 1024-1027, 2000)

� Filled  Skuterrudites (JPL)

¾ Bulk materials with a ZT ~1.35 at 900K (Proc. Of 15th International 
Conf. On Thermoelectrics, 1996)

� PbTe/PbTeSe Quantum-dots (Harman, MIT Lincoln Labs.)

¾ ZT~ 1.6 at 300K based on cooling data (Science 297, Sep. 2002)

� Bi2Te3/Sb2Te3 Superlattices (RTI)

¾ ZT~2.4 at 300K in devices with all properties measured at the 
same place, same time, with current flowing and verified by two 
independent techniques (Nature, 597-602, Oct. 2001)



Nano-structured Superlattice Material

 Applied Physics Letters, 75, 1104 (1999)

� 10Å/50Å Bi2Te3/Sb2Te3
Structure

� Optimized for 
disrupting heat 
transport while 
enhancing electron 
transport perpendicular 
to the superlattice
interfaces



Growth of Superlattices

� Low-temperature growth needed
¾ To enable formation of low-energy van der Waals bond along the 

growth direction (c-axis)
� Allows growth of highly-lattice-mismatched structures without 

defects that can scatter carriers
9 Lattice-mismatch is preferred for acoustic-mismatch

� In-situ ellipsometry for nanometer-scale control of deposition 

 Applied Physics Letters, 75, 1104 (1999)



Ultra-low Cross-Plane Lattice 
Thermal Conductivity in 
Bi2Te3/Sb2Te3 Superlattices
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Physics Behind ZT Enhancement
Efficient Cross-Plane Hole Mini-
band Transport in Bi2Te3/Sb2Te3
Superlattices
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Finer Control of Structure/Period in Optimizing Both 
Phonon Blocking, Electron-Transmitting Structures
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Big Jump in ZT with the Phonon-Blocking, 
Electron-Transmitting Structures

0.0

1.0

2.0

3.0

4.0

1930 1940 1950 1960 1970 1980 1990 2000

Efficiency of 
Thermoelectric 

Material 
(ZT)

Potential with
Thin-Film 

Technologies

Industry Progress –
Semiconductor Materials Technology

2010

RTI’s Thin-Film 
Superlattice
Technology

Venkatasubramanian, Siivola, Colpitts, O’Quinn, 
Nature, 413, 597 (2001)



RTI’s Superlattice 
Technology

Commercial Bulk 
Technology
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1,500 microns

Advantages of Superlattice
Thermoelectric Technology

• Enhanced efficiency 

• Super-fast cooling and heating

• Enhanced cooling power 
density

• Localized 
cooling/ heating 
technology

24.10 oC 27.93 oC

 Nature, 413, 597 (2001)



Thin Film 
Module

Today’s 
Commercial 
Bulk Module

Advantages of RTI’s Superlattice 
Thermoelectric Technology

• Enhanced efficiency 

• Super-fast cooling and heating

• Enhanced power density

• Localized 
cooling/ heating 
technology

• 1/40,000th the actual TE 
material requirement of bulk 
technology for same 
functionality – low recycle costs 
– Eco-friendly technology

1mm x 3mm

50mm x 50mm



Recent Results in Transitioning the 
Materials Advancement

Technology Overview



Progress in  Thin-film P-N Couples – the fundamental cooling or 
power conversion unit for transitioning to modules

TFC-87, 150µm Inverted Couple #2 inner
I = -10.2mA 

Vo = 62.144e-0.1092x

VT =  92.878
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� ZT ~ 2 at 300K
� The individual ZT of p- and n- SL materials 
has been transitioned to the ZT of couple



Thermal Management for Electronics



Ref: www.intel.com

“If nothing changes, these 
chips will produce as much 
heat, for their proportional 
size, as a nuclear reactor. 
We have a huge problem to 
cool these devices.”
— Pat Gelsinger, Intel CTO
February 5, 2001

Superlattice Thermoelectrics: Also Useful for cooling hot-
spots in microprocessors - Match foot-print of Heat-load 

with that of Micro-Thermoelectric Devices



Thermal Management of High Heat Fluxes – Better Efficiencies 
at High Heat Fluxes with State-of-the-art Superlattice Devices 

COP as a function of Power Density
-  Bulk and SL Measured Device Data
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Better System Efficiencies Possible in the Thermal 
Management of Power Electronics That Switch Large Powers 
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� Potential Application of High Cooling Power Density to IGBT Chip Cooling –
Automotive Power Electronics
¾ Most thermal management decided by hot-spots

� Cool the Hot-spots so that system-level cooling are lower



Advanced System-Level 
Concepts to further leverage
nano-materials advancements



RTI’s Superlattice Device on Cooling Efficiency
THOT = 300 K
∆T ~ 30 K
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 Nature, 413, 597 (2001)
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� Higher ZT – Incentives for New Approaches to Implement 
Higher COP Concepts like Novel Thermodynamic Cycles and 
Novel Heat-Transfer Approaches



Impact of New Heat Removal Schemes Combined with High ZT 

 

Ref: Lon Bell (BSST, Division of Amerigon Inc.) - Pioneering 
Car-seat cooling and other auto climate control systems



TE Climate Control Technologies Available Today -
Automotive Seat to Personal Space 

Courtesy of BSST, Division of Amerigon Inc.

� Cool/Heat Where You want - Higher System Efficiencies 

¾ Major Economic and  Environmental Implications

� Will Benefit from Higher ZT TE Materials



Direct Thermal-to-Electric Energy Conversion

- Compact Power Sources
- High Specific Power (Potentially 500 W/gm)
- High Power Density (Potentially 5 W/cm2)



Thermoelectric Power Conversion

� Power Conversion Efficiency 
critically dependent on the 
material Figure of Merit (ZT)

� Maximize ∆T
¾ Thermal management 
(getting the heat out from 
the heat-sink) is important to 
generating the maximum ∆T

(Th-Tc)     {(1+ZT)1/2 -1}
ψ = 

Th {(1+ZT)1/2 -1}+ Tc/Th



Power Conversion with Modules



Implications for Power 
� Replace Batteries using 

Chemical-to-Thermal-to-
Electrical Conversion

� Power Sensors for Equipment 
Monitoring Using Naturally-
Occurring Small ∆T
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Impact of Light-weight, High-Efficiency Thermoelectric 
Technology with Waste-Heat Recovery

Engine
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Further Possibilities 
with Nano-scale
Thermoelectrics



Transitioning from Two-dimensional Superlattices to One-
dimensional wires and Quantum-Boxes for Nano-scale 

Thermoelectrics
- Combine Phonon-Blocking, Electron-Transmitting Structures Along Heat Flow 

with Orthogonal Quantum-Confinement for ZT in the range of 4 to 5?
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