Mechanisms of Atherosclerosis in Air Pollution Exposure

Sanjay Rajagopalan, MD
Zena and Michael Wiener Cardiovascular Institute
Mount Sinai School of Medicine
New York, NY

Collaborators

Lung Chi Chen, PhD
Morton Lippman, MD, PhD
Zahi Fayad, PhD
Jeanette Vasquez-Vivar
Acute Exposure to CAPS Results in Alterations in Vasomotor Tone in Humans

Limitations of Current Models to Study Effects of Airborne Pollution

• Variability of the recovery of the particles from the filter or bag houses.
• Uncertainty if components retrieved reflects the original particles.
• Usage of higher concentrations than encountered in a real world setting.
• Routes of installation (such as intra-tracheal route) that are not equivalent to inhalation.
• Usage of exposure systems that do not provide particles that may be of relevance in cardiovascular risk - fine (PM$_{2.5}$) and ultrafine (PM$_{0.1}$) particles.
Rationale for Chronic Exposure Studies-Relevance to Atherogenesis

- Risk factors such as hypertension, hyperlipidemia, diabetes are characterized by progressive impairment in vessel wall function through cumulative exposure to the risk factor-acute responses often not predictive of chronic effect
- The presence of potent endogenous defense mechanisms localized to the vessel wall may delay the onset of abnormalities
- The vasculature not the first point of contact
The NOS Catalyzed Reaction

L-ARGININE → NG-HYDROXY-L-ARGININE → L-CITRULLINE

O2

1.0 NADPH

O2

0.5 NADPH

H2O
NOS: Role of BH$_4$

\[
\text{HEME} \quad \text{BH}_4 \quad \text{HEME} \\
\rightarrow \cdot \text{O}_2^- \\
\rightarrow \cdot \text{NO} + \cdot \text{O}_2 \\
\rightarrow \cdot \text{NO} \\
\]
Smooth muscle

Endothelium

PRO-ATHEROGENIC

NOS

NADPH FAD FMN Calmodulin Heme

REDUCTASE

ELECTRON FLOW

OXIDASE

BH4

L-Arginine BH4

ANTI-ATHEROGENIC

NAD(P)H Oxidase

ONOO

·O2·

·NO

SOD

H2O2 OH·

Fe 2+ Fe 3+

UNCOUPLED NOS

COUPLED NOS
CAPS Increases ADMA Levels

ADMA and NOS Function
Hypothesis

• *Vascular ROS Production and \(\downarrow \) \(\cdot \text{NO} \): An Effect of \(\text{PM}_{2.5} \) and \(\text{PM}_{0.1} \) ?
Blood-borne CAPs (PM$_{0.1}$) → CAPs in Lung (PM$_{2.5}$, PM$_{0.1}$)

ENDOTHELium
- Uncoupled NOS
- Pro-atherogenic
 - L-Arginine → NOS → Citrulline
- Anti-atherogenic
 - Coupled NOS

SOD
- \uparrowO$_2$ → \uparrowH$_2$O$_2$ → \uparrowOH$^-$

CAPs (Transition metals)
- Fe$^{2+}$, Fe$^{3+}$

NAD(P)H Oxidase
- \uparrowO$_2$, \uparrowCytokines

TNFκB
- \downarrowNO$^-$

1. Inflammatory mediators, cytokine activation
2. Adhesion molecule expression
3. Smooth muscle proliferation, apoptosis
MRM (proton density weighted) and corresponding light photomicrographs (CME, combined Masson elastic stain) of transverse mouse aorta. (A) Concentric thickening in a aortic segment. (B) Rim of eccentric thickening is identified on the lateral and anterior aspects of the aorta. (C) normal, thin walled aorta.
PDW MRM images of abdominal aorta in Apo E−/− mice. Normal aorta at 8 and 12 weeks (A-B). Mild thickening at 24 weeks (C). Eccentric plaque at 32 weeks (D). Marked concentric plaque by 44 weeks (E). Panel (F) shows good morphological agreement of histopathological section (CME-stained) corresponding to (E).
Aortic wall area as a function of time in a single Apo E\(^{-/-}\) mouse. Each set of symbols represents measurements from matched segments of aorta
Specific Aim 3: Characterization of Particulate Matter

CAPs

Vascular Oxidant stress

Endothelial Function

↓ Endothelial Function

↑ Vascular Inflammation

↑ Atheroma progression

Complications of atherosclerosis

Specific Aim 1

Specific Aim 2