US ERA ARCHIVE DOCUMENT

Sustaining Multiple Benefits in Large River Floodplains in the Pacific Northwest

Stan Gregory, David Hulse, Roy Haggerty
Oregon State University
University of Oregon

Project Organization

Field Studies of Thermal Patterns

Model of Hyporheic Processes

Environmental
Agencies and
Regional
Decision
Makers

Dynamic
Visualization
of Concepts
and Results

Integration with Willamette Partnership

Typology of Thermal Habitats

- Geomorphic
- Hydraulic
- Hyporheic
 - Dynamics not demonstrated empirically

Temperature

4.9 above mainstem average max, warmest Norwood temperature

0 = 20.3°C mainstem average max for Norwood Island

-2

10

-4

-6

-/

8.5 -8.4 below mainstem average max, coolest Norwood temperature

-1

-2

-6

-7

-8.:

υ

-1

-2

-7

-8.:

E

Estimate HE

CE-QUAL-W2

$$t = \frac{Ln_e}{Ki}$$

Where:

t = time of travel

L = flow path length

 $n_e = porosity$

K = hydraulic conductivity

i = stream gradient

Hyporheic Cooling vs Hydraulic Conductivity

Baker et al. 2004 Ecological Applications

Baker et al. 2004 Ecological Applications

2050 Conservation Scenario

Baker et al. 2004 Ecological Applications

Multiple Benefits of Floodplain and Channel Restoration

- Coldwater refuges
- Nutrient uptake
- Sediment storage
- Flood detention
- Habitat complexity
- Large wood
- Shade

- Fish and invertebrate communities
- Wildlife communities
- Riparian forests
- Visual acceptance
- Recreation
- Alternatives for communities

Can agencies and and stakeholders work together?

When citizen values and legal requirements are consistent

Market-based Solutions

- Restoration goals
- Social benefits
- Legal requirements
- Landowner incentives
- Compensation for flood damage
- Community perception

CNS Assistance

- Provided funding for first field survey of river temperatures in Willamette River.
- Provided working relationship with EPAfunded Willamette partnership
- Provided funding for developing dynamic visualizations of concepts and river data

Contribution to Sustainability

- A scientific basis for meeting thermal TMDL goals by restoring coldwater refuges in a large river through a market-based collaborative framework.
 - Locations of coldwater refuges
 - Model of hyporheic influence on temperature
 - Dynamic visualization of complex information for stakeholders
 - Spatial framework for decision makers
 - Working directly with stakeholders and environmental agencies to solve environmental challenges

Contribution to Sustainability

- Restoration efforts also provide multiple ecosystem services and social benefits
 - Cold water refuges
 - Floodplain function
 - Riparian forest restoration
 - Channel and habitat complexity
 - Hyporheic processes
 - Wildlife habitat
 - Recreation
 - Aesthetic values for communities along the river

Surprising Results

- Coldwater refuges (3-8°C lower than mainstem) were found in all study reaches.
- Alcoves on floodplains exhibited the coldest thermal environments.
- Alcoves on gravel bars exhibited temperature both colder and warmer than the mainstem.
- State environmental agencies were willing consider floodplain restoration to create coldwater habitats as part of TMDL permits.
- Willamette Partnership used the project results and dynamic visualizations to develop a market-based system for restoration of the Willamette River corridor.

Collaborators and Partners

- Oregon State University
- University of Oregon
- EPA Corvallis NHEERL, Western Ecology Division
- Willamette Partnership
- Oregon Department of Environmental Quality
- Oregon Department of Fisheries & Wildlife
- Metropolitan Wastewater Management Commission
- City of Eugene, Oregon
- McKenzie River Trust
- City of Corvallis, Oregon
- City of Albany, Oregon
- US Department of Agriculture
- US Fish & Wildlife Service
- National Marine Fisheries Service

Requested Feedback

• Do you have any information on use of coldwater refuges by aquatic organisms?

- Do you have any information on use of coldwater refuges by aquatic organisms?
- Can fish or other aquatic organisms use coldwater refuges as "stepping stones" during periods of thermal stress?

- Do you have any information on use of coldwater refuges by aquatic organisms?
- Can fish or other aquatic organisms use coldwater refuges as "stepping stones" during periods of thermal stress?
- Can market systems be used to create "compensation banks" to compensate land owners for property loss in a floodplain corridor?

• Do legal restrictions on participation in mitigation create barriers for collaboration with federal or state agencies?

- Do legal restrictions on participation in mitigation create barriers for collaboration with federal or state agencies?
- Do you have other examples of landscape studies of ecosystem services linked to analysis of alternative future scenarios?

2.4 above mainstem average max, warmest Sam Daws temperature 0 = 20.4°C mainstem average max for Sam Daws Bend -5.9 below mainstem average max, coolest Sam Daws temperature

9.0 above mainstem average max, warmest Snag Boat temperature

0 = 19.6°C mainstem average max for Snag Boat Bend

-2

-4

13 10

6

4

2

1

 -2.8 below mainstem average max, coolest Snag Boat temperature

,

-7

•

-8.5

Willamette River Longitudinal Temperature Profile (July 15 - October 3, 2005)

Effect of Hyporheic Exchange on River Temperature

