US ERA ARCHIVE DOCUMENT

Climate Change, Forest Fire, and Air Quality

A DSS Approach

#GR8288732-01-0

Barbara Morehouse University of Arizona Tucson, AZ

Context

- High levels of fire activity and fire risk
 - ->8 million acres have burned this year
- Increased fire suppression costs
 - Billion-dollar fires in 3 of past 4 years
- Increased complexity of decision contexts
 - Concerns about air quality
 - Fire use issues
 - Wildfire impacts

Climate in the US Southwest

- High annual & inter-annual variability (ENSO)
- Climate change: Things are getting hotter...
 - Increase of 1.8-2.5 degrees Fahrenheit since 1976
 - Greater temperature changes projected
 - Precipitation change less certain, but
 - Higher evapotranspiration = less available water
- More extreme events: droughts, tropical storms, flooding
- Ecological transformation

Santa Catalina Mountains

- Santa Catalina Mountains
 - North edge of Tucson
 - Large fires in 2002 and 2003
 - ~40% of land within fire perimeters torched
 - Fire-adapted ecosystems
 - Natural fire return interval = 10 years
 - Fire suppression has thrown this out of whack
 - Climate is an important factor
 - When can fire be used and when not?

Managing for Fire Risk in the Santa Catalina Mountains

- Very large unburned area still exists
 - High fire hazard
- Where burned, regrowth is occurring
 - Need to keep risk low
- Need landscapescale fire use
 - Fires of 100,000+ acres in size

Fire Use Issues - Climate

- Climate change narrows window of opportunity
 - Even greater reason to increase fire use now
 - Sustain existing forests as long as possible
 - Where unavoidable, take proactive measures to achieve smooth transition to new state
- Climate variability complicates decision
 - In SW, beware of wet winter 1-2 years before,
 followed by dry and hot pre-summer weather

What about Smoke?

- High level of urban-wildland intermix
- Resistance to fire use policies
 - Health concerns
 - Fear of escaped fire
- Decision support tools may facilitate dialogue between managers and public

Wildfire ALTERnatives (WALTER)

- 4 decision tools
 - Animated vegetation greenness maps(NDVI-AVHRR)
 - Climate scenario tool
 - Interactive fire policy pages
 - FCS-1 GIS model

http://walter.arizona.edu

FCS-1 Decision Tool (GIS-based; Web-based)

User-Centered Approach

- Select climate scenario
- Decide the relative importance of the components
- Run the model
- Analytic Hierarchy Process (AHP)
 - Pair-wise comparison of submodel components
 - Pair-wise comparison of submodels

Example of Map Output

- Fire Probability: .333
 - Human Factors of Fire Ignition: .139
 - Fuel Moisture Scores: .399
 - Lightning: .205
 - FRID: .054
 - Vegetation Type Hazard: .203
- Values at Risk: .667
 - Personal Landscape Values: .307
 - Recreation: .175
 - Species Diversity: .135
 - Property Value: .383

WALTER Advantages

- WALTER web site
 - Designed to accommodate multiple forms of content and expertise
 - Designed to run on most computers
- Web-based FCS model
 - Allows exploring alternatives
 - Provides resolution at landscape scale
 - Integrates a range of human values
 - Provides expert and public access
 - Offers opportunities to compare outputs
 - System architecture allows expansion, addition of new functions: air quality/climate var. & change

Thank you!

