US ERA ARCHIVE DOCUMENT

Developing Functional Fe⁰-based Nanoparticles for In Situ Degradation of DNAPL Chlorinated Organic Solvents

<u>Greg Lowry¹</u>, Kris Matyjaszewski², Sara Majetich³, David Sholl⁴, Robert Tilton⁴, Yueqiang Liu¹, Navid Saleh¹, Kevin Sirk⁴, Traian Sarbu², Wahab Almusallam⁴

Carnegie Mellon University

1. Civil & Env. Eng. 2. Chemistry 3. Physics 4. Chemical Eng.

U.S. EPA 2004 Nanotechnology STAR
Progress Review Workshop Nanotechnology and the Environment II.
Philadelphia, PA

August 18-20, 2003

Background

- DNAPL Contamination
 - Long-term source
 - Source area removal can expedite remediation
 - Lower stewardship cost
- Reactive Nanoparticles
 - Fe⁰ and bimetallics proven remedial agents
 - Effective delivery to source area is limiting factor

Conceptual Model

: surface-modified, reactive nanoparticles

Goal/Approach

Project Goal

Synthesize surface modified Fe⁰-based nanoparticles that can transport in a saturated porous matrix, preferentially localize at the NAPL-water interface, and degrade NAPL to non-toxic products.

Approach

- Understand the factors controlling reactivity/lifetime of Fe⁰ nanoparticles
 - Compare effectiveness of two particle types
- Identify block co-polymers that provide desired transport and targeting behavior
 - Polymer selection
 - Synthesizing polymer coated particles
- Characterize polymer/particles
 - Size, NAPL-water partitioning, transport

Fe Nanoparticles Evaluated

• Borohydride reduction¹

$$2Fe^{2+} + BH_4^- + 3H_2O \rightarrow 2Fe^0 \downarrow + B(OH)_3 + 2H_2 + 3H^+$$

• Gas phase reduction by H_2^2

1.Shen, J., Li, Z., Yan. Q., Chen. Y., *J. Phys. Chem.*, **1993**, *97*, 8504-8511 Wang and Zhang, 1997 ES&T, *31*, 2154-2146.

2. U.S.Patent Application, US2003/0217974A1

Fe Nanoparticle Properties

	Size ¹ (nm)	Surface Area (m²/g)	Elem. Comp. (%)	Morph.
Fe/B	30-40	36	Fe-92 <u>B-4</u> O-4	Core-shell
Fe/Fe ₃ O ₄	40-60	23	Fe-88 O-11	Core-shell

1. Primary Particle Size

Iron Core-Shell Morphology

Fresh Fe/B particles

Fresh Fe/Fe₃O₄ particles

TCE Reactivity Trends

Fe/B
Faster Reaction
Saturated Products k_{1sa} =0.02 L/m²d

Fe/Fe₃O₄
Slower reaction
Unsaturated Products
k_{1sa}=0.006 L/m²d

Longevity

- Competing processes
 - Fe⁰ + TCE \rightarrow Fe²⁺ + HC products + Cl- (desired)
 - $Fe^0 + 2H^+ \rightarrow Fe^{2+} + H_2 \text{ (undesired)}$

Polymer & Particle/polymer Development

Which polymers?

Requirements
Stable Suspensions

Repulsion from aquifer grains

NAPL-water Partitioning

Inexpensive

CarnegieMellon

Good Candidate Polymers

- Hydrophobic Blocks
 - Polystyrene
 - poly methyl (or butyl) methacrylate
- Hydrophilic blocks

Sulfonated polystyrene

Hydrophobic Block

(PMMA or PBMA)

Fe Attachment (PAA)

Triblock copolymer

Hydrophilic Block (PSS)

TCE-Water Partitioning

- Du-Nouy ring
- Polymer/Particle partitioning similar
- Demonstrates desired interfacial behavior
- Screening tool
 - block length
 - Block type

Transport

- Triblock micelles transport through saturated sand columns
 - Little retardation
 - Good efficiency
 - Needs optimization

Fe⁰ Core-Shell Nanoparticles

Poly (MAA)-b-poly(MMA)-b-poly(STS)

Triblock copolymers anchor Fe nanoparticles via poly(AA) groups

The hydrophobic blocks form a protective shell around the Fe nanoparticle

Summary

- Fe⁰ nanoparticles are highly reactive, fully utilized, and very efficient in TCE-water systems
- Polymer-particle hybrid particles have been synthesized
 - Nano sizes (~100 nm)
 - Good NAPL-water partitioning
 - Good transportability
- PAA-PMMA-PSS triblock copolymers provide desired transport and NAPL-water partitioning
- Polymer coated Fe0 particles synthesized but not yet optimized

Acknowledgements:

G. Redden, P. Meakein, H. Rollins at INEEL U.S. EPA (R830898)
DOE EMSP program (DE-FG07-02ER63507)

