Spatial Investigation of Sources, Composition, and Long-Term Health Effects of Coarse PM

Sara Adar, Tim Larson, Joel Kaufman, Lianne Sheppard, Christopher Simpson, Graham Barr, Gregory Burke, Martha Daviglus, David Jacobs, Kai Zhang, Amanda Gassett

September 22, 2010
Talk Overview

- Background
- Summary of Data Collected
- Exposure Modeling Progress
 - Mass Modeling
 - Species Modeling
- Preliminary Health Modeling
- Future Plans
Past studies generally focused on PM10 or PM2.5

- Some evidence of cardiovascular and pulmonary effects from coarse particles

- Research on chronic health effects of PM10-2.5 mass and chemical components are very limited
Spatial variation of PM$_{10-2.5}$ can be large due to local sources
Study Aims

1) Characterize spatial variability of PM$_{10-2.5}$ from natural and anthropogenic sources

2) Examine chronic health effects of PM$_{10-2.5}$ on the respiratory and cardiovascular systems
Nested in the Multi-Ethnic Study of Atherosclerosis and Air Pollution

- Population-based prospective cohort
- ~6,000 subjects (aged 45-84 yrs) without clinical CVD at baseline
 - White, African American, Hispanic, and Chinese
- Detailed characterization of PM2.5 through MESA Air
Repeated Spatial Snapshots Collected

- Collected two-week snapshots of PM$_{10-2.5}$ outside homes of ~35 subjects (3 cities/2 seasons)
 - Cities to provide range in PM$_{10-2.5}$ and sources
 - Two seasons with some repeats
 - Mass, chemical species, and endotoxin analyzed and calculated by difference
Short-Term Samples Reasonably Reflect Annual Averages

- Use spatial prediction procedures based on snapshots to assign long-term exposures
April (n=34)

Homes targeted to capture geographic space and variation in local characteristics

August (n=31)
March (n=35)

July (n=30)
January (n=26)

June (n=34)
Within- and Between-City Differences

PM Coarse Concentrations (µg/m³)

- Chicago
 - April
 - Aug
- St Paul
 - Jan
 - June
- Winston Salem
 - March
 - July

Annual Average AQS

PM₁₀-₂₅ (µg/m³)

Average of Two 2-week MESA samples
(1 Summer sample and 1 Winter sample)
PM10-2.5 Can Be Predicted by Spatial Features: Chicago

- Other variables examined included A2, A3, NDVI, commercial land use, residential land use, population density, port, season

- Model selected based on consistency of predictors and CV RMSE

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Partial R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 in 750m</td>
<td>0.24</td>
</tr>
<tr>
<td>Industry in 750m</td>
<td>0.18</td>
</tr>
<tr>
<td>Nearness to rail yard</td>
<td>0.14</td>
</tr>
<tr>
<td>Nearness to airport</td>
<td>0.05</td>
</tr>
<tr>
<td>Local PM10 emissions</td>
<td>0.04</td>
</tr>
<tr>
<td>Local PM2.5 emissions</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Model based $R^2 = 0.68$
CV $R^2 = 0.61$
Modest Residual Spatial Structure

- Short spatial scale: Range ~600 meters
- LUR: RMSE = 1.22 μg/m³ $R^2 = 0.61$
- UK: RMSE = 1.11 μg/m³ $R^2 = 0.71$
Different Distribution Than PM2.5

PM$_{10-2.5}$

PM$_{2.5}$
Identified Tracer of Road Dust

- **Species Mass Fraction**
 - **PMF 3.0**
 - **Enhanced ME-2 (constrained by spatial variables)**

- **PM\textsubscript{10-2.5} from Brake and Tire Wear (\(\mu g/m^3\))**

- **Measured Copper (\(\mu g/m^3\))**
Copper Can Be Predicted by Spatial Features: Chicago

<table>
<thead>
<tr>
<th>Predictor</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 in 400m</td>
<td>0.38</td>
</tr>
<tr>
<td>A2 in 400m</td>
<td>0.05</td>
</tr>
<tr>
<td>Nearness to Large Port</td>
<td>0.05</td>
</tr>
</tbody>
</table>

UK: RMSE=2.6 ng/m³ $R^2=0.64$
LUR: RMSE=2.8 ng/m³ $R^2=0.47$
Exposure Assignment to be Completed for All Cities

- Powered to focus on 3 metropolitan areas with model predictions but also aim to explore associations in 6 metropolitan areas
- To evaluate consistency across regions and ability of models to predict at regulatory monitors
- Assigning exposure based on AQS monitors or covariates
Incident / Progression of Cardiovascular and Pulmonary Outcomes

Coronary Artery Calcium

Intima-Medial Thickness

Lung Density

Clinical Disease/ Events
Other Interesting Outcomes

- Retinal Microvasculature
- Pulmonary Function
- Systemic Inflammation
- Blood Pressure
- Left Ventricular Mass
- Aortic Calcium
- Flow Mediated Dilation
- Heart Rate Variability

Genetic data also available for gene-environment interactions
Retinal Photographs Provide Insight to Microvasculature

- Non invasive, *in vivo*, method to characterize human microvasculature
- Observes retinal vessels 100-300 um
- Hypothesize that PM10-2.5 is associated with narrowed arteriolar diameters
Chicago UK Results: Copper But Not Total Mass Associated with CRAE

Controlled for traditional risk factors and PM$_{2.5}$ mass.
Independent negative association for copper and “near road” indicator.
Summary

- Successful monitoring campaign
 - Approximately 200 homes sampled across 3 cities and 2 seasons
 - Analyzed for mass, species, and endotoxin
- Preliminary modeling shows that coarse mass and components can be predicted using covariates and spatial structure
- Early health analyses suggest that there might be impacts of coarse mass, especially from traffic sources
Next Steps

- Finalize spatial modeling
 - Create predictions for St Paul and Winston Salem
 - Evaluate other species and source profiles
 - Identify indicators of PM10-2.5 mass and species
 - Evaluate performance in unmeasured areas

- Examine associations with various health endpoints
Anticipated Contributions

- Unique characterization of within-city variation of PM$_{10-2.5}$ and its sources
 - Spatial prediction models
 - Supplements existing MESA Air exposure assessment

- Explore chronic health effects
 - Clinical and subclinical
 - Ability to evaluate potentially sensitive subpopulations
Thank you for your attention. Any questions?
This work was supported by the USEPA STAR Grant Program (R833741 and RD831697)

Although the research described in this presentation has been funded wholly or in part by the United States Environmental Protection Agency through RD831697 to the University of Washington, it has not been subjected to the Agency's required peer and policy review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred.
Consistent with AQS Data

PM Coarse Concentrations (µg/m³)
Good Agreement with AQS
Copper Highly Correlated with Mass

Copper vs. PM$_{2.5}$
($\rho = 0.82$)

Copper vs. PM$_{10-2.5}$
($\rho = 0.70$)
Clinical Events Power

- 80% power to detect RR = 1.15 among all cities and RR = 1.28 among three cities

<table>
<thead>
<tr>
<th>Study Name</th>
<th>Relative Risk Per 10µg/m³ (95% CI)</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Six Cities Study (PM_{15-2.5})³</td>
<td>1.43 (0.83 to 2.48)</td>
<td></td>
</tr>
<tr>
<td>Veteran’s Cohort (PM_{10-2.5})¹⁵</td>
<td>1.07 (1.01 to 1.13)</td>
<td>M</td>
</tr>
<tr>
<td>AHSMOG (PM_{10-2.5})¹⁶</td>
<td>1.05 (0.92 to 1.20)</td>
<td>M</td>
</tr>
<tr>
<td>ACS (PM_{15-2.5})¹⁷</td>
<td>1.00 (0.99 to 1.02)</td>
<td>M</td>
</tr>
<tr>
<td>Coronary Heart Disease</td>
<td>1.38 (1.07 to 1.77)</td>
<td>F</td>
</tr>
<tr>
<td>AHSMOG (PM_{10-2.5})¹⁸</td>
<td>1.19 (0.88 to 1.62)</td>
<td>M</td>
</tr>
<tr>
<td>Non-Malignant Respiratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHSMOG (PM_{10-2.5})¹⁶</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sub-clinical Change Power

IMT
- 80% power to detect 2.5% of statin effect in all areas and 3% of effect in 3 areas

Lung Density
- 99% power to detect 1% of total change in MESA in all areas and 80% power to detect 1% change in 3 areas
Good Variation in Geographic Features

<table>
<thead>
<tr>
<th></th>
<th>Baltimore</th>
<th>Chicago</th>
<th>Los Angeles</th>
<th>New York</th>
<th>St Paul</th>
<th>Winston-Salem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean NDVI (SD) USGS Reports NDVI $\times 10^4$</td>
<td>5900 (1600)</td>
<td>2500 (2100)</td>
<td>3200 (1400)</td>
<td>3900 (2100)</td>
<td>6200 (800)</td>
<td>7500 (390)</td>
</tr>
<tr>
<td>Mean Meters to Subjects from Major Road (SD)</td>
<td>230 (220)</td>
<td>140 (120)</td>
<td>230 (200)</td>
<td>60 (65)</td>
<td>160 (140)</td>
<td>390 (490)</td>
</tr>
<tr>
<td>Rural Land Use (%in Zip Code)</td>
<td>9</td>
<td>26</td>
<td>26</td>
<td>8</td>
<td>66</td>
<td>69</td>
</tr>
<tr>
<td>Comm/ Industr (% in Zip Code)</td>
<td>13</td>
<td>29</td>
<td>21</td>
<td>34</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>
Reproducible Results

Mean RPD = 18%
$R^2 = 0.8$
Subclinical Respiratory Outcomes

Alveoli with emphysema

Microscopic view of normal alveoli

© ADAM, Inc.
Vacuum Pump
PM$_{2.5}$
PM$_{10}$

3-Way Valve

Vacuum Pump

3-Way Valve

PM$_{2.5}$
PM$_{10}$

Elapsed Timer
00000.0 Hrs

120V AC

Endotoxin

Mass, reflectance, and metals
Nearest Monitor Approach: Results Driven by Winston-Salem
Spatial Features

A1

A2

Industry

Port

Rail yard

PM10

PM25
Some Differences at Cohort Locations

\[\rho = 0.64 \]

PM\textsubscript{10-2.5} (\(\mu g/m^3\))
(Coefficient of Variation = 16%)

PM\textsubscript{2.5} (\(\mu g/m^3\))
(Coefficient of Variation = 6%)