Individual-based Modeling for Salmonid Management

Roland H. Lamberson
Humboldt State University

http://math.humboldt.edu/~ecomodel/

Presentation Objectives

• inSTREAM our individual-based trout model
• Advantages of IBMs for modeling fish population response to stressors
• Example applications of our stream trout IBM to management research and decision-making

What is an IBM?

• A model of the environment
 • Models of individual animals
 – The mechanisms by which the environment affects an individual
 – The mechanisms by which individuals interact
 – The behaviors individuals use to adapt to their environment and each other
 • Population responses that emerge from individual behaviors

Why an Individual-based Model?

• IBM’s resolve the two fundamental dilemmas of modeling:
 – Models usually assume many individual organisms can be described by a single variable like population size or biomass. IBM’s provide for individuals and their differences.
 – Most models don’­t distinguish between organisms’ locations. IBM’s provide for distinctive interactions with neighboring individuals and the local environment.

Credits

• Research collaborators:
 – Steve Railsback, Lang, Railsback, and Associates
 – Bret Harvey, USFS Redwood Sciences Lab
 – Software: Steve Jackson, Jackson Scientific Computing

Funding: EPA STAR Grant
Advantages of IBMs for Modeling Fish Population Response to Stressors

- Complex, cumulative effects can be simulated:
 - Base flow
 - High and low flows: timing and magnitude
 - Temperature
 - Turbidity
 - Losses of individuals (angler harvest, diversion entrainment)
 - Food production
 - Reproduction, recruitment
 - Species interactions: competition, predation
 - ...

Advantages of IBMs for Modeling Response to Stressors

- Complex, cumulative effects can be simulated:
 - These complex interactions emerge from individual-level mechanisms
 - instead of having to be foreseen and built into a model
 - you just have to model how stressors affect individuals

Advantages of IBMs

- IBMs are testable in many ways
 - They can produce many kinds of predictions that can be tested with many kinds of data
 - Habitat selection patterns over space, time, flow...
 - Statistical properties of population (size, abundance)
 - Trends in abundance with environmental factors
 - etc.

Advantages of IBMs

- IBMs provide a way out of the complexity - uncertainty dilemma:
 - A well-designed IBM is a collection of simple submodels for separate processes at the individual level
 - Each submodel can be parameterized and tested with all the information available for its process
 - Yet IBMs can simulate complex population level responses

Stream Trout Model

- Habitat is modeled as rectangular cells
- External hydraulic model simulates how depth, velocity vary with flow

Stream Trout Model

- Habitat:
 - Water depths and velocities
 - Temperature, turbidity
 - Food availability
 - Daily time step
- Fish:
 - Habitat selection (choosing the best cell)
 - Feeding and growth
 - Mortality
 - Spawning & incubation
Feeding Model

- Drift feeding strategy
 - Food intake per fish:
 \[\text{Food concentration} \times \text{velocity} \times \text{capture area} \]
 - Capture area:

Feeding Model

- Food intake varies between drift and search feeding strategies
 - Relative advantages depend on flow, fish size, habitat
- Food intake can be limited by competition (food consumed by bigger fish)
- Each fish picks the feeding strategy offering highest growth
 - Preferred strategy can vary among cells

Growth Model (bioenergetics)

- Growth = Food intake - metabolic costs
 - Metabolic costs:
 - increase with swimming speed
 - increase with temperature

Foraging Model: Growth vs. Velocity, Fish Size, Feeding Strategy

Survival Model

- Survival probabilities:
 - Vary with habitat
 - Depend on fish size, condition
 - Include:
 - Poor condition (starvation)
 - Terrestrial predation
 - Aquatic predation
 - High temperature
 - High velocity (exhaustion)
 - Stranding (low depth)

Survival Model: Overall Risks
Survival Model: Overall Risks

Habitat Selection: Overview

• Habitat selection is critical:
 – Moving is the primary way fish adapt to changing conditions

• Our approach assumes fish use behaviors that evolved to maximize fitness

Habitat Selection Rules

• Move to the cell that offers highest potential “fitness”
 – (within the radius that fish are assumed to be familiar with)

Habitat Selection: Fitness Measure

• Fish move to cell offering highest fitness

• Key elements of fitness are:
 – Future survival
 – Attaining reproductive size

Habitat Selection: Summary

How a Fish Rates A Potential Destination Cell

• Considers:
 – Potential growth in cell (function of habitat, competition)
 – Mortality risks in cell (function of habitat)
 – Its own size and condition

• Probability of surviving for 90 days in the cell?
 – Assuming today’s conditions persist for the 90 days

• How close to reproductive size after 90 d in the cell?
• Rating = Survival probability × fraction of reproductive size

Habitat Selection

• Many realistic behaviors emerge:
 – Normal conditions: territory-like spacing
 – Short-term risk: fish ignore food and avoid the risk
 – Hungry fish take more chances to get food (and often get eaten)
 – Conditions like temperature, food availability, fish density affect habitat choice
The "pattern-oriented" analysis approach:

- Test specific processes of an IBM by whether it reproduces a wide range of behaviors that emerge from the process
- Test a complete IBM by whether it reproduces a wide range of observed population-level patterns

Validation:

- Individual level
- Population level

Validation of Habitat Selection Rules: Six Patterns (a)

- Feeding hierarchies
- Movement to channel margin during high flow
- Juveniles respond to competing species by using less optimal habitat (higher velocities)

Validation of Habitat Selection Rules: Six Patterns (b)

- Juveniles respond to predatory fish by using shallower, faster habitat
- Use of higher velocities in warmer seasons
- Habitat shift in response to reduced food

Expected Reproductive Maturity vs. Habitat Suitability Criteria as Indicators of Habitat Quality

- PHABSIM habitat suitability criteria (HSC)
 - Basis: Empirical
- Expected Reproductive Maturity (EM)
 - Basis: Mechanistic models of feeding, mortality risks, fitness

EM vs. HSC Indicators of Habitat Quality

- HSC
 - Habitat rating varies only with fish life stage:
 - fry, juvenile, adult, spawning
 - (occasionally: season)
- EM
 - Habitat rating varies with:
 - Fish size
 - Fish condition
 - Temperature & season
 - Food availability
 - Cover for hiding, feeding
 - Other factors affecting growth or survival
EM as an Indicator of Habitat Quality

- Adult trout
 - drift feeding
 - using velocity shelter

EM as an Indicator of Habitat Quality:
With vs. Without Velocity Shelters for Drift Feeding

EM as an Indicator of Habitat Quality:
Without vs. With Hiding Cover

EM as an Indicator of Habitat Quality:
15° vs. 5° Temperature

Example Use of IBM for Management Research:
Effect of Habitat Complexity on Population Dynamics

- Observed pattern: When deep pools are eliminated, a lower abundance of large trout results:
 - Bisson & Sedell (1984) observed fewer pools & fewer large trout in clearcuts

- Simulation experiment:
 - Simulate populations over 5 years with, without pool habitat in the model
Effect of Habitat Complexity on Population Dynamics

• Simulation results (1):
 – Abundance of all age classes was lower when pools were removed
 – Impact was greatest on oldest age class
 – Terrestrial predation caused the lower abundance - pools provide shelter from terrestrial predators

Effect of Habitat Complexity on Population Dynamics

• Simulation results (2):
 – Size of age 0 and 1 trout increased when pools were removed - Why??

Example IBM Application: Effects of Instream Flow Magnitude & Variability

• How does the amount and timing of flow affect trout abundance and growth?
• Site: Little Jones Creek (3rd order coastal stream in N. California)
• Scenarios: hypothetical hydropower reservoir
 – Constant flow vs. Natural monthly mean flow
• Simulations: 10 years, 5 replicates per scenario

Example Application: Effects of Turbidity

• How does the amount and timing of flow affect trout abundance and growth?

Example IBM Application: Effects of Instream Flow Magnitude & Variability

• Turbidity decreases feeding ability, but decreases predation risk
 What are the population-level consequences?

• Site: Little Jones Creek
• Five turbidity scenarios:
 – Turbidity = x Q
 – Five values of x: very clear to very turbid streams
Example Application: Effects of Turbidity

- Result: Interactions between turbidity and food availability are strong

Scenario

Number of Age 2+ Fish

12345

0 1 0 2 0 3 0 4 0 5 0

Example Use of IBM for Management Research: Habitat Selection vs. Habitat Quality

- Theory to be tested: The habitat that animals use most often is the best habitat
 - This assumption is the basis for many management models
 - It is widely questioned but very difficult to test in the field
 - "Relations between habitat quality and habitat selection in a virtual trout population." Railsback, S.F., H. B. Stauffer, and B. C. Harvey. (to appear in Ecological Applications.)

Habitat Selection vs. Habitat Quality

- "Habitat Selection" = the observed choice of habitat
- DEN is evaluated as observed animal density

\[\text{DEN} = \frac{\text{(# animals using a habitat type)}}{\text{(area of habitat type)}} \]

Habitat Selection vs. Habitat Quality

- "Habitat Quality" or Fitness Potential (FP) = the fitness provided to an animal by a habitat type, in the absence of competition
 - “Preference”: the habitat a fish selects in absence of competitors
 - In our IBM:
 - We know the FP of each habitat cell because we programmed it
 - FP varies among habitat cells with water depth, velocity, feeding shelter, hiding shelter

Habitat Selection vs. Habitat Quality

- The experiment:
 - Observe DEN (fish density) in each habitat cell (snapshot)
 - Calculate FP for each cell
 - Examine: How well does DEN predict FP?
 - (What can you learn about the quality of habitat by observing the habitat that animals use?)
 - Three ages of trout examined separately

What Does Habitat Selection Tell You about Habitat Quality?? Not much!

- Cells with high density usually are fairly high quality
- Many high quality cells have zero fish
- There is no predictive relationship between observed fish density and habitat quality
Management Research with the IBM: Why is There So Little Relation Between Habitat Selection and Habitat Quality?

• (1) Competition:
 – Smaller trout don’t use the habitat that is best for them because they are excluded by larger fish

• (2) Unused and unknown habitat:
 – Good habitat for large trout may be vacant because there are not enough trout to use it all
 – Trout may not use the best available habitat because it is too far away to know about

• (3) Cells where food is plentiful but hard to catch can support more fish at lower fitness:
 – Example: Cells with high velocity
 – Each fish can catch less food than optimal
 – Because each fish gets less of the food, more fish can share the cell

• (4) Cells where food is plentiful but mortality risks are high can support more fish at lower fitness:
 – Density is high because there is plenty of food but
 – Fitness is low because mortality risk are high

Habitat Selection vs. Habitat Quality

• Conclusions:
 – Observed patterns of habitat selection by animals tell us little about how good the habitat is
 – But does this mean models based on habitat selection are worthless??

Are There Problems with Models Based on Habitat Selection?

• A second simulation experiment:
 – A good habitat selection model can be a useful predictor of population response over short times
 • When habitat modifications are small
 • And it is a dominant species or life stage
 – BUT:
 • Habitat selection models have fundamental problems
 (mainly: neglecting that habitat selection varies over time)
Conclusions: Key advantages of IBMs for assessing impacts of multiple stressors on fish

• IBMs can be used to address more questions that are difficult to address with other modeling approaches

• IBMs can be more credible than alternatives
 – More testable
 – Able to simulate complex responses to many stressors without high parameter uncertainty

Conclusions: Potential Limitations of IBMs

• Computation: There is a limit to how many fish / how much habitat we can simulate (overcome with bigger computers, clusters?)

• Models for new groups of fish can be expensive to build

• Expertise: Few biologists are familiar with IBMs (or the mechanistic, individual-based view of ecology)

• Acceptance by managers: IBMs are unfamiliar, not as simplistic as alternative approaches

 • We haven’t done anadromy yet (but have put a lot of work into concepts and software)

Conclusions: Our Status

• Continued evolution, application of the trout model
 – Diel shifts in habitat & activity: feeding vs. hiding
 – Sub-daily time steps and fluctuating flows

• Interest in new applications of our salmonid IBMs
 – Instream flow assessment
 – Assessment of restoration activities …
 – Regional stressor-response applications

• Development of new models (juvenile Colorado pikeminnow)

• Development & publication of theory & software

Individual-based Modeling for Salmonid Management

http://math.humboldt.edu/~ecomodel/