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State of Lake Erie Ecosystem

& Lake Erieis structurally and functionally
unhealthy (i.e. impaired)
® Limited resilience
® Structural instability
& Prevailing stress complex is currently
unmanageable
® Fish community unstable with cascade of effects
® Management uncertainty
® Confusion about important regulatory mechanisms
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Project Goals

¢ Develop a regional-scale, stressor-
response model for the management of
the Lake Erie ecosystem
Stressors: land use changes, nutrients,
habitat alteration, flow regime modification,
exotic species, and fisheries exploitation
< Incorporate model into a multi-
objective decision making tool for use

by Lake Erie managers

Project Task Structure

¢ Linking changes in watershed habitat and
nutrient loading to Lake Erie ecosystem health

¢ Quantifying uncertainties in model predictions
and the effects of uncertainties on management
decisions

¢ Evaluating cross-scale interaction of stressors

¢ Developing tools to evaluate ecological risk of
land-use changes

< Identifying and evaluate critical break-points in

ecosystem and management integrity

Users

¢ Fisheries managers
® Lake Erie Committee (GLFC)
® State and Provincial natural resource agencies
& Water quality managers
® |JC (US EPA and Environment Canada)
® EPA’s TMDL process
¢ Planning and development agencies
® Ohio Balanced Growth Initiative
® Joyce Foundation funded initiative with watershed

partnerships

Current Challenges

¢ Modeling

® Explicit incorporation of
scaling issues

® Development of a hierarchical
modeling architecture
¢ Database development
® Coordinating geodatabases

® Framework for upscaling and
downscaling

Temporal Soale

After Wu and David, 2002

® Incorporation of dynamic land
cover changes

bssed patch hiararchy  SPatial Scale
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Current Challenges

¢ Modeling ?
10000 km =]
® Explicit incorporation of —— /
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scaling issues 100 ki —,Ditoro‘ I N
L N 2 EEd

® Development of a hierarchical

modeling architecture
¢ Database development

® Coordinating geodatabases

® Framework for upscaling and
downscaling

® [ncorporation of dynamic land Hour
cover changes

Day Month  Year Century
Time
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Unified Modeling Framework

¢ Overall functional integration of habitat and Lake
Erie ecosystem health
® Linking landscape to whole lake processes
® Determine cross-scale additivity of stressors
¢ Database component
® Fine scale classification of landscape
® Biologically informed aggregation of landscape features
¢ Ecological model
® Hierarchical
® Linked to management
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Functional Integration of Habitat

Human

Activities - Landuse/  — Climate
Land Cover

System
Hydrology

Nutrient Fish
Loading Habitat

Productivity Recruitment
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Function Integration of Lake Erie
(LEEM)

PO, Fishing Stocking

Mortality ‘

Edible Algael .
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Fish Fish
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669 State Variables 1,942 Parameters Harvest
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Object View of Framework

GeoProcessing DecisionAnalysis

Modg| Run
Repprts

1
LandscapeModel

Detailed Class Hierarchy
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Detailed Class Hierarchy
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DEVS Flow for Simulation Model

Implement XML Based Metadata
Repository

¢ Metadata for spatial data
® XML specification of data for models
® XML specification of data for queries
¢ Metadata for model implementation
® Model selection
® Model assembly
¢ Model driven architecture
® Platform Independent Model
® Platform Specific Model
® Transformation through code generators
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Consequences for QA/QC

< Versioning control
¢ Analyses of parameter space

¢ Documentation of parameter estimation
procedures and data sources

¢ Model selection criteria through contest
of models. Find levels of aggregation
and the limits of their applicability

¢ Hypothesis generation and design of

monitoring strategy

Management Domain

& Fisheries
® Harvest quotas
® Fish community objectives
® Management of exotics
¢ Landuse change
® Management of storm water runoff
® Permitted changes
® Mitigation priorities
¢ Instream habitat alteration
® Riparian corridors
® Stream bank stabilization
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Example of Decision Process

Performance
& Open Loop Chance Index
Node
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Example of Decision Process

Performance
Chance Index
* Node

Outcome

Node Froject 1
Poject n

\ Experiment 1

& Closed Loop O / expetment
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Walleye Spawning Example

¢ Functional analysis of walleye spawning
® |[dentification of habitat preferences for adults
® Mapping of habitat supply
® Prediction of larval mortality
¢ Linking landuse change to critical habitat
features

¢ Prediction of consequences of alteration

to reproductive success

Functional Analysis of Walleye
Spawning
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Functional Analysis of Walleye
Spawning
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Functional Analysis of Walleye
Spawning
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Functional Analysis of Walleye
Spawning
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Short-term Outcome Issues
¢ Extrapolating from multiple scales of analysis

# Interaction of multiple stressors

¢ Range of decision making alternatives

¢ Intermediate products

Long-term Outcome Issues

¢ Ways to reduce uncertainty
¢ Seminal contribution

¢ Application of model to monitoring
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Functional Analysis of Walleye
Spawning

Simulated Timing of Walleye Spawning
(after Jones et al, in press)
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