US ERA ARCHIVE DOCUMENT

Predicting Regional Allergy Hotspots in Future Climate Scenarios – Putting the Where and When on Wheezing

Kristina Stinson, David Foster (Harvard Forest) Christine Rogers (University of Massachusetts)

Scaling from climate to pollen counts

Ambrosia (fall)

Allergen ecotypes in a changing climate

PRISM: Regional Average Precipitation, Max T in New England

captures regional climate variation
considers genetic match of populations to local environment
relevant scale for public health analysis

Common ragweed Ambrosia artemisiifolia L.

- North American native weed
 - highly allergenic pollen, Amb-a1 protein
 - primary pollen allergen during Fall
 - Ecological significance
 - disturbance indicator past/present
 - drought, high temperatures
 - mono-dominance, crop pest
- Outlook for next century
 - > growth (Stinson & Bazzaz 2006)
 - > reproduction (Stinson & Bazzaz 2006)
 - > pollen output (Wayne et al., 2006)
 - > flowering season (Rogers et al., 2008)

Three-Phase Research Plan

- I. Regional model of present-day ragweed allergy risks (2010-2011)
- II. Climate space envelope for breadth of ragweed pollen response (2011-2012)
- III. Map of future allergy "hotspots" based on experimental and regional data (2012-2013)

Phase I. Regional modeling

Relates climate, land cover, census data to the following *pollen risk factors:*

Abundance of atmospheric pollen

» Burkard ® pollen traps (population-to-landscape)

Timing of onset, peak, and duration of pollen season

- » Flowering and abundance of ragweed populations
- » Local settlement traps, vacuum samples

Allergen Potency

» Molecular [Amb a1] allergen assays

High resolution pollen counts

- •24 hour time series
- weekly collection
- Aug 1 Oct 31
- laboratory stain and pollen grain count

Climate-pollen correlations

Boston-to-Berkshires as regional climate proxy

- √ total pollen abundance/timing
- ✓ Amb a1 allergen potency
- ✓ pollen risk factors in the field

Ragweed distribution survey

GIS based random sample of land cover/climate combinations

Presence/absence field methods

% cover measurements of

- Ragweed
- Lawn/Garden
- Bare Soil
- Agriculture
- Right of Way/Edge
- Pavement/Buildings
- Forest habitat

SE

Population biology and remote

Remotely sensed with GIS, GoogleEarth® and traditional maps of likely habitat

10+ populations per climate zone/trap

- ✓ flowering time/duration
- ✓ plant population growth
- √ allergen assays
- ✓ pollen output per plant

Modeling regional allergy risk

Risk factors measured by each dataset, and scales of field and predictor data.

	Bui	ward trade	ber traps	sampler's	arden assa	nt phenoic	nt drouth
Risk Factors	i,ii	ii,iii	i,ii,iii	iii	i	ii	ii
Geographic scale ocal sample points oppulations	yes -	yes yes	yes yes	yes yes	- yes	- yes	- yes
Predictor variables temporal weather data	yes	yes*	yes	-	yes	yes	-
geographic climate and cover	-	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes

(i) timing, (ii) abundance, (iii) potency

Human exposure: US Census data

CART analysis for Massachusetts presence/absence with GIS predictor data

CART analysis for Massachusetts presence/absence with GIS and field data

Remote Sensing

BU

<u>Data Portal</u>

Gopal/Furth

phenology (beyond NDVI)

Friedl

ULTRA-X BOSTON PLAN

Scenarios

Conservation/Development Foster, Woodcock,

Electricity Kaufmann Gray to Green Furth, Phillips

Energy Balance changes Furth, Hutyra, Phillips

Planning horizons

2010 MetroFuture 2012 GrowBostonGreen 2018 RGGI 2020 MertoFuture 2050 City of Boston master plan

Phase II. Climate space envelope

Open-top Chamber Experiment (2011)

CO₂ x precipitation treatments

- Ecotypes from NY-VT transect (seed collecting 2010)
- Stand-alone dataset, also informs predictive model

- Amb a1 potency
- Pollen output
- Flowering time and duration

Phase III. Future allergy hotspot maps (2012-2013)

- High resolution pollen counts
- Local and regional data
 - ragweed populations
 - land cover
 - climate
- Overlay with IPCC and other future scenarios

Betula (spring)

Ambrosia (fall)