US ERA ARCHIVE DOCUMENT

Green Engineering of Dispersed Nanoparticles: Measuring and Modeling Nanoparticle Forces

Kristen A. Fichthorn and Darrell Velegol Department of Chemical Engineering The Pennsylvania State University University Park, PA 16802

Students: Yong Qin

Gretchen Holtzer

Nanoparticles: Potential Building Blocks For New and Existing Materials

- Catalysts
- Optical Materials
- Structural Materials
- · Electronic Materials

Nano-Electronics

Difficult to Disperse or Assemble "Bare" Nanoparticles

Nanoparticle Forces are POORLY UNDERSTOOD!

Colloidal Forces from Molecular Dynamics Simulations

- van der Waals and Electrostatic Forces: DLVO theory
- Solvation Forces:
 Solvent Ordering
- Depletion Forces: Entropic

How Do These Work for Colloidal Nanoparticles?

Particle force light scattering (PFLS) for nanoparticle forces

custom differential electrophoresis cell

Large-Scale Parallel MD Simulation

- Solvent: Lennard-Jones Liquid, n-Decane (>10⁵ Atoms)
- Nanoparticles: Solid Clusters of Atoms
- Solvophilic Nanoparticles: $(\varepsilon_{sf} = 5.0 \varepsilon_{ff})$
- Solvophobic Nanoparticles: $(\varepsilon_{sf} = 0.2 \varepsilon_{ff})$

Beowulf Cluster: Cruncher

Model Nanoparticles

Small Sphere Icosahedron $d = 4.9 \sigma$ $d = 4.0 \sigma$ 64 atoms

55 atoms

Large Sphere $d = 17.6 \sigma$ 2048 atoms

Cube $d = 13.2 \sigma$ 2744 atoms

Solvation Forces: Thermodynamic Integration

Free Energy Change

$$\Delta A_{ij} = \int_{\delta_i}^{\delta_j} d\delta \left\langle \frac{dU(\delta)}{d\delta} \right\rangle_{\delta}$$

Mezei and Beveridge, Ann. N. Y. Acad. Sci. 482, 1 (1986).

Solvation Force

$$F^{solv}(\delta) = \left\langle -\frac{dU^{solv}(\delta)}{d\delta} \right\rangle_{\delta}$$
$$= \left\langle \widehat{r}_{AB} \cdot (F_{AS} - F_{BS}) \right\rangle$$

Interactions for Spheres, Cubes

- Solvophilic solvation forces are oscillatory and comparable to van der Waals forces
- Solvophobic solvation forces are attractive

Fluid Ordering: Origin of Solvation Forces

> Solvent ordering around nanoparticles can be observed in all solvophilic simulations

Solvophobic Nanoparticles: The Drying Transition

(Movie)

Derjaguin Approximation

$$\frac{\Delta A(\delta)}{2A_C \rho_C^2} = \frac{F^{Solv}(\delta)}{\pi D \rho_S^2}$$

Solvophilic

$\Delta A/(2A_c\rho_c^2)$ or $F^{Solv}/(\pi D\rho_s^2)$ 0.5 Small Sphere 0.4 Large Sphere 0.3 Cube (kd d₄ 0.2 0.1 0.0 -0.1 -0.2 0.5 2.5 3.5 4.5 5.5 6.5 δ/σ

Solvophobic

Derjaguin Approximation Describes the Envelope

Derjaguin Approximation Works

Influence of Surface Roughness on Solvation Forces

Particle orientation significantly affects the force profile: Particles will Rotate in Solution

Rotation Reduces Solvophilic Solvation Forces

Nanocrystals Have Preferred Orientations

The Influence of Solvent Structure:

n-Decane - Small Spheres

Weak
Solvophilic
Forces

n-Decane Length Comparable to Nanoparticle Diameter

Step-Like Solvophobic Forces

Conclusions

- Current theories do not accurately describe forces for small nanoparticles
- Solvation forces can be important for colloidal nanoparticles
- Solvation forces are strongly dependent on particle size, shape, surface roughness, particle-solvent interactions, and solvent structure
- Solvent-nanoparticle suspensions can be engineered for stability, assembly, environmental impact.....