US ERA ARCHIVE DOCUMENT

Harvard/EPA PM Center

Novel Exposure Scenarios to Define the Health Effects of Particle Sources

Harvard University
University of Toronto
University of Michigan
Brigham & Women's Hospital
Veteran's Administration

Investigators

Petros Koutrakis (PI), Robert Brook Jeff Brook, Brent Coull, Phil Demokritou, Douglas Dockery, John Godleski, Diane Gold, Beatriz Gonzalez-Flecha, Joel Schwartz, Frances Silverman, Frank Speizer, Peter Stone, Helen Suh, Pantel Vokonas Bruce Urch

IMPORTANT QUESTIONS

- O Do PM exposure-response relationships depend on particle composition, size, formation processes and origin (toxic components)?
- O What are the effects of gaseous **co-pollutants** on the observed PM exposure-response relationships?
- O What are the **biological mechanisms** whereby PM exposures can induce inflammation and autonomic responses that lead to pulmonary and/or cardiac dysfunction?
- Are certain individuals more **susceptible** to PM due to their health condition, age, genetic characteristics and/or nutritional factors?

Linking inflammation, autonomic effects and vascular dysfunction to PM sources

Project 1

Cardiovascular Responses in the Normative Aging Study: Exploring the Pathways of Particle Toxicity

PI: Joel Schwartz

Normative Aging Study (NAS)

- A large prospective cohort of 700 participants living in Eastern Massachusetts
- Health monitoring by VA
 Hospital
- PM2.5/BC associations with decrements in HRV
- BC associations with increased CRP and fibrinogen levels

Study Objectives

- O Investigate associations between exposures and:
 - Acute inflammation and/or endothelial dysfunction (CRP, sICAM-1 and sVCAM-1)
 - Autonomic dysfunction (HRV)
 - General cardiovascular responses (BP and ECG)
- Examine the role PM composition on the observed cardiovascular

Study Objectives

- Examine if PM effects will be modified by subject characteristics (genetic, dietary, or pharmacological) that influence susceptibility to:
 - Oxidative stress, endothelial dysfunction, and/or acute inflammation (GSTM1 null or HO-1 genotypes; statin, beta blocker, or calcium channel blocker use, Vitamin C or Ω -3 fatty acids use)
 - Autonomic dysfunction (beta blocker, calcium channel blocker or Ω -3 fatty acids)
 - General cardiovascular disease (hypertension)
 - Reactive airways disease (methacholine reactivity)

Study Design

- O Individual health data will be collected
 - ECG
 - Blood inflammatory markers
 - Medication use
 - Genes
 - Food frequency
- Individual-specific exposures will be measured inside each participant's home for one-week
- O Ambient air pollution will be measured at our stationary ambient monitoring site

Project 2

Cardiovascular Effects of Mobile Source Exposures: Effects of Particles and Gaseous Co-pollutants

PI: Helen Suh

St. Louis Study Results

- Associations between
 - BC and eNO
 - PM2.5/BC and blood inflammatory markers
 - PM2.5 and HRV

Study Objectives

• Examine whether PM and/or gaseous traffic pollutants are associated with autonomic dysfunction and pulmonary and systemic inflammation

Boston Bus Study Design

- A crossover study of 36 older adults (likely with coronary artery disease)
- O 3 sessions of 12 individuals will be exposed to
 - PM plus gaseous motor vehicle pollution or
 - only gaseous motor vehicle pollution (Bus with filters)
 - a month latter the individuals will switch buses

Study Design

- O Before, during, and after each trip, participants will be monitored for
 - HRV (autonomic function)
 - eNO (pulmonary inflammation)
 - Blood markers (systemic inflammation)
- Personal group-level measures BC, PC, PM,
 O3, NOx and CO will be measured before,
 during and after each trip

Project 3

Cardiovascular Toxicity of Concentrated Ambient Fine, Ultrafine and Coarse Particles in Controlled Human Exposures

PI: Frances Silverman

Previous Findings

- Healthy adults were exposed to fine CAPs + O3
 - Acute conduit artery vasoconstriction
 - Increased diastolic blood pressure

HUMAN EXPOSURE FACILITY

Study Objectives

- Investigate the cardiac effects of Ultrafine, Fine and Coarse CAPs
- O Investigate the effects of particle composition

Study Design

- 50 healthy adults will be exposed to UF, F and C CAPs and filtered air in a random sequence
- UF and C particle concentrators will be built and installed at the University of Toronto

Harvard Ultrafine Particle Concentrator (HUCAPS) Size restoration Condensational Concentration Growth Conditioner Thermal reshaper Saturator Controller Chiller Supersaturator

Study Design

- O Biological outcomes will include:
 - Vascular narrowing (brachial artery diameter)
 - Autonomic dysfunction (HRV)
 - Inflammation (IL-6, CRP)
 - Endothelial activation (endothelins)

Project 4

Assessing Toxicity of Local and Transported Particles Using Animal Models Exposed to CAPs

PI: John Godleski

Previous CAP Studies (since mid 90s)

Normal and compromised animal exposures to CAPs in Boston have produced consistent and reproducible findings of biologic importance including:

- Morphometric evidence of vasoconstriction
- Increases in reactive oxygen species in the heart and lungs
- Increases in severity of myocardial ischemia during acute coronary artery occlusion

Study Objectives

- O Differentiate the cardiovascular effects of locally emitted particles from those of transported particles using normal animals
- O Determine whether spontaneously hypertensive rats have enhanced vascular responses to PM exposures as compared to normal animals

Diurnal Concentration Profiles

Biological Outcomes

- O Pulmonary, systemic, and cardiovascular effects using *in vivo* organ chemiluminescence, histopathology, bronchoalveolar lavage, blood cytology
- Continuous measurements of cardiac and pulmonary function

Project 5

Toxicological Evaluation of Realistic Emission Source Aerosol (TERESA): Investigation of Vehicular Emissions

PI: Petros Koutrakis

Previous TERESA Studies

- Investigate the importance of atmospheric processes by comparing the toxicity of
 - Primary pollutants
 - Secondary pollutants
- Innovative approach already applied to coal power plants
 - Have developed technologies

Field Layout

Reaction Chamber

Mobile Exposure Laboratory

Study Objectives

 Investigate the cardiovascular effects of fresh and photochemically aged traffic emissions in normal and spontaneously hypertensive

Study Design

- A large tunnel within the metropolitan area of Boston will be used as the source of primary emissions
- The mixture of primary particles and gases will undergo photochemical oxidation to form secondary PM
- O Five different exposure scenarios will be used:
 - Filtered air
 - Primary gas and particle emissions
 - Primary plus secondary particles
 - Primary plus neutralized secondary particles
 - Secondary particles formed in the absence of primary particles

Biological Outcomes

- Normal animals will be exposed to each of the five scenarios. Biological measurements will include
 - pulmonary, systemic, and cardiovascular effects using *in vivo* organ chemiluminescence, histopathology, bronchoalveolar lavage, blood cytology
 - continuous measurements of cardiac and pulmonary function
- The most and least toxic scenarios will be further investigated using spontaneously hypertensive rats

Linking inflammation, autonomic effects and vascular dysfunction to PM sources

THANK YOU