US ERA ARCHIVE DOCUMENT

Air Quality Management in California: Sensitivity to Changing Climate

Robert Harley (harley@ce.berkeley.edu)

Dept. of Civil and Environmental Engineering

University of California, Berkeley

Acknowledgments

- UC Berkeley:
 - » Ron Cohen, Allen Goldstein, Allison Steiner, Shaheen Tonse
- Technical Assistance:
 - » BAAQMD, CARB, LBNL, NOAA
- Financial Support:
 - » U.S. EPA

Air Quality Modeling

- Use CMAQ model with SAPRC99 chemistry to predict ozone in Central California
- Base case episode from <u>summer 2000</u>
- Consider effects of changes in:
 - » Reaction rates (increased T)
 - » Biogenic emissions (increased T)
 - » Anthropogenic emissions (population growth and technology change)
 - » Inflow boundary conditions (global change)

Modeling Domain

Winds

MM5 (Wilczak et al NOAA) for July 29-Aug 2, 2000

VOC Emissions

Emission rates shown for 3 PM

Base Case Results

Ozone at 3 PM for 3rd-5th days of Jul 29-Aug 2 episode

Climate Change

- Consider effects of CO₂ doubling
 - » Pre-industrial = 280 ppm
 - » Future year (\sim 2050) = 560 ppm
- Snyder et al. (GRL 2002) used community climate model (CCM3) to drive regional climate simulations for California at 40 km resolution

Effect of ΔT on Chemistry

ΔT for month of August from Snyder et al. (2002) Other meteorological variables & emissions unchanged

Effect of ABVOC on Ozone

Biogenic emissions of isoprene & MBO peak at 37°C Terpene emissions increase exponentially with T

Anthropogenic Emissions: 2050

Population forecasts: faster growth in Central Valley Growth factor for NO_x is $2\times$ that for VOC & CO 80% reduction in present-day emission factors for CO, VOC & NO_x

Future Emissions & Inflow BCs

 ΔO_3 (ppb) with 2050 Emissions

 ΔO_3 (ppb) with 2050 Inflow BC

CO: $80 \rightarrow 104 \text{ ppb}$

 CH_4 : 1.7 \rightarrow 2.4 ppm

 O_3 : 30 \rightarrow 40 ppb

Combined Simulations

Other Effects

- Effects on water resources (see Snyder et al.)
 - » rainfall increases up to 20% in northern California
 - » snowpack decreases ~80% by end of Feb
- Sea level rise
- Changes in forest fires
- Changes in PM_{2.5} & winter season air quality
- Ecosystem and land use change
- Health effects of extreme hot weather
- Changes in <u>frequency</u> of O₃-conducive meteorology & <u>length</u> of high-O₃ season

Summary of O₃ Effects

Key References

- Snyder et al. (2002). Climate responses to a doubling of atmospheric CO₂ for a climatically vulnerable region. Appears in Geophysical Research Letters (GRL).
- Steiner et al. (2006). Influence of future climate and emissions on regional air quality in California. Appears in *Journal* of Geophysical Research (JGR).