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Multifaceted Objectives of Research

Modeling (Jeff Fisher, Eva McLanahan, Libby Myers)
1) To better understand relationships between administered dose and HPT axis

disturbances in the immature rat and neurodevelopmental toxicity:
A. Biologically based models of the HPT axis are under development for different 

reproductive states of rats, adult male rats, and human. 
B. PBPK models for thyroid active chemicals will be linked to the  HPT axis models

to predict neuro-developmental toxicity endpoints.

Experimental (Duncan Ferguson, John Wagner, Matthew Taylor,
Michael Stramiello,Nadia Paolino)
2) Using gestational/neonatal exposure of rats to thyroid disruptive compounds, to: 

A.  Examine the sensitivity, capacity and development of compensatory 
mechanisms of thyroid hormone secretion/metabolism by the thyroid, brain, and liver. 

B. Develop quantitative ‘dose-response’ relationships of serum and tissue markers
of thyroid status and correlate with developmental neurotoxicity endpoints.



ApproachApproach-- Cooperative Cooperative 
agreementsagreements

• Develop team of interdisciplinary 
scientists; while working independently, 
are aiding each other in experimental 
design, sharing samples and data.

-- UGA, UMass (Tom Zoeller) and USEPA 
(Kevin Crofton, Mike DeVito, and Mary 
Gilbert) 



PBPK

Dose of Toxicant

BBPK 
Thyroid axis

Describes the kinetics of the toxicant and its
MOA for disturbing the HPT axis.

Describes the HPT axis and perturbations 
in the  HPT axis from chemical insult.

CNS responses in 
the brain of the pup or fetus.

Project Concept for Computational Modeling of
Dose-Response in the Fetal/Neonatal Rat
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Approach for Computational Approach for Computational 
ModelingModeling

…Fill fundamental D-R data gap (HPT disruption 
hypothyroidism developmental neurotoxicty)

• Use propylthiouracil (PTU), as a probe to establish high to 
low dose quantitative relationships between disruption of 
the HPT axis leading to hypothyroidism in the developing  
rat and neurotoxicity.

…Select two thyroid active chemicals with substantial data
• Perchlorate (iodide blocking at thyroid) and PCB 126

(increased hepatic T4 metabolism). Both environmental 
chemicals cause hypothyroidism in rats. 



Sub models 
_____BBPK- HPT axis_________    

Dietary
IodideToxicant

T4TSH T3
PBPK



Linking the Sub ModelsLinking the Sub Models-- I see I see 
the lightthe light…………..

•PBPK models
•PBPK dosimetry model with MOA (perchlorate and PCB 126)
--adopt aspects of perchlorate PBPK models

•Pup growth PBPK model using growth equations for organs
--adopt in-house research from deltamethrin
•Utilize in-house PCB 126 kinetic data sets 

HPT axis models
•Recalibrate radiolabeled iodide submodel, calibrate radiolabeled T4
and T3, calibrate endogenous TSH submodel

•Develop endogenous 127I, T3, T4 and link with TSH (feedback)

•Articulate compensatory mechanisms for HPT axis such as 
T3/T4 shift in thyroid hormone production, D2 induction in brain, 
NIS induction in thyroid, extra-thyroidal D1 decrease



Current Status of ModelsCurrent Status of Models
(two Ph.D. students)(two Ph.D. students)

• Develop radiolabel sub-models for 
iodide and T4 in PND 13 pup and 
adult rat.

• Examine feedback equations for 
endogenous serum TSH and T4 
concentrations.

• Dietary iodide model for adult human
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Approach for Iodide Binding in Approach for Iodide Binding in 
ThyroidThyroid
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Bound Bound 125125I in ThyroidI in Thyroid
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125125I PBPK Model PredictionsI PBPK Model Predictions
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[[125125I]I]--T4 PBPK Model Structures and T4 PBPK Model Structures and 
PredictionsPredictions
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Thyroid (negative feedback loop)Thyroid (negative feedback loop)
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Steady state prediction Steady state prediction vsvs observation observation 
for serum T4 and TSH concentrationsfor serum T4 and TSH concentrations

in adult male ratin adult male rat
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Experimental WorkExperimental Work
Duncan FergusonDuncan Ferguson
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Dosing ProtocolDosing Protocol
• Dosing of timed pregnant Sprague-Dawley

dams started at GD2 and continued through 
PND21-PND30 depending upon sacrifice 
schedule

• Current dose levels are 0, 3, and 10 mg/L 
(ppm) PTU in the drinking water.  

• Water intake recorded and animals weighed 
q48h

• Gender of offspring determined in the third 
week after birth, and female pups culled 
midway through that week



TimelineTimeline
• Pups were sacrificed from PND21-PND31.
• Dams were sacrificed on PND31, when the pups were 

weaned.
• Adults were sacrificed starting 2 months after weaning 

(average PND100)
• Female pups were culled on approximately PND 24; 2 

males per litter studied at each timepoint
• 14 litters

– 0 ppm (n= 5)
– 3 ppm (n=5)
– 10 ppm (n=4)

• Additional analyses for D2 activity were 
performed on Hooded Long-Evans rats (1 dam 
and 1 PND21 pup) dosed at 0 (n=12),1 (n=13),2 
(n=13) and 3 (n=12) ppm PTU from GD6 to 
PND21.



Serum Thyroid Hormone and TSH Serum Thyroid Hormone and TSH 
Concentrations: DamsConcentrations: Dams
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Serum Thyroid Hormone Serum Thyroid Hormone 
Concentrations:Concentrations:

PND25PND25
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Hepatic D1 ActivityHepatic D1 Activity
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PND25 Cortical T3 and D2 Activity:PND25 Cortical T3 and D2 Activity:
PND25 vs. DamPND25 vs. Dam
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Serum T4 vs. Cortical T3Serum T4 vs. Cortical T3
PND25



Comparison of D2 response to Fall in Total Comparison of D2 response to Fall in Total 
T4: T4: 

PND21PND21--30 vs. Dams30 vs. Dams



Comparison of Thyroid mRNA response:Comparison of Thyroid mRNA response:
PND21PND21--30 vs. Dams30 vs. Dams



PND100 Serum HormonesPND100 Serum Hormones



PND100 Cortical T3, PND100 Cortical T3, 
and D1 and D2 Activitiesand D1 and D2 Activities



HippocampalHippocampal Electrophysiology:Electrophysiology:
Stimulus/Response Curves: PND21Stimulus/Response Curves: PND21--3030
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LongtermLongterm PotentiationPotentiation::
PND100PND100
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Serum T4 vs. Synaptic Response:Serum T4 vs. Synaptic Response:
PND21PND21--3030



Cortical T3 vs. Synaptic Response:Cortical T3 vs. Synaptic Response:
PND21PND21--3030



Correlation of D2 vs. Maximum Correlation of D2 vs. Maximum 
Synaptic Response at PND21Synaptic Response at PND21--3030



Conclusions: Thyroid Conclusions: Thyroid 
ParametersParameters

• Thyroid hormone depletion by gestational/neonatal PTU exposure 
is ameliorated within the cerebral cortex by D2 induction, whereas 
hepatic D1 activity is maximally inhibited by 10 ppm PTU.

• Cortical T3 concentrations in PND21-30 pups were maintained in 
the euthyroid range until a fall of about 75% of serum T4.  

• A highly significant negative exponential relationship was 
observed between serum T4 concentration and D2 activity, with a 
doubling in D2 with every 1.3 ug/dl fall in T4 in both dams and 
pups. The relative D2 maximal response was ~8-fold higher in the 
pups.

• Both cortical D2 and thyroid NIS mRNA induction, likely tissue 
biomarkers of T4 deficiency/TSH elevation, demonstrate greater 
sensitivity of the offspring to thyroid hormone deficiency.

• All serum and tissue thyroid parameters returned to normal 
following 2 months of PTU withdrawal.



Conclusions: Conclusions: 
ElectrophysiologyElectrophysiology

• Baseline synaptic transmission was significantly reduced in the 
CA1 region of hippocampal slices obtained from PND21-30 rats 
under the ongoing influence of PTU exposure.

• Slices obtained from littermates allowed to mature in the absence 
of PTU until PND90-100 did not exhibit any persisting change in 
baseline synaptic transmission, however a significant reduction in 
the magnitude of LTP was observed.

• The decreased ability of the synapses to undergo synaptic 
plasticity even after the animal has recovered to euthyroid status 
suggests that although some of the acute impact of 
hypothyroidism can be restored, the potential remains for 
significant persisting impairments on the processing of 
information through neuronal networks.

• D2 enzymatic activity is tightly and positively correlated with 
synaptic potential at PND25, and may serve as a useful biomarker
of thyroid hormone sufficiency in the brain.



Ongoing and Future WorkOngoing and Future Work
• Tissue thyroid markers

– Cortical D3 activity
– Tissue T4 concentrations 
– In situ hybridization: D2,D3, RC3, GFAP, MCT8, 

OATP1C1
• Thyroid markers

– Histomorphometry
– NIS and Tg immunohistochemistry

• Anatomical 
– Brain histopathology
– Immunohistochemistry for BDNF, synaptophysin

• Refined dose studies: 0.3,1 and 3 ppm
• Behavioral studies: locomotor and cognitive function 

as adults
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