US EPA ARCHIVE DOCUMENT
Draft Bibliometric Analysis
for the U.S. Environmental Protection Agency/Office of Research
and Development’s Fellowship Program (Fellowships Awarded in
1995 and 1996 Only)

This is a bibliometric analysis of the papers authored by the 244 individuals who received a Science To Achieve Results (STAR) or Greater Research Opportunity (GRO) Fellowship in 1995 or 1996 from the U.S. Environmental Protection Agency (EPA). For this analysis, 1,257 papers were reviewed, and they were published from 1996 to 2006. These publications were cited 16,280 times in the journals covered by Thomson’s Web of Science\(^1\) and Scopus\(^2\). Of these 1,257 publications, 1,019 (81.07%) have been cited at least once in a journal.

Searches of Thomson Scientific’s Web of Science and Scopus were conducted to obtain times cited data for the fellows’ journal publications. The analysis was completed using Thomson’s Essential Science Indicators (ESI) and Journal Citation Reports (JCR) as benchmarks. ESI provides access to a unique and comprehensive compilation of essential science performance statistics and science trends data derived from Thomson’s databases. For this analysis, the ESI highly cited papers thresholds as well as the hot papers thresholds were used to assess the influence and impact of the fellows’ papers. JCR is a recognized authority for evaluating journals. It presents quantifiable statistical data that provide a systematic, objective way to evaluate the world’s leading journals and their impact and influence in the global research community. The two key measures used in this analysis to assess the journals in which the EPA fellows’ papers are published are the Impact Factor and Immediacy Index. The Impact Factor is a measure of the frequency with which the “average article” in a journal has been cited in a particular year. The Impact Factor helps evaluate a journal’s relative importance, especially when compared to other journals in the same field. The Immediacy Index is a measure of how quickly the “average article” in a journal is cited. This index indicates how often articles published in a journal are cited within the same year and it is useful in comparing how quickly journals are cited.

The report includes a summary of the results of the analysis, an analysis of the 1,257 fellows’ papers analyzed by ESI field (e.g., chemistry, environment/ecology, engineering), an analysis of the journals in which the fellows’ papers were published, a table of the highly cited researchers who were in the fellowship program, and a list of the patents and patent applications for the former fellows.

\(^1\) Thomson Scientific’s Web of Science provides access to current and retrospective multidisciplinary information from approximately 8,830 of the most prestigious, high impact research journals in the world. Web of Science also provides cited reference searching.

\(^2\) Scopus is a large abstract and citation database of research literature and quality Web sources designed to support the literature research process. Scopus offers access to 15,000 titles from 4,000 different publishers, more than 12,850 academic journals (including coverage of 535 Open Access journals, 750 conference proceedings, and 600 trade publications), 27 million abstracts, 245 million references, 200 million scientific Web pages, and 13 million patent records.
SUMMARY OF RESULTS

1. More than one-sixth of the fellows’ publications are highly cited papers. A review of the citations indicates that 217 (17.26%) of the fellows’ papers qualify as highly cited when using the ESI criteria for the top 10% of highly cited publications. This is 1.7 times the number expected. Thirty-one (2.47%) of the fellows’ papers qualify as highly cited when using the ESI criteria for the top 1%, which is 2.5 times the number expected. Seven (0.56%) of these papers qualify as very highly cited when using the criteria for the top 0.1%, which is 5.6 times the number anticipated. None of the papers actually meet the 0.01% threshold for the most highly cited papers, which is not surprising given that the expected number of papers that would meet this threshold for this analysis is 0.12.

2. The fellows’ papers are more highly cited than the average paper. Using the ESI average citation rates for papers published by field as the benchmark, in 15 of the 22 fields in which the EPA fellows’ papers were published, the ratio of actual to expected cites is greater than 1, indicating that the fellows’ papers are more highly cited than the average papers in those fields. For all 22 fields combined, the ratio of total number of cites to the total number of expected cites (16,280 to 10,479.32) is 1.55, indicating that the fellows’ papers are more highly cited than the average paper.

3. One-third of the fellows’ papers are published in high impact journals. Four hundred seventy-seven (477) of the 1,257 papers were published in the top 10% of journals ranked by JCR Impact Factor, representing 37.95% of EPA fellows’ papers. This number is 3.8 times higher than expected. Four hundred nineteen (419) of the 1,257 papers appear in the top 10% of journals ranked by JCR Immediacy Index, representing 33.33% of EPA fellows’ papers. This number is 3.3 times higher than expected.

4. Twenty of the fellows’ papers qualify as hot papers. Using the hot paper thresholds established by ESI as a benchmark, 20 hot papers, representing 1.59% of the fellows’ papers, were identified in the analysis. Hot papers are papers that were highly cited shortly after they were published. The number of fellows’ hot papers is 16 times higher than the 1.26 hot papers expected.

5. The authors of the fellows’ papers cite themselves much less than the average author. Eight hundred forty-four (844) of the 16,280 cites are author self-cites. This 5.18% author self-citation rate is well below the accepted range of 10-30% author self-citation rate.

6. None of the fellows are included in ISIHighlyCited.com, which is a database of the world’s most influential researchers who have made key contributions to science and technology during the period from 1981 to 1999. This result is not surprising given that the 1995-1996 fellows probably began their careers in the late 1990s.

7. There were 13 patents issued and 31 patent applications filed by 1995-1996 EPA fellows. Ten (76.90%) of the 13 patents have been referenced by 22 other patents.
Highly Cited Fellows’ Publications

All of the journals covered by ESI are assigned a field, and to compensate for varying citation rates across scientific fields, different thresholds are applied to each field. Thresholds are set to select highly cited papers to be listed in ESI. Different thresholds are set for both field and year of publication. Setting different thresholds for each year allows comparable representation for older and younger papers for each field.

The 1,257 fellows’ research papers reviewed for this analysis were published in journals that were assigned to 22 of the 22 ESI fields. The distribution of the papers among these 22 fields and the number of citations by field are presented in Table 1.

<table>
<thead>
<tr>
<th>ESI Field</th>
<th>No. of Citations</th>
<th>No. of Fellows’ Papers</th>
<th>Average Cites/Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Sciences</td>
<td>288</td>
<td>28</td>
<td>10.28</td>
</tr>
<tr>
<td>Biology & Biochemistry</td>
<td>1,528</td>
<td>95</td>
<td>16.08</td>
</tr>
<tr>
<td>Chemistry</td>
<td>897</td>
<td>58</td>
<td>15.46</td>
</tr>
<tr>
<td>Clinical Medicine</td>
<td>849</td>
<td>44</td>
<td>19.29</td>
</tr>
<tr>
<td>Computer Science</td>
<td>12</td>
<td>3</td>
<td>4.00</td>
</tr>
<tr>
<td>Economics & Business</td>
<td>131</td>
<td>25</td>
<td>5.24</td>
</tr>
<tr>
<td>Engineering</td>
<td>323</td>
<td>60</td>
<td>5.38</td>
</tr>
<tr>
<td>Environment/Ecology</td>
<td>4,573</td>
<td>358</td>
<td>12.77</td>
</tr>
<tr>
<td>Geosciences</td>
<td>1,838</td>
<td>170</td>
<td>10.81</td>
</tr>
<tr>
<td>Immunology</td>
<td>151</td>
<td>14</td>
<td>10.78</td>
</tr>
<tr>
<td>Materials Science</td>
<td>4</td>
<td>1</td>
<td>4.00</td>
</tr>
<tr>
<td>Mathematics</td>
<td>10</td>
<td>1</td>
<td>10.00</td>
</tr>
<tr>
<td>Microbiology</td>
<td>864</td>
<td>57</td>
<td>15.16</td>
</tr>
<tr>
<td>Molecular Biology & Genetics</td>
<td>328</td>
<td>22</td>
<td>14.91</td>
</tr>
<tr>
<td>Multidisciplinary</td>
<td>1,415</td>
<td>29</td>
<td>48.79</td>
</tr>
<tr>
<td>Neuroscience & Behavior</td>
<td>25</td>
<td>3</td>
<td>8.33</td>
</tr>
<tr>
<td>Pharmacology & Toxicology</td>
<td>394</td>
<td>38</td>
<td>10.34</td>
</tr>
<tr>
<td>Physics</td>
<td>108</td>
<td>14</td>
<td>7.71</td>
</tr>
<tr>
<td>Plant & Animal Science</td>
<td>2,343</td>
<td>181</td>
<td>12.94</td>
</tr>
<tr>
<td>Psychiatry/Psychology</td>
<td>16</td>
<td>4</td>
<td>4.00</td>
</tr>
<tr>
<td>Social Sciences, General</td>
<td>182</td>
<td>51</td>
<td>3.57</td>
</tr>
</tbody>
</table>
There are 217 (17.26% of the papers analyzed) highly cited EPA fellows’ papers in 15 of the 22 fields—Agricultural Sciences, Biology & Biochemistry, Chemistry, Clinical Medicine, Computer Science, Economics & Business, Engineering, Environment/Ecology, Geosciences, Microbiology, Multidisciplinary, Pharmacology & Toxicology, Physics, Plant & Animal Science, and Social Sciences—when using the ESI criteria for the top 10% of papers. Table 2 shows the number of fellows’ papers in those 15 fields that meet the top 10% threshold in ESI.

Table 2. Number of Highly Cited Fellows’ Papers by Field (top 10%)

<table>
<thead>
<tr>
<th>ESI Field</th>
<th>Citations</th>
<th>No. of Papers</th>
<th>Average Cites/Paper</th>
<th>% of Fellows’ Papers in Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Sciences</td>
<td>77</td>
<td>2</td>
<td>38.50</td>
<td>7.14%</td>
</tr>
<tr>
<td>Biology & Biochemistry</td>
<td>815</td>
<td>12</td>
<td>67.92</td>
<td>12.63%</td>
</tr>
<tr>
<td>Chemistry</td>
<td>478</td>
<td>7</td>
<td>68.28</td>
<td>12.07%</td>
</tr>
<tr>
<td>Clinical Medicine</td>
<td>645</td>
<td>10</td>
<td>64.50</td>
<td>22.73%</td>
</tr>
<tr>
<td>Computer Science</td>
<td>12</td>
<td>2</td>
<td>6.00</td>
<td>66.67%</td>
</tr>
<tr>
<td>Economics & Business</td>
<td>82</td>
<td>3</td>
<td>27.33</td>
<td>12.00%</td>
</tr>
<tr>
<td>Engineering</td>
<td>191</td>
<td>12</td>
<td>15.92</td>
<td>20.00%</td>
</tr>
<tr>
<td>Environment/Ecology</td>
<td>2,531</td>
<td>54</td>
<td>46.87</td>
<td>15.08%</td>
</tr>
<tr>
<td>Geosciences</td>
<td>1,035</td>
<td>30</td>
<td>34.50</td>
<td>17.65%</td>
</tr>
<tr>
<td>Microbiology</td>
<td>241</td>
<td>7</td>
<td>34.43</td>
<td>12.28%</td>
</tr>
<tr>
<td>Multidisciplinary</td>
<td>1,390</td>
<td>21</td>
<td>66.19</td>
<td>72.41%</td>
</tr>
<tr>
<td>Pharmacology & Toxicology</td>
<td>28</td>
<td>1</td>
<td>28.00</td>
<td>2.63%</td>
</tr>
<tr>
<td>Physics</td>
<td>59</td>
<td>1</td>
<td>59.00</td>
<td>7.14%</td>
</tr>
<tr>
<td>Plant & Animal Science</td>
<td>1,640</td>
<td>49</td>
<td>33.47</td>
<td>27.07%</td>
</tr>
</tbody>
</table>
Thirty-one (2.47%) of the papers analyzed qualify as highly cited when using the ESI criteria for the top 1% of papers. These papers cover nine fields—Agricultural Sciences, Biology & Biochemistry, Chemistry, Clinical Medicine, Engineering, Environment/Ecology, Geosciences, Multidisciplinary, and Plant & Animal Science. Table 3 shows the 31 papers by field that meet the top 1% threshold in ESI. The citations for these 31 papers are provided in Tables 4 through 12. There were 7 (0.56%) very highly cited fellows’ papers in the fields of Environment/Ecology, Multidisciplinary, and Plant & Animal Science. These papers, which meet the top 0.1% threshold in ESI, are listed in Table 13. None of the fellows’ papers actually meets the top 0.01% threshold in ESI, which is not surprising given that the expected number of papers to meet this threshold for this analysis is 0.12.

Table 3. Number of Highly Cited Fellows’ Papers by Field (top 1%)

<table>
<thead>
<tr>
<th>ESI Field</th>
<th>Citations</th>
<th>No. of Papers</th>
<th>Average Cites/Paper</th>
<th>% of Fellows’ Papers in Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Sciences</td>
<td>55</td>
<td>1</td>
<td>55.00</td>
<td>3.57%</td>
</tr>
<tr>
<td>Biology & Biochemistry</td>
<td>208</td>
<td>1</td>
<td>208.00</td>
<td>1.05%</td>
</tr>
<tr>
<td>Chemistry</td>
<td>311</td>
<td>2</td>
<td>155.50</td>
<td>3.45%</td>
</tr>
<tr>
<td>Clinical Medicine</td>
<td>265</td>
<td>1</td>
<td>265.00</td>
<td>2.27%</td>
</tr>
<tr>
<td>Engineering</td>
<td>55</td>
<td>1</td>
<td>55.00</td>
<td>1.67%</td>
</tr>
<tr>
<td>Environment/Ecology</td>
<td>994</td>
<td>8</td>
<td>124.25</td>
<td>2.23%</td>
</tr>
<tr>
<td>Geosciences</td>
<td>116</td>
<td>2</td>
<td>58.00</td>
<td>1.18%</td>
</tr>
<tr>
<td>Multidisciplinary</td>
<td>882</td>
<td>6</td>
<td>147.00</td>
<td>20.69%</td>
</tr>
<tr>
<td>Plant & Animal Science</td>
<td>685</td>
<td>9</td>
<td>76.11</td>
<td>4.97%</td>
</tr>
<tr>
<td>Total = 3,571</td>
<td>Total = 31</td>
<td></td>
<td>115.19</td>
<td>2.47%</td>
</tr>
</tbody>
</table>
Table 4. Highly Cited Fellows’ Paper in the Field of Agricultural Sciences (top 1%)

<table>
<thead>
<tr>
<th>No. of Cites</th>
<th>First Author</th>
<th>Paper</th>
</tr>
</thead>
</table>

Table 5. Highly Cited Fellows’ Paper in the Field of Biology & Biochemistry (top 1%)

<table>
<thead>
<tr>
<th>No. of Cites</th>
<th>First Author</th>
<th>Paper</th>
</tr>
</thead>
</table>

Table 6. Highly Cited Fellows’ Papers in the Field of Chemistry (top 1%)

<table>
<thead>
<tr>
<th>No. of Cites</th>
<th>First Author</th>
<th>Paper</th>
</tr>
</thead>
</table>

Table 7. Highly Cited Fellows’ Paper in the Field of Clinical Medicine (top 1%)

<table>
<thead>
<tr>
<th>No. of Cites</th>
<th>First Author</th>
<th>Paper</th>
</tr>
</thead>
</table>
Table 8. Highly Cited Fellows’ Paper in the Field of Engineering (top 1%)

<table>
<thead>
<tr>
<th>No. of Cites</th>
<th>First Author</th>
<th>Paper</th>
</tr>
</thead>
</table>

Table 9. Highly Cited Fellows’ Papers in the Field of Environment/Ecology (top 1%)

<table>
<thead>
<tr>
<th>No. of Cites</th>
<th>First Author</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>384</td>
<td>Nagel SC</td>
<td>Relative binding affinity serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environmental Health Perspectives 1997;105(1):70-76.</td>
</tr>
<tr>
<td>76</td>
<td>Bowling DR</td>
<td>C-13 content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 2002;131(1):113-124.</td>
</tr>
</tbody>
</table>

Table 10. Highly Cited Fellows’ Papers in the Field of Geosciences (top 1%)

<table>
<thead>
<tr>
<th>No. of Cites</th>
<th>First Author</th>
<th>Paper</th>
</tr>
</thead>
</table>
Table 11. Highly Cited Fellows’ Papers in the Field of Multidisciplinary (top 1%)

<table>
<thead>
<tr>
<th>No. of Cites</th>
<th>First Author</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>271</td>
<td>vom Saal FS</td>
<td>Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proceedings of the National Academy of Sciences of the United States of America 1997;94(5):2056-2061.</td>
</tr>
</tbody>
</table>

Table 12. Highly Cited Fellows’ Papers in the Field of Plant & Animal Science (top 1%)

<table>
<thead>
<tr>
<th>No. of Cites</th>
<th>First Author</th>
<th>Paper</th>
</tr>
</thead>
</table>
Bibliometric Analysis of 1995-1996 EPA Fellows' Journal Articles

<table>
<thead>
<tr>
<th>No. of Cites</th>
<th>First Author</th>
<th>Paper</th>
</tr>
</thead>
</table>

Table 13. Very Highly Cited Fellows’ Papers (top 0.1%)

<table>
<thead>
<tr>
<th>ESI Field</th>
<th>No. of Cites</th>
<th>First Author</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multidisciplinary</td>
<td>271</td>
<td>vom Saal FS</td>
<td>Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proceedings of the National Academy of Sciences of the United States of America 1997;94(5):2056-2061.</td>
</tr>
</tbody>
</table>
Ratio of Actual Cites to Expected Citation Rates

The expected citation rate is the average number of cites that a paper published in the same journal in the same year and of the same document type (article, review, editorial, etc.) has received from the year of publication to the present. Using the ESI average citation rates for papers published by field as the benchmark, in 15 of the 22 fields in which the EPA fellows’ papers were published, the ratio of actual to expected cites is greater than 1, indicating that the fellows’ papers are more highly cited than the average papers in those fields (see Table 14). For all 22 fields combined, the ratio of total number of cites to the total number of expected cites (16,280 to 10,479.32) is 1.55, indicating that the fellows’ papers are more highly cited than the average paper.

Table 14. Ratio of Actual Cites to Expected Cites for Fellows’ Papers by Field

<table>
<thead>
<tr>
<th>ESI Field</th>
<th>Total Cites</th>
<th>Expected Cite Rate</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Sciences</td>
<td>288</td>
<td>135.71</td>
<td>2.12</td>
</tr>
<tr>
<td>Biology & Biochemistry</td>
<td>1,528</td>
<td>1,380.47</td>
<td>1.11</td>
</tr>
<tr>
<td>Chemistry</td>
<td>897</td>
<td>610.08</td>
<td>1.47</td>
</tr>
<tr>
<td>Clinical Medicine</td>
<td>849</td>
<td>474.51</td>
<td>1.79</td>
</tr>
<tr>
<td>Computer Science</td>
<td>12</td>
<td>6.88</td>
<td>1.74</td>
</tr>
<tr>
<td>Economics & Business</td>
<td>131</td>
<td>112.65</td>
<td>1.16</td>
</tr>
<tr>
<td>Engineering</td>
<td>323</td>
<td>199.94</td>
<td>1.62</td>
</tr>
<tr>
<td>Environment/Ecology</td>
<td>4,573</td>
<td>3,022.58</td>
<td>1.51</td>
</tr>
<tr>
<td>Geosciences</td>
<td>1,838</td>
<td>1,104.98</td>
<td>1.66</td>
</tr>
<tr>
<td>Immunology</td>
<td>151</td>
<td>257.55</td>
<td>0.59</td>
</tr>
<tr>
<td>Materials Science</td>
<td>4</td>
<td>2.68</td>
<td>1.49</td>
</tr>
<tr>
<td>Mathematics</td>
<td>10</td>
<td>5.54</td>
<td>1.80</td>
</tr>
<tr>
<td>Microbiology</td>
<td>864</td>
<td>608.03</td>
<td>1.42</td>
</tr>
<tr>
<td>Molecular Biology & Genetics</td>
<td>328</td>
<td>459.47</td>
<td>0.71</td>
</tr>
<tr>
<td>Multidisciplinary</td>
<td>1,415</td>
<td>116.60</td>
<td>12.14</td>
</tr>
<tr>
<td>Neuroscience & Behavior</td>
<td>25</td>
<td>67.82</td>
<td>0.37</td>
</tr>
<tr>
<td>Pharmacology & Toxicology</td>
<td>394</td>
<td>414.40</td>
<td>0.95</td>
</tr>
<tr>
<td>Physics</td>
<td>108</td>
<td>121.94</td>
<td>0.88</td>
</tr>
<tr>
<td>Plant & Animal Science</td>
<td>2,343</td>
<td>1,142.08</td>
<td>2.05</td>
</tr>
<tr>
<td>Psychiatry/Psychology</td>
<td>16</td>
<td>50.96</td>
<td>0.31</td>
</tr>
<tr>
<td>Social Sciences, General</td>
<td>182</td>
<td>174.05</td>
<td>1.04</td>
</tr>
</tbody>
</table>
Bibliometric Analysis of 1995-1996 EPA Fellows' Journal Articles

Table 1. ESI Field Cites and Expected Cite Rate

<table>
<thead>
<tr>
<th>ESI Field</th>
<th>Total Cites</th>
<th>Expected Cite Rate</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Science</td>
<td>1</td>
<td>10.40</td>
<td>0.10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16,280</td>
<td>10,479.32</td>
<td>1.55</td>
</tr>
</tbody>
</table>

JCR Benchmarks

Impact Factor. The *JCR* Impact Factor is a well known metric in citation analysis. It is a measure of the frequency with which the “average article” in a journal has been cited in a particular year. The Impact Factor helps evaluate a journal’s relative importance, especially when compared to others in the same field. The Impact Factor is calculated by dividing the number of citations in the current year to articles published in the 2 previous years by the total number of articles published in the 2 previous years.

Table 15 indicates the number of fellows’ papers published in the top 10% of journals, based on the *JCR* Impact Factor. Four hundred seventy-seven (477) of 1,257 papers were published in the top 10% of journals, representing 37.95% of the fellows’ papers. This indicates that more than one-third of the fellows’ papers are published in the highest quality journals as determined by the *JCR* Impact Factor, which is 3.8 times higher than the expected percentage.

Table 15. Fellows’ Papers in Top 10% of Journals by JCR Impact Factor

<table>
<thead>
<tr>
<th>Fellows’ Papers in that Journal</th>
<th>Journal</th>
<th>Impact Factor (IF)</th>
<th>JCR IF Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Science</td>
<td>30.927</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>Nature</td>
<td>29.273</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>JAMA-Journal of the American Medical Association</td>
<td>23.494</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>Trends in Ecology & Evolution</td>
<td>14.864</td>
<td>46</td>
</tr>
<tr>
<td>1</td>
<td>PLoS Biology</td>
<td>14.672</td>
<td>47</td>
</tr>
<tr>
<td>1</td>
<td>Trends in Genetics</td>
<td>12.047</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>Plant Cell</td>
<td>11.088</td>
<td>77</td>
</tr>
<tr>
<td>10</td>
<td>Proceedings of the National Academy of Sciences of the United States of America</td>
<td>10.231</td>
<td>88</td>
</tr>
<tr>
<td>1</td>
<td>EMBO Journal</td>
<td>10.053</td>
<td>94</td>
</tr>
<tr>
<td>1</td>
<td>Hepatology</td>
<td>9.792</td>
<td>101</td>
</tr>
<tr>
<td>1</td>
<td>Circulation Research</td>
<td>9.408</td>
<td>112</td>
</tr>
<tr>
<td>1</td>
<td>Current Opinion in Microbiology</td>
<td>8.005</td>
<td>141</td>
</tr>
<tr>
<td>Fellows’ Papers in that Journal</td>
<td>Journal</td>
<td>Impact Factor (IF)</td>
<td>JCR IF Rank</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Cancer Research</td>
<td>7.616</td>
<td>157</td>
</tr>
<tr>
<td>1</td>
<td>Annual Review of Phytopathology</td>
<td>7.605</td>
<td>158</td>
</tr>
<tr>
<td>1</td>
<td>Nucleic Acids Research</td>
<td>7.552</td>
<td>162</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Neuroscience</td>
<td>7.506</td>
<td>165</td>
</tr>
<tr>
<td>4</td>
<td>Journal of the American Chemical Society</td>
<td>7.419</td>
<td>170</td>
</tr>
<tr>
<td>2</td>
<td>Molecular and Cellular Biology</td>
<td>7.093</td>
<td>180</td>
</tr>
<tr>
<td>17</td>
<td>FASEB Journal</td>
<td>7.064</td>
<td>181</td>
</tr>
<tr>
<td>2</td>
<td>Plant Journal</td>
<td>6.969</td>
<td>183</td>
</tr>
<tr>
<td>1</td>
<td>Current Opinion in Biotechnology</td>
<td>6.898</td>
<td>186</td>
</tr>
<tr>
<td>1</td>
<td>Nature Methods</td>
<td>6.741</td>
<td>191</td>
</tr>
<tr>
<td>1</td>
<td>Clinical Infectious Diseases</td>
<td>6.510</td>
<td>199</td>
</tr>
<tr>
<td>2</td>
<td>Journal of Immunology</td>
<td>6.387</td>
<td>205</td>
</tr>
<tr>
<td>1</td>
<td>Molecular Microbiology</td>
<td>6.203</td>
<td>213</td>
</tr>
<tr>
<td>1</td>
<td>Thorax</td>
<td>6.150</td>
<td>216</td>
</tr>
<tr>
<td>1</td>
<td>Proteomics</td>
<td>6.088</td>
<td>221</td>
</tr>
<tr>
<td>1</td>
<td>Bioinformatics</td>
<td>6.019</td>
<td>224</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Biological Chemistry</td>
<td>5.854</td>
<td>232</td>
</tr>
<tr>
<td>1</td>
<td>American Journal of Clinical Nutrition</td>
<td>5.853</td>
<td>233</td>
</tr>
<tr>
<td>3</td>
<td>Analytical Chemistry</td>
<td>5.635</td>
<td>242</td>
</tr>
<tr>
<td>10</td>
<td>Environmental Health Perspectives</td>
<td>5.342</td>
<td>257</td>
</tr>
<tr>
<td>1</td>
<td>Endocrinology</td>
<td>5.313</td>
<td>261</td>
</tr>
<tr>
<td>1</td>
<td>Emerging Infectious Diseases</td>
<td>5.308</td>
<td>264</td>
</tr>
<tr>
<td>1</td>
<td>Developmental Biology</td>
<td>5.234</td>
<td>274</td>
</tr>
<tr>
<td>2</td>
<td>Drug Metabolism Reviews</td>
<td>5.153</td>
<td>281</td>
</tr>
<tr>
<td>2</td>
<td>Ecology Letters</td>
<td>5.151</td>
<td>282</td>
</tr>
<tr>
<td>3</td>
<td>Carcinogenesis</td>
<td>5.108</td>
<td>288</td>
</tr>
<tr>
<td>1</td>
<td>American Journal of Epidemiology</td>
<td>5.068</td>
<td>290</td>
</tr>
<tr>
<td>1</td>
<td>Philosophical Transactions of the Royal Society of London Series B-Biological Sciences</td>
<td>4.997</td>
<td>300</td>
</tr>
<tr>
<td>Fellows’ Papers in that Journal</td>
<td>Journal</td>
<td>Impact Factor (IF)</td>
<td>JCR IF Rank</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Free Radical Biology and Medicine</td>
<td>4.971</td>
<td>303</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Infectious Diseases</td>
<td>4.953</td>
<td>307</td>
</tr>
<tr>
<td>3</td>
<td>Ecological Monographs</td>
<td>4.855</td>
<td>320</td>
</tr>
<tr>
<td>2</td>
<td>Cladistics-the International Journal of the Willi Hennig Society</td>
<td>4.783</td>
<td>331</td>
</tr>
<tr>
<td>1</td>
<td>Frontiers in Ecology and the Environment</td>
<td>4.745</td>
<td>334</td>
</tr>
<tr>
<td>1</td>
<td>Bioscience</td>
<td>4.708</td>
<td>336</td>
</tr>
<tr>
<td>7</td>
<td>Molecular Pharmacology</td>
<td>4.612</td>
<td>349</td>
</tr>
<tr>
<td>2</td>
<td>Journal of Applied Ecology</td>
<td>4.594</td>
<td>351</td>
</tr>
<tr>
<td>1</td>
<td>Earth-Science Reviews</td>
<td>4.581</td>
<td>353</td>
</tr>
<tr>
<td>1</td>
<td>Environmental Microbiology</td>
<td>4.559</td>
<td>355</td>
</tr>
<tr>
<td>9</td>
<td>Ecology</td>
<td>4.506</td>
<td>366</td>
</tr>
<tr>
<td>6</td>
<td>American Naturalist</td>
<td>4.464</td>
<td>376</td>
</tr>
<tr>
<td>3</td>
<td>Antimicrobial Agents and Chemotherapy</td>
<td>4.379</td>
<td>395</td>
</tr>
<tr>
<td>7</td>
<td>Molecular Ecology</td>
<td>4.301</td>
<td>414</td>
</tr>
<tr>
<td>3</td>
<td>Genetics</td>
<td>4.289</td>
<td>415</td>
</tr>
<tr>
<td>2</td>
<td>New Phytologist</td>
<td>4.285</td>
<td>417</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Ecology</td>
<td>4.277</td>
<td>418</td>
</tr>
<tr>
<td>1</td>
<td>Advances in Colloid and Interface Science</td>
<td>4.198</td>
<td>437</td>
</tr>
<tr>
<td>3</td>
<td>Journal of Bacteriology</td>
<td>4.167</td>
<td>440</td>
</tr>
<tr>
<td>12</td>
<td>Evolution</td>
<td>4.155</td>
<td>444</td>
</tr>
<tr>
<td>3</td>
<td>Applied Physics Letters</td>
<td>4.127</td>
<td>450</td>
</tr>
<tr>
<td>12</td>
<td>Conservation Biology</td>
<td>4.110</td>
<td>455</td>
</tr>
<tr>
<td>10</td>
<td>Global Change Biology</td>
<td>4.075</td>
<td>464</td>
</tr>
<tr>
<td>52</td>
<td>Environmental Science & Technology</td>
<td>4.054</td>
<td>467</td>
</tr>
<tr>
<td>6</td>
<td>Epidemiology</td>
<td>4.043</td>
<td>471</td>
</tr>
<tr>
<td>1</td>
<td>Macromolecules</td>
<td>4.024</td>
<td>479</td>
</tr>
<tr>
<td>6</td>
<td>Drug Metabolism and Disposition</td>
<td>4.015</td>
<td>481</td>
</tr>
<tr>
<td>1</td>
<td>American Journal of Respiratory Cell and Molecular Biology</td>
<td>3.988</td>
<td>488</td>
</tr>
</tbody>
</table>
Bibliometric Analysis of 1995-1996 EPA Fellows’ Journal Articles

<table>
<thead>
<tr>
<th>Fellows’ Papers in that Journal</th>
<th>Journal</th>
<th>Impact Factor (IF)</th>
<th>JCR IF Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Infection and Immunity</td>
<td>3.933</td>
<td>506</td>
</tr>
<tr>
<td>12</td>
<td>Geochimica et Cosmochimica Acta</td>
<td>3.897</td>
<td>521</td>
</tr>
<tr>
<td>1</td>
<td>JAIDS-Journal of Acquired Immune Deficiency Syndromes</td>
<td>3.871</td>
<td>529</td>
</tr>
<tr>
<td>1</td>
<td>Laboratory Investigation</td>
<td>3.859</td>
<td>532</td>
</tr>
<tr>
<td>1</td>
<td>Inorganic Chemistry</td>
<td>3.851</td>
<td>535</td>
</tr>
<tr>
<td>1</td>
<td>Electrophoresis</td>
<td>3.850</td>
<td>536</td>
</tr>
<tr>
<td>2</td>
<td>Biochemistry</td>
<td>3.848</td>
<td>538</td>
</tr>
<tr>
<td>36</td>
<td>Applied and Environmental Microbiology</td>
<td>3.818</td>
<td>544</td>
</tr>
<tr>
<td>7</td>
<td>Ecological Applications</td>
<td>3.804</td>
<td>548</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Computational Chemistry</td>
<td>3.786</td>
<td>551</td>
</tr>
<tr>
<td>3</td>
<td>Langmuir</td>
<td>3.705</td>
<td>569</td>
</tr>
<tr>
<td>4</td>
<td>Journal of Controlled Release</td>
<td>3.696</td>
<td>571</td>
</tr>
<tr>
<td>2</td>
<td>Journal of Nutrition</td>
<td>3.689</td>
<td>574</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Materials Chemistry</td>
<td>3.688</td>
<td>575</td>
</tr>
<tr>
<td>1</td>
<td>Human Reproduction</td>
<td>3.669</td>
<td>581</td>
</tr>
<tr>
<td>1</td>
<td>Faraday Discussions</td>
<td>3.652</td>
<td>584</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Analytical Atomic Spectrometry</td>
<td>3.640</td>
<td>591</td>
</tr>
<tr>
<td>3</td>
<td>Plant Cell and Environment</td>
<td>3.601</td>
<td>606</td>
</tr>
<tr>
<td>3</td>
<td>Optics Letters</td>
<td>3.599</td>
<td>608</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Cellular Biochemistry</td>
<td>3.591</td>
<td>610</td>
</tr>
<tr>
<td>1</td>
<td>Biology of Reproduction</td>
<td>3.583</td>
<td>615</td>
</tr>
<tr>
<td>1</td>
<td>Global Ecology and Biogeography</td>
<td>3.576</td>
<td>617</td>
</tr>
<tr>
<td>2</td>
<td>Journal of Biomedical Optics</td>
<td>3.557</td>
<td>624</td>
</tr>
<tr>
<td>1</td>
<td>Clinical and Experimental Allergy</td>
<td>3.553</td>
<td>625</td>
</tr>
<tr>
<td>6</td>
<td>Journal of Clinical Microbiology</td>
<td>3.537</td>
<td>630</td>
</tr>
<tr>
<td>1</td>
<td>Proceedings of the Royal Society B-Biological Sciences</td>
<td>3.510</td>
<td>636</td>
</tr>
<tr>
<td>2</td>
<td>Atmospheric Chemistry and Physics</td>
<td>3.495</td>
<td>643</td>
</tr>
<tr>
<td>1</td>
<td>Critical Reviews in Plant Sciences</td>
<td>3.467</td>
<td>656</td>
</tr>
<tr>
<td>1</td>
<td>Biosensors & Bioelectronics</td>
<td>3.463</td>
<td>658</td>
</tr>
<tr>
<td>Fellows’ Papers in that Journal</td>
<td>Journal</td>
<td>Impact Factor (IF)</td>
<td>JCR IF Rank</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>4</td>
<td>Ecosystems</td>
<td>3.455</td>
<td>661</td>
</tr>
<tr>
<td>3</td>
<td>Journal of Climate</td>
<td>3.402</td>
<td>681</td>
</tr>
<tr>
<td>19</td>
<td>Global Biogeochemical Cycles</td>
<td>3.373</td>
<td>687</td>
</tr>
<tr>
<td>2</td>
<td>Diversity and Distributions</td>
<td>3.345</td>
<td>696</td>
</tr>
<tr>
<td>1</td>
<td>Developmental Dynamics</td>
<td>3.333</td>
<td>702</td>
</tr>
<tr>
<td>3</td>
<td>Journal of Evolutionary Biology</td>
<td>3.332</td>
<td>704</td>
</tr>
<tr>
<td>3</td>
<td>Oikos</td>
<td>3.309</td>
<td>711</td>
</tr>
<tr>
<td>3</td>
<td>Developmental and Comparative Immunology</td>
<td>3.261</td>
<td>720</td>
</tr>
<tr>
<td>15</td>
<td>Limnology and Oceanography</td>
<td>3.249</td>
<td>725</td>
</tr>
<tr>
<td>2</td>
<td>Physical Review B</td>
<td>3.185</td>
<td>746</td>
</tr>
<tr>
<td>4</td>
<td>Archives of Biochemistry and Biophysics</td>
<td>3.152</td>
<td>762</td>
</tr>
<tr>
<td>4</td>
<td>Toxicology and Applied Pharmacology</td>
<td>3.148</td>
<td>765</td>
</tr>
<tr>
<td>4</td>
<td>Journal of Chemical Physics</td>
<td>3.138</td>
<td>767</td>
</tr>
<tr>
<td>4</td>
<td>Journal of Chromatography A</td>
<td>3.096</td>
<td>779</td>
</tr>
<tr>
<td>7</td>
<td>Toxicological Sciences</td>
<td>3.088</td>
<td>781</td>
</tr>
<tr>
<td>1</td>
<td>Rapid Communications in Mass Spectrometry</td>
<td>3.087</td>
<td>782</td>
</tr>
<tr>
<td>1</td>
<td>BMC Biotechnology</td>
<td>3.054</td>
<td>798</td>
</tr>
<tr>
<td>1</td>
<td>Cancer Letters</td>
<td>3.049</td>
<td>801</td>
</tr>
<tr>
<td>9</td>
<td>Oecologia</td>
<td>3.032</td>
<td>805</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Polymer Science Part A-Polymer Chemistry</td>
<td>3.027</td>
<td>807</td>
</tr>
<tr>
<td>9</td>
<td>Water Research</td>
<td>3.019</td>
<td>810</td>
</tr>
<tr>
<td>1</td>
<td>Physical Review A</td>
<td>2.997</td>
<td>827</td>
</tr>
<tr>
<td>4</td>
<td>Geology</td>
<td>2.982</td>
<td>833</td>
</tr>
<tr>
<td>1</td>
<td>Quaternary Science Reviews</td>
<td>2.950</td>
<td>847</td>
</tr>
<tr>
<td>1</td>
<td>Behavioral Ecology</td>
<td>2.943</td>
<td>849</td>
</tr>
<tr>
<td>2</td>
<td>Chemical Geology</td>
<td>2.940</td>
<td>851</td>
</tr>
<tr>
<td>2</td>
<td>Journal of Physical Chemistry A</td>
<td>2.898</td>
<td>862</td>
</tr>
</tbody>
</table>
Bibliometric Analysis of 1995-1996 EPA Fellows’ Journal Articles

<table>
<thead>
<tr>
<th>Fellows’ Papers in that Journal</th>
<th>Journal</th>
<th>Impact Factor (IF)</th>
<th>JCR IF Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tissue Engineering</td>
<td>2.887</td>
<td>864</td>
</tr>
<tr>
<td>1</td>
<td>Behavioural Brain Research</td>
<td>2.865</td>
<td>875</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>477</td>
</tr>
</tbody>
</table>

Immediacy Index. The JCR Immediacy Index is a measure of how quickly the *average article* in a journal is cited. It indicates how often articles published in a journal are cited within the year they are published. The Immediacy Index is calculated by dividing the number of citations to articles published in a given year by the number of articles published in that year.

Table 16 indicates the number of fellows’ papers published in the top 10% of journals, based on the JCR Immediacy Index. Four hundred nineteen (419) of the 1,257 papers appear in the top 10% of journals, representing 33.33% of the fellows’ papers. This indicates that one-third of the fellows’ papers are published in the highest quality journals as determined by the JCR Immediacy Index, which is 3.3 times higher than the expected percentage.

Table 16. Fellows’ Papers in Top 10% of Journals by JCR Immediacy Index

<table>
<thead>
<tr>
<th>Fellows’ Papers in that Journal</th>
<th>Journal</th>
<th>Immediacy Index (II)</th>
<th>JCR II Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Science</td>
<td>6.398</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>Nature</td>
<td>5.825</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>JAMA-Journal of the American Medical Association</td>
<td>5.082</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>PLoS Biology</td>
<td>3.734</td>
<td>34</td>
</tr>
<tr>
<td>1</td>
<td>Nature Methods</td>
<td>3.305</td>
<td>41</td>
</tr>
<tr>
<td>1</td>
<td>EMBO Journal</td>
<td>2.198</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>Plant Cell</td>
<td>2.048</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>Trends in Ecology & Evolution</td>
<td>2.031</td>
<td>87</td>
</tr>
<tr>
<td>1</td>
<td>Fisheries Oceanography</td>
<td>1.980</td>
<td>94</td>
</tr>
<tr>
<td>1</td>
<td>Trends in Genetics</td>
<td>1.885</td>
<td>101</td>
</tr>
<tr>
<td>1</td>
<td>Faraday Discussions</td>
<td>1.786</td>
<td>112</td>
</tr>
<tr>
<td>1</td>
<td>Clinical Infectious Diseases</td>
<td>1.750</td>
<td>117</td>
</tr>
<tr>
<td>10</td>
<td>Proceedings of the National Academy of Sciences of the United States of America</td>
<td>1.746</td>
<td>121</td>
</tr>
<tr>
<td>Fellows’ Papers in that Journal</td>
<td>Journal</td>
<td>Immediacy Index (II)</td>
<td>JCR II Rank</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Philosophical Transactions of the Royal Society of London Series B-Biological Sciences</td>
<td>1.742</td>
<td>122</td>
</tr>
<tr>
<td>1</td>
<td>Circulation Research</td>
<td>1.702</td>
<td>126</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Infectious Diseases</td>
<td>1.547</td>
<td>145</td>
</tr>
<tr>
<td>1</td>
<td>Hepatology</td>
<td>1.496</td>
<td>151</td>
</tr>
<tr>
<td>5</td>
<td>Journal of the Atmospheric Sciences</td>
<td>1.469</td>
<td>153</td>
</tr>
<tr>
<td>3</td>
<td>Ecological Monographs</td>
<td>1.448</td>
<td>158</td>
</tr>
<tr>
<td>4</td>
<td>Journal of the American Chemical Society</td>
<td>1.435</td>
<td>162</td>
</tr>
<tr>
<td>1</td>
<td>Molecular Microbiology</td>
<td>1.402</td>
<td>170</td>
</tr>
<tr>
<td>1</td>
<td>Nucleic Acids Research</td>
<td>1.391</td>
<td>173</td>
</tr>
<tr>
<td>2</td>
<td>Plant Journal</td>
<td>1.322</td>
<td>191</td>
</tr>
<tr>
<td>6</td>
<td>Epidemiology</td>
<td>1.298</td>
<td>198</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Biological Chemistry</td>
<td>1.265</td>
<td>208</td>
</tr>
<tr>
<td>1</td>
<td>Endocrinology</td>
<td>1.260</td>
<td>210</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Neuroscience</td>
<td>1.254</td>
<td>212</td>
</tr>
<tr>
<td>1</td>
<td>Global and Planetary Change</td>
<td>1.253</td>
<td>213</td>
</tr>
<tr>
<td>1</td>
<td>Ecology and Society</td>
<td>1.232</td>
<td>218</td>
</tr>
<tr>
<td>1</td>
<td>American Journal of Clinical Nutrition</td>
<td>1.200</td>
<td>227</td>
</tr>
<tr>
<td>2</td>
<td>Molecular and Cellular Biology</td>
<td>1.181</td>
<td>238</td>
</tr>
<tr>
<td>17</td>
<td>FASEB Journal</td>
<td>1.181</td>
<td>238</td>
</tr>
<tr>
<td>1</td>
<td>AMBIO</td>
<td>1.140</td>
<td>253</td>
</tr>
<tr>
<td>2</td>
<td>New Phytologist</td>
<td>1.125</td>
<td>257</td>
</tr>
<tr>
<td>1</td>
<td>American Journal of Epidemiology</td>
<td>1.099</td>
<td>271</td>
</tr>
<tr>
<td>1</td>
<td>Thorax</td>
<td>1.097</td>
<td>272</td>
</tr>
<tr>
<td>2</td>
<td>Atmospheric Chemistry and Physics</td>
<td>1.025</td>
<td>298</td>
</tr>
<tr>
<td>1</td>
<td>Cancer Research</td>
<td>1.001</td>
<td>310</td>
</tr>
<tr>
<td>10</td>
<td>Environmental Health Perspectives</td>
<td>0.955</td>
<td>346</td>
</tr>
<tr>
<td>3</td>
<td>Journal of Evolutionary Biology</td>
<td>0.955</td>
<td>346</td>
</tr>
<tr>
<td>2</td>
<td>Ecology Letters</td>
<td>0.950</td>
<td>350</td>
</tr>
<tr>
<td>Fellows’ Papers in that Journal</td>
<td>Journal</td>
<td>Immediacy Index (II)</td>
<td>JCR II Rank</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Bioinformatics</td>
<td>0.944</td>
<td>354</td>
</tr>
<tr>
<td>5</td>
<td>Fisheries</td>
<td>0.941</td>
<td>357</td>
</tr>
<tr>
<td>1</td>
<td>Current Opinion in Microbiology</td>
<td>0.939</td>
<td>358</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Paleolimnology</td>
<td>0.938</td>
<td>359</td>
</tr>
<tr>
<td>3</td>
<td>Carcinogenesis</td>
<td>0.935</td>
<td>362</td>
</tr>
<tr>
<td>1</td>
<td>Developmental Biology</td>
<td>0.908</td>
<td>379</td>
</tr>
<tr>
<td>2</td>
<td>Journal of Immunology</td>
<td>0.906</td>
<td>381</td>
</tr>
<tr>
<td>1</td>
<td>Current Opinion in Biotechnology</td>
<td>0.902</td>
<td>382</td>
</tr>
<tr>
<td>1</td>
<td>International Journal of Mass Spectrometry</td>
<td>0.898</td>
<td>386</td>
</tr>
<tr>
<td>3</td>
<td>Plant Cell and Environment</td>
<td>0.891</td>
<td>397</td>
</tr>
<tr>
<td>3</td>
<td>Journal of Bacteriology</td>
<td>0.874</td>
<td>413</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Molecular Microbiology and Biotechnology</td>
<td>0.857</td>
<td>423</td>
</tr>
<tr>
<td>1</td>
<td>Proteomics</td>
<td>0.855</td>
<td>426</td>
</tr>
<tr>
<td>1</td>
<td>Ecotoxicology</td>
<td>0.846</td>
<td>434</td>
</tr>
<tr>
<td>1</td>
<td>Emerging Infectious Diseases</td>
<td>0.840</td>
<td>440</td>
</tr>
<tr>
<td>19</td>
<td>Global Biogeochemical Cycles</td>
<td>0.838</td>
<td>443</td>
</tr>
<tr>
<td>1</td>
<td>Earth-Science Reviews</td>
<td>0.836</td>
<td>445</td>
</tr>
<tr>
<td>1</td>
<td>Laboratory Investigation</td>
<td>0.828</td>
<td>452</td>
</tr>
<tr>
<td>3</td>
<td>Genetics</td>
<td>0.825</td>
<td>453</td>
</tr>
<tr>
<td>3</td>
<td>Antimicrobial Agents and Chemotherapy</td>
<td>0.820</td>
<td>460</td>
</tr>
<tr>
<td>1</td>
<td>Heredity</td>
<td>0.817</td>
<td>462</td>
</tr>
<tr>
<td>2</td>
<td>Diversity and Distributions</td>
<td>0.814</td>
<td>466</td>
</tr>
<tr>
<td>1</td>
<td>Quaternary Science Reviews</td>
<td>0.806</td>
<td>474</td>
</tr>
<tr>
<td>2</td>
<td>Journal of the North American Benthological Society</td>
<td>0.797</td>
<td>479</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Ecology</td>
<td>0.786</td>
<td>486</td>
</tr>
<tr>
<td>2</td>
<td>Biochemistry</td>
<td>0.777</td>
<td>494</td>
</tr>
<tr>
<td>4</td>
<td>Archives of Biochemistry and Biophysics</td>
<td>0.774</td>
<td>495</td>
</tr>
<tr>
<td>1</td>
<td>Macromolecules</td>
<td>0.767</td>
<td>497</td>
</tr>
</tbody>
</table>
Bibliometric Analysis of 1995-1996 EPA Fellows' Journal Articles

<table>
<thead>
<tr>
<th>Fellows’ Papers in that Journal</th>
<th>Journal</th>
<th>Immediacy Index (II)</th>
<th>JCR II Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Cladistics-the International Journal of the Willi Hennig Society</td>
<td>0.765</td>
<td>499</td>
</tr>
<tr>
<td>1</td>
<td>Biology of Reproduction</td>
<td>0.755</td>
<td>507</td>
</tr>
<tr>
<td>1</td>
<td>American Journal of Respiratory Cell and Molecular Biology</td>
<td>0.745</td>
<td>517</td>
</tr>
<tr>
<td>1</td>
<td>Behavioral Ecology</td>
<td>0.741</td>
<td>521</td>
</tr>
<tr>
<td>6</td>
<td>Drug Metabolism and Disposition</td>
<td>0.733</td>
<td>534</td>
</tr>
<tr>
<td>1</td>
<td>Bioscience</td>
<td>0.731</td>
<td>538</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Computational Chemistry</td>
<td>0.731</td>
<td>538</td>
</tr>
<tr>
<td>1</td>
<td>Science of the Total Environment</td>
<td>0.731</td>
<td>538</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Materials Chemistry</td>
<td>0.728</td>
<td>545</td>
</tr>
<tr>
<td>2</td>
<td>Journal of Applied Ecology</td>
<td>0.726</td>
<td>551</td>
</tr>
<tr>
<td>2</td>
<td>International Journal of Wildland Fire</td>
<td>0.714</td>
<td>564</td>
</tr>
<tr>
<td>3</td>
<td>Analytical Chemistry</td>
<td>0.713</td>
<td>569</td>
</tr>
<tr>
<td>1</td>
<td>Inorganic Chemistry</td>
<td>0.713</td>
<td>569</td>
</tr>
<tr>
<td>4</td>
<td>Journal of Chemical Physics</td>
<td>0.710</td>
<td>572</td>
</tr>
<tr>
<td>2</td>
<td>Integrative and Comparative Biology</td>
<td>0.706</td>
<td>575</td>
</tr>
<tr>
<td>1</td>
<td>Free Radical Biology and Medicine</td>
<td>0.696</td>
<td>585</td>
</tr>
<tr>
<td>1</td>
<td>Physical Review A</td>
<td>0.696</td>
<td>585</td>
</tr>
<tr>
<td>1</td>
<td>Human Reproduction</td>
<td>0.693</td>
<td>596</td>
</tr>
<tr>
<td>6</td>
<td>American Naturalist</td>
<td>0.679</td>
<td>610</td>
</tr>
<tr>
<td>3</td>
<td>Chemical Geology</td>
<td>0.678</td>
<td>612</td>
</tr>
<tr>
<td>3</td>
<td>Developmental and Comparative Immunology</td>
<td>0.667</td>
<td>628</td>
</tr>
<tr>
<td>1</td>
<td>Ecological Engineering</td>
<td>0.663</td>
<td>640</td>
</tr>
<tr>
<td>1</td>
<td>Developmental Dynamics</td>
<td>0.651</td>
<td>658</td>
</tr>
<tr>
<td>4</td>
<td>Infection and Immunity</td>
<td>0.648</td>
<td>663</td>
</tr>
<tr>
<td>1</td>
<td>Biotropica</td>
<td>0.636</td>
<td>682</td>
</tr>
<tr>
<td>30</td>
<td>Journal of Geophysical Research-Atmospheres</td>
<td>0.630</td>
<td>695</td>
</tr>
<tr>
<td>2</td>
<td>Journal of Geophysical Research-Biogeosciences</td>
<td>0.630</td>
<td>695</td>
</tr>
</tbody>
</table>
Bibliometric Analysis of 1995-1996 EPA Fellows' Journal Articles

<table>
<thead>
<tr>
<th>Fellows’ Papers in that Journal</th>
<th>Journal</th>
<th>Immediacy Index (II)</th>
<th>JCR II Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal of Geophysical Research-Oceans</td>
<td>0.630</td>
<td>695</td>
</tr>
<tr>
<td>2</td>
<td>Human and Ecological Risk Assessment</td>
<td>0.628</td>
<td>698</td>
</tr>
<tr>
<td>12</td>
<td>Geochimica et Cosmochimica Acta</td>
<td>0.622</td>
<td>707</td>
</tr>
<tr>
<td>9</td>
<td>Ecology</td>
<td>0.621</td>
<td>709</td>
</tr>
<tr>
<td>3</td>
<td>Optics Letters</td>
<td>0.621</td>
<td>709</td>
</tr>
<tr>
<td>1</td>
<td>Environmental Microbiology</td>
<td>0.620</td>
<td>713</td>
</tr>
<tr>
<td>7</td>
<td>Toxicological Sciences</td>
<td>0.617</td>
<td>715</td>
</tr>
<tr>
<td>3</td>
<td>Langmuir</td>
<td>0.610</td>
<td>723</td>
</tr>
<tr>
<td>2</td>
<td>Climatic Change</td>
<td>0.610</td>
<td>723</td>
</tr>
<tr>
<td>2</td>
<td>Physical Review B</td>
<td>0.609</td>
<td>725</td>
</tr>
<tr>
<td>1</td>
<td>JAIDS-Journal of Acquired Immune Deficiency Syndromes</td>
<td>0.602</td>
<td>734</td>
</tr>
<tr>
<td>1</td>
<td>Journal of the New York Entomological Society</td>
<td>0.600</td>
<td>735</td>
</tr>
<tr>
<td>7</td>
<td>Molecular Ecology</td>
<td>0.598</td>
<td>741</td>
</tr>
<tr>
<td>2</td>
<td>Journal of Nutrition</td>
<td>0.598</td>
<td>741</td>
</tr>
<tr>
<td>12</td>
<td>Evolution</td>
<td>0.597</td>
<td>745</td>
</tr>
<tr>
<td>1</td>
<td>Biosensors & Bioelectronics</td>
<td>0.597</td>
<td>745</td>
</tr>
<tr>
<td>2</td>
<td>Journal of Physical Chemistry A</td>
<td>0.595</td>
<td>749</td>
</tr>
<tr>
<td>1</td>
<td>Biological Conservation</td>
<td>0.589</td>
<td>761</td>
</tr>
<tr>
<td>1</td>
<td>Annual Review of Phytopathology</td>
<td>0.583</td>
<td>776</td>
</tr>
<tr>
<td>1</td>
<td>Plant Biology</td>
<td>0.568</td>
<td>810</td>
</tr>
<tr>
<td>15</td>
<td>Limnology and Oceanography</td>
<td>0.566</td>
<td>814</td>
</tr>
<tr>
<td>1</td>
<td>Journal of Polymer Science Part A-Polymer Chemistry</td>
<td>0.564</td>
<td>818</td>
</tr>
<tr>
<td>1</td>
<td>Behavioural Brain Research</td>
<td>0.564</td>
<td>818</td>
</tr>
<tr>
<td>3</td>
<td>Applied Physics Letters</td>
<td>0.551</td>
<td>847</td>
</tr>
<tr>
<td>2</td>
<td>Environmental Research</td>
<td>0.551</td>
<td>847</td>
</tr>
<tr>
<td>2</td>
<td>Drug Metabolism Reviews</td>
<td>0.550</td>
<td>852</td>
</tr>
<tr>
<td>1</td>
<td>Environment</td>
<td>0.550</td>
<td>852</td>
</tr>
<tr>
<td>7</td>
<td>Ecological Applications</td>
<td>0.543</td>
<td>869</td>
</tr>
</tbody>
</table>
Bibliometric Analysis of 1995-1996 EPA Fellows' Journal Articles

<table>
<thead>
<tr>
<th>Fellows’ Papers in that Journal</th>
<th>Journal</th>
<th>Immediacy Index (II)</th>
<th>JCR II Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Journal of Soil and Water Conservation</td>
<td>0.543</td>
<td>869</td>
</tr>
<tr>
<td>52</td>
<td>Environmental Science & Technology</td>
<td>0.541</td>
<td>874</td>
</tr>
<tr>
<td>Total = 419</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hot Papers

ESI establishes citation thresholds for hot papers, which are selected from the highly cited papers in different fields, but the time frame for citing and cited papers is much shorter—papers must be cited within 2 years of publication and the citations must occur in a 2-month time period. Papers are assigned to 2-month periods and thresholds are set for each period and field to select 0.1% of papers. There were no hot papers identified for the current 2-month period (i.e., March-April 2007), but there were a number of hot papers identified from previous periods.

Using the hot paper thresholds established by *ESI* as a benchmark, 20 hot papers, representing 1.59% of the fellows’ papers, were identified in five fields—Agricultural Sciences, Engineering, Environment/Ecology, Geosciences, and Plant & Animal Science. The number of fellows’ hot papers is 16 times higher than expected. The hot papers are listed in Table 17.

Table 17. Hot Papers Identified Using *ESI* Thresholds

<table>
<thead>
<tr>
<th>Field</th>
<th>ESI Hot Papers Threshold</th>
<th>No. of Cites in 2-Month Period</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
<td>ESI Hot Papers Threshold</td>
<td>No. of Cites in 2-Month Period</td>
<td>Paper</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
Author Self-Citation

Self-citations are journal article references to articles from that same author (i.e., the first author). Because higher author self-citation rates can inflate the number of citations, the author self-citation rate was calculated for the fellows’ papers. Of the 16,280 total cites, 844 are author self-cites—a 5.18% author self-citation rate. Garfield and Sher\(^3\) found that authors working in research-based disciplines tend to cite themselves on the average of 20% of the time. MacRoberts and MacRoberts\(^4\) claim that approximately 10% to 30% of all the citations listed fall into the category of author self-citation. Kovacic and Misak\(^5\) recently reported a 20% author self-citation rate for medical literature. Therefore, the 5.18% self-cite rate for the fellows’ papers is well below the range for author self-citation.

Highly Cited Researchers

A search of Thomson’s *ISIHighlyCited.com* revealed that none of the former fellows are highly cited researchers, which is to be expected because most of these individuals began their careers in the late 1990s. *ISIHighlyCited.com* is a database of the world’s most influential researchers who have made key contributions to science and technology during the period from 1981 to 1999.

Patents

There were 13 patents issued to and 31 patent applications filed by EPA 1995-1996 fellows. Ten (76.90%) of the 13 patents have been referenced by 22 other patents. These patents and patent applications, along with the patents that reference them, are listed in Table 18.

<table>
<thead>
<tr>
<th>Patent No. or Application No.</th>
<th>Inventor(s)</th>
<th>Title</th>
<th>Issue Date or Application Date</th>
<th>No. of Patents that Referenced This Patent</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,951,598 Flugge, LA</td>
<td>Branham KD</td>
<td>Hydrophobically modified cationic acrylate copolymer/polysiloxane blends and use in tissue</td>
<td>10/4/05 Referenced by 1 patent: (1) 7,101,460 Soft paper product including beneficial agents</td>
<td></td>
</tr>
<tr>
<td>5,951,875 Kanel, JS</td>
<td>Guelcher SA</td>
<td>Adsorptive bubble separation methods and systems for dewatering suspensions of microalgae and extracting components therefrom</td>
<td>9/14/99 Referenced by 1 patent: (1) 6,524,486 Microalgae separator apparatus and method</td>
<td></td>
</tr>
<tr>
<td>6,000,551 Kanel JS</td>
<td>Guelcher SA</td>
<td>Method for rupturing microalgae cells</td>
<td>12/14/99 Referenced by 3 patents: (1) 7,081,567 Transgenic Dunaliella salina as a bioreactor (2) 7,056,723 Method for the recovery and purification of poxviruses from infected cells (3) 6,337,020 Method and device for purifying waste water comprising an additional sludge treatment by ozonation</td>
<td></td>
</tr>
<tr>
<td>5,910,254 Kanel JS</td>
<td>Guelcher SA</td>
<td>Method for dewatering microalgae with a bubble column</td>
<td>6/8/99 Referenced by 1 patent: (1) 6,156,561 System and method for culturing algae</td>
<td></td>
</tr>
<tr>
<td>5,776,349 Kanel JS</td>
<td>Guelcher SA</td>
<td>Method for dewatering microalgae with a Jameson Cell</td>
<td>7/7/98 Referenced by 1 patent: (1) 6,936,459 Medium for the production of betacarotene and other carotenoids from Dunaliella salina (ARL 5) and a strain of Dunaliella salina for production of carotenenes using the novel media</td>
<td></td>
</tr>
<tr>
<td>Patent No. or Application No.</td>
<td>Inventor(s)</td>
<td>Title</td>
<td>Issue Date or Application Date</td>
<td>No. of Patents that Referenced This Patent</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>7,179,882</td>
<td>Adkins RL</td>
<td>Low viscosity polymer polyols</td>
<td>2/20/07</td>
<td>Referenced by no patents.</td>
</tr>
<tr>
<td>Guelcher SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charron JR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hayes JE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,160,975</td>
<td>Adkins RL</td>
<td>Methacrylate stabilizers for polymer polyols</td>
<td>1/9/07</td>
<td>Referenced by no patents.</td>
</tr>
<tr>
<td>Guelcher SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,627,328</td>
<td>Sheridan DR</td>
<td>Gas sampling system and method</td>
<td>5/6/97</td>
<td>Referenced by 5 patents:</td>
</tr>
<tr>
<td>Morrison GC</td>
<td></td>
<td></td>
<td></td>
<td>(1) 7,055,364 Exhaust volume measurement device</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) 7,000,449 Exhaust volume measurement device</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3) 6,973,818 Exhaust volume measurement device</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4) 6,711,470 Method, system and apparatus for monitoring and adjusting the quality of indoor air</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(5) 6,592,827 Sampling system for fluidized bed gas phase polymerization reaction systems</td>
</tr>
<tr>
<td>6,789,032</td>
<td>Barbour TN</td>
<td>Method of statistical binning for reliability selection</td>
<td>9/7/04</td>
<td>Referenced by 3 patents:</td>
</tr>
<tr>
<td>Barnett TS</td>
<td></td>
<td></td>
<td></td>
<td>(1) 7,194,366 System and method for estimating reliability of components for testing and quality optimization</td>
</tr>
<tr>
<td>Grady MS</td>
<td></td>
<td></td>
<td></td>
<td>(2) 7,139,630 Allocating manufactured devices according to customer specifications</td>
</tr>
<tr>
<td>Purdy KG</td>
<td></td>
<td></td>
<td></td>
<td>(3) 6,856,939 Fault assessment using fractional failure rates</td>
</tr>
<tr>
<td>6,723,499</td>
<td>Dodson HS</td>
<td>Method for identifying inhibitors of dual substrate enzymes</td>
<td>12/19/02</td>
<td>Referenced by no patents.</td>
</tr>
<tr>
<td>Marks JS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McQuade TJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santoro MF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santoro N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,264,841</td>
<td>Tudor HE</td>
<td>Method for treating contaminated liquids</td>
<td>7/24/01</td>
<td>Referenced by 1 patent:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1) 7,138,059 Environmental bioremediation using shell as an electron donor</td>
</tr>
<tr>
<td>Patent No. or Application No.</td>
<td>Inventor(s)</td>
<td>Title</td>
<td>Issue Date or Application Date</td>
<td>No. of Patents that Referenced This Patent</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>6,312,809</td>
<td>Crooks RM, Ricco AJ, Wells M</td>
<td>Dendrimer monolayer films</td>
<td>11/6/01</td>
<td>Referenced by 5 patents:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1) 7,195,835 Proton conducting membrane for fuel cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) 6,977,122 Proton conducting membrane for fuel cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3) 6,878,446 Semiconductor nanoparticles coated with electroactive polymers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4) 6,733,883 Fluorinated dendrons and self-organizing ultrahigh density nanocylinder compositions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(5) 6,617,040 Chemoselective dendrimeric compounds for use in chemical sensors</td>
</tr>
<tr>
<td>6,365,048</td>
<td>Masten SJ, Yavich AA</td>
<td>Method for treatment of organic matter contaminated drinking water</td>
<td>4/2/02</td>
<td>Referenced by 1 patent:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1) 6,893,559 System and method for removing organic compounds from waste water by oxidation</td>
</tr>
<tr>
<td>Application No. 2004/0084162</td>
<td>Shannon TG, Branham KD, Bunyard WC</td>
<td>Low slough tissue products and method for making same</td>
<td>5/6/04</td>
<td></td>
</tr>
<tr>
<td>Patent No. or Application No.</td>
<td>Inventor(s)</td>
<td>Title</td>
<td>Issue Date or Application Date</td>
<td>No. of Patents that Referenced This Patent</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Application No. 2007/0092921</td>
<td>Pellegrini FL Carter SD</td>
<td>Monoclonal and polyclonal antibodies to equine albumin and hemoglobin and apparatus and methods using the antibodies in the identification and localization of ulcers and other digestive tract bleeding in equines</td>
<td>4/26/07</td>
<td></td>
</tr>
<tr>
<td>Application No. 2002/0199156</td>
<td>Chess KL Heath DJ Michels WF</td>
<td>Hardware-adaptable data visualization tools for use in complex data analysis and engineering design</td>
<td>12/26/02</td>
<td></td>
</tr>
<tr>
<td>Application No. 2007/0082387</td>
<td>Felder MS Felder J Diz HR</td>
<td>Method of hydrogen production combining a bioreactor with a nuclear reactor and associated apparatus</td>
<td>4/12/07</td>
<td></td>
</tr>
<tr>
<td>Application No. 2007/0048851</td>
<td>Diz HR Felder MS Felder J</td>
<td>Method for sustained microbial production of hydrogen gas in a bioreactor using Klebsiella oxytoca</td>
<td>3/1/07</td>
<td></td>
</tr>
<tr>
<td>Patent No. or Application No.</td>
<td>Inventor(s)</td>
<td>Title</td>
<td>Issue Date or Application Date</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
<td>--</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>Application No. 2007/0048850</td>
<td>Diz HR</td>
<td>System for sustained microbial production of hydrogen gas in a bioreactor using Klebsiella oxytoca</td>
<td>3/1/07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Felder MS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Felder J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application No. 2007/0037268</td>
<td>Felder MS</td>
<td>Hydrogen producing bioreactor with sand for the maintenance of a high biomass bacteria</td>
<td>2/15/07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diz HR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Felder J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application No. 2007/0036712</td>
<td>Felder MS</td>
<td>Method of hydrogen production utilizing sand for the maintenance of a high biomass bacteria in a hydrogen bioreactor</td>
<td>2/15/07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diz HR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Felder J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0292685</td>
<td>Diz HR</td>
<td>Method of sustained microbial production of hydrogen gas in a bioreactor utilizing an equalization tank</td>
<td>12/28/06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Felder MS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Felder J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0286665</td>
<td>Diz HR</td>
<td>System for sustained microbial production of hydrogen gas in a bioreactor utilizing an equalization tank</td>
<td>12/21/06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Felder MS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Felder J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patent No. or Application No.</td>
<td>Inventor(s)</td>
<td>Title</td>
<td>Issue Date or Application Date</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
<td>--</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0281164</td>
<td>Diz HR, Felder MS, Felder J</td>
<td>System for sustained microbial production of hydrogen gas in a bioreactor utilizing a circulation system</td>
<td>12/14/06</td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0281163</td>
<td>Diz HR, Felder MS, Felder J</td>
<td>Method of producing hydrogen gas in a bioreactor with substrates and associated apparatus</td>
<td>12/14/06</td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0281162</td>
<td>Diz HR, Felder MS, Felder J</td>
<td>System for sustained microbial production of hydrogen gas in a bioreactor</td>
<td>12/14/06</td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0281161</td>
<td>Felder MS, Diz HR, Felder J</td>
<td>Production of hydrogen gas in a bioreactor with a coated substrate</td>
<td>12/14/06</td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0281160</td>
<td>Diz HR, Felder MS, Felder J</td>
<td>Method of hydrogen production in a bioreactor having a circulation system</td>
<td>12/14/06</td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0281159</td>
<td>Diz HR, Felder MS, Felder J</td>
<td>Method for sustained microbial production of hydrogen gas in a bioreactor</td>
<td>12/14/06</td>
<td></td>
</tr>
<tr>
<td>Patent No. or Application No.</td>
<td>Inventor(s)</td>
<td>Title</td>
<td>Issue Date or Application Date</td>
<td>No. of Patents that Referenced This Patent</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Application No. 2006/0281158</td>
<td>Felder J Felder MS Diz HR</td>
<td>Production of hydrogen gas and isolation of hydrogen producing microorganisms using replenishing coated substrates</td>
<td>12/14/06</td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0281144</td>
<td>Felder MS Diz HR Felder J</td>
<td>Method for utilizing nonparaffin-philic microorganisms for producing specific waste degradation</td>
<td>12/14/06</td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0281141</td>
<td>Felder MS Diz HR Felder J</td>
<td>Method for isolating potential antibiotic microorganisms</td>
<td>12/14/06</td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0275894</td>
<td>Felder MS Felder J Diz HR</td>
<td>Hydrogen producing apparatus utilizing excess heat from an industrial facility</td>
<td>12/7/06</td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0275206</td>
<td>Felder MS Felder J Diz HR</td>
<td>Method of hydrogen production utilizing excess heat from an industrial facility</td>
<td>12/7/06</td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0272956</td>
<td>Felder MS Felder J Diz HR</td>
<td>Dual hydrogen production apparatus</td>
<td>12/7/06</td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0272955</td>
<td>Felder MS Felder J Diz HR</td>
<td>Dual method of hydrogen production</td>
<td>12/7/06</td>
<td></td>
</tr>
</tbody>
</table>
Bibliometric Analysis of 1995-1996 EPA Fellows' Journal Articles

<table>
<thead>
<tr>
<th>Patent No. or Application No.</th>
<th>Inventor(s)</th>
<th>Title</th>
<th>Issue Date or Application Date</th>
<th>No. of Patents that Referenced This Patent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application No. 2005/0085613</td>
<td>Adkins RL, Guelcher S</td>
<td>Novel unsaturated macromers for preformed stabilizers and polymer polyols</td>
<td>4/21/05</td>
<td></td>
</tr>
<tr>
<td>Application No. 2005/0013793</td>
<td>Beckman EJ, Hollinger JO, Doll BA, Guelcher SA, Zhang J</td>
<td>Biodegradable polyurethanes and use thereof</td>
<td>1/20/05</td>
<td></td>
</tr>
<tr>
<td>Application No. 2006/0057027</td>
<td>Hudak AT, Tierney DM, Wang DD, Grenz RL, Rohrdanz RR, Alejandro KC, Galloway RK</td>
<td>Fluid collection and testing device</td>
<td>3/16/06</td>
<td></td>
</tr>
<tr>
<td>Application No. 2003/0151422</td>
<td>Barnett TS, Grady MS, Purdy KG</td>
<td>Method for burn-in testing</td>
<td>8/14/03</td>
<td></td>
</tr>
<tr>
<td>Application No. 2002/0159980</td>
<td>Block DE, Vanderheydst</td>
<td>Benomyl tolerant fusarium lateritium and uses thereof</td>
<td>10/31/02</td>
<td></td>
</tr>
</tbody>
</table>

Papers Not Verified

Seven papers cited in this analysis as either a highly cited paper or hot paper (see Tables 19 and 20) have not yet been verified as a publication of the EPA fellow (i.e., the fellow has not replied to the inquiry asking if the publication is correctly attributed to the former EPA fellow).
Table 19. Highly Cited Fellows’ Papers That Have Not Yet Been Verified

<table>
<thead>
<tr>
<th>No. of Cites</th>
<th>First Author</th>
<th>Paper</th>
</tr>
</thead>
</table>

Table 20. Hot Papers That Have Not Been Verified

<table>
<thead>
<tr>
<th>No. of Cites</th>
<th>First Author</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Vonier PM</td>
<td>Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environmental Health Perspectives 1996;104(12):1318-1322.</td>
</tr>
</tbody>
</table>

* This paper was both highly cited and hot.