US ERA ARCHIVE DOCUMENT

Low-cost organic gas sensors on plastic for distributed environmental sensing

Vivek Subramanian

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Arrayed Gas Sensors

Distributed environmental monitoring

Need for distributed monitoring

- Identification of environmental hazards
- Triggering of proactive action
- Development of accurate environmental models

Sensor Requirements

- Ultra-low-cost
- Ease of dispersal
- Trainability / adaptability

Our Approach: Arrayed organic FETs

- Easily arrayed at low-cost via printing
- Flexible for easy dispersal
- Trainable via electronic nose architecture

Printing: a pathway to low-cost

No lithography
No vacuum processing (CVD, PVD, Etch)
Reduced abatement costs
Cheap substrate handling
Reduced packaging costs

Printed Transistors

Plans & Current Status

Year 1:

- Development of baseline arrayed sensor process
- Sensor Characterization
- Development of arrayable materials

Year 2:

- Array demonstration
- Development of signature table for above arrayed sensor
- Characterization of 2nd generation targets

Year 3:

- Optimization of arrayed sensors
- Characterization of real-time monitoring
- Characterization of fluid sensing using organic gas sensors
- Optimization of derivatives for sensing applications.

Baseline sensor screening process

Sensor Characterization

Switching between individual sensors is performed via a switch matrix PCB

Agilent 4156

To ensure accuracy, measurements are performed with a calibrated precision semiconductor parameter analyzer.

Experimental Setup

Sensor Repeatability

Multiple cycles can be performed with full regeneration

Multi-parameter sensing

Sensor dynamics – transient response

Sensor response can be very slow, due to slow analyte absorption.

Speed can be increased by reducing film thickness

Differential sensitivity – pathway to an electronic nose?

Demonstration of basic electronic nose functionality

Organic Transistor Stability

Implication: We must either improve dielectric interface or use V_T-insensitive differential sensing method

Interaction Mechanisms

- Sensors show a wide range of interactions, complicating analysis. Interactions include:
 - Polar group interactions
 - Chain / bulk interactions
 - Swelling

Conclusions & Future Work

- Organic FET-based sensors show promising responses, including transient behavior and cycle life
- Work remains to optimize structure and process flow, particularly in terms of stability and reliability
- Future Work:
 - Integration of latest sensing materials into printed device architecture
 - Deployment in testing of environmentally-relevant analytes
 - Enhancement of specificity through functionalization / doping