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Arrayed Gas Sensors
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Distributed environmental monitoring

• Need for distributed monitoring
- Identification of environmental hazards
- Triggering of proactive action
- Development of accurate environmental models

• Sensor Requirements
- Ultra-low-cost
- Ease of dispersal
- Trainability / adaptability

• Our Approach: Arrayed organic FETs
- Easily arrayed at low-cost via printing
- Flexible for easy dispersal
- Trainable via electronic nose architecture



Printing: a pathway to low-cost

Print System Print System

No lithography
No vacuum processing (CVD, PVD, Etch)

Reduced abatement costs
Cheap substrate handling
Reduced packaging costs



Printed Transistors

Substrate

Gate electrode is printed using
gold nanocrystals

Substrate

Low-temperature anneal forms gate stripe
to edge of array (out of page)

Substrate

Polymer dielectric is deposited
via inkjet

Low-temperature anneal forms S/D stripes
and connections (in plane of page)

Various active layers are deposited via inkjet

Substrate

Source / Drain contacts are
printed using gold nanocrystals
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Plans & Current Status
• Year 1:

- Development of baseline arrayed sensor process
- Sensor Characterization
- Development of arrayable materials

• Year 2:
- Array demonstration
- Development of signature table for above arrayed sensor
- Characterization of 2nd generation targets

• Year 3:
- Optimization of arrayed sensors
- Characterization of real-time monitoring 
- Characterization of fluid sensing using organic gas sensors
- Optimization of derivatives for sensing applications.



Baseline sensor screening process
The channel is exposed to 

the analyte, resulting in 
performance changes

S D

Materials are 
characterized using a 

substrate-gated 
architecture (easy 

fabrication for rapid 
screening)

G

A silicon substrate 
enables easy I/O via 
an edge connector



Sensor Characterization

Switching between individual 
sensors is performed via a 

switch matrix PCB

Agilent 4156

To ensure accuracy, measurements 
are performed with a calibrated 

precision semiconductor parameter 
analyzer.



Experimental Setup
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Sensor Repeatability
Id-Vd (Zoomed)

-3.00E-08

-2.50E-08

-2.00E-08

-1.50E-08

-1.00E-08

-5.00E-09

-2.60E+01 -2.10E+01 -1.60E+01 -1.10E+01 -6.00E+00

Vd (Volts)

Id
 (A

m
ps

)

Baseline Toluene Regen

Multiple cycles can be performed with full regeneration



Multi-parameter sensing
Transconductance
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Drain Current
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Sensor dynamics – transient response
Change in Drain Current Under Toluene Exposure
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Sensor response can be very slow, due to slow analyte absorption.  
Speed can be increased by reducing film thickness



Differential sensitivity – pathway to an electronic 
nose?

Nose Response to Water (Pentacene)
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Demonstration of basic electronic nose functionality

Nose Response to Water and Milk
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Organic Transistor Stability
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Implication: We must either improve dielectric interface or use VT-insensitive 
differential sensing method



Interaction Mechanisms
- Sensors show a wide range of interactions, 

complicating analysis.  Interactions include:
• Polar group interactions
• Chain / bulk interactions
• Swelling

Ion Change in P3HT due to Ethanol
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Ion Change in P3HT due to Acetic Acid
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Conclusions & Future Work
• Organic FET-based sensors show promising 

responses, including transient behavior and cycle life

• Work remains to optimize structure and process flow, 
particularly in terms of stability and reliability

• Future Work:
- Integration of latest sensing materials into printed device 

architecture
- Deployment in testing of environmentally-relevant analytes
- Enhancement of specificity through functionalization / doping


