US ERA ARCHIVE DOCUMENT

Plasmon Sensitized TiO₂ Nanoparticles as a Novel Photocatalyst for Solar Applications

George Chumanov

Department of Chemistry, Clemson University, Clemson, SC 29634

Titania Photocatalyst

Electron-Hole recombination is on the order of < 30ps, hence efficiency is low (< 5%).

Efficiency of photocatalysis depends on how well one can prevent this charge recombination

Role of metal in metal/titania nanocomposites

Metal nanoparticles act as an electron sink, promoting interfacial charge transfer reducing charge recombination

Plasmon Resonance (PR) in Metal Nanoparticles

PR – collective oscillations of conducting electrons in metal nanostructures

Ag, Au, Cu nanoparticles exhibit PR in the visible spectral range

$$\omega_{\rm p} = ({\rm ne^2/\epsilon_0 m_e})^{1/2}$$
 $\epsilon_{\rm metal} (\omega_{\rm p}) = 0$

Optical Properties of Silver Nanoparticles

Extinction Spectra of Ag Nanoparticles as a Function of Size

Local Field is Enhanced Several Orders of Magnitude!

Ag Nanoparticles as Efficient Antennae for Capturing of Solar Energy

Solar Spectrum is from J.H.Seinfeld and S.N.Pandis" Atmospheric Chemistry and Physics" John Wiley & Sons, Inc. New York, Chichester, Brisbane, Singapore, Toronto (1998)

Titania Coated Metal Nanoparticles

Titania coated Silver Nanoparticles

Metal core shortens the electron-hole pairs generated in titania shell

Ag core SiO₂/TiO₂ Nanoparticles

Metal Ion Doped-Titania Photocatalyst

Dopants influences intrinsic properties of titania resulting in lowering the band gap and shifting light absorption into visible spectral range Dopants should be both good electron and hole traps

Efficiency of photocatalysis depends on various charge transfer events and migration of charges to the surface

Synthesis of Fe³⁺-doped TiO₂

UV-Vis Absorption Spectra of Fe³⁺-doped TiO₂: Effect of Fe³⁺ concentration

Electron Microscopy

TiO₂ as prepared (amorphous)

TiO₂ after heat treatment (crystalline)

Electron Microscopy

Fe³⁺/TiO₂ as prepared (amorphous)

Fe³⁺/TiO₂ after heat treatment (semicrystalline)

EDX spectra and Mapping of Fe³⁺-doped TiO₂

EDX spectra shows the presence of iron at >8 atomic % which arises from both surface and bulk Fe³⁺ sites

EDX mapping studies indicate the uniform dispersion of iron within the TiO₂ matrix

Photocatalysis Using UV light

Photosensitization Using Visible light

Photocatalysis Experiments

Role of metal in Metal/Doped-Titania Photocatalyst

At the plasmon resonance frequency there would be efficient resonance light absorption.

Band-gap excitation wavelength should reasonably match silver plasmon resonance frequency

Conclusions

Titania coated silver nanoparticles were synthesized using sol-gel technique.

Fe³⁺- doped Titania that is sensitive to visible light was synthesized.

From the degradation of sulforhodamine dye experiments true doping effect was observed in the Fe³⁺- doped Titania photocatalyst

Efforts are underway to coat silver nanoparticles with Fe³⁺- doped Titania.

Photocatalytic activity of Fe³⁺- doped Titania and silver coated with Fe³⁺- doped Titania will be compared.

