Chemoreceptive Neuron MOS (CoMOS) Transistors for Environmental Monitoring: **Detection in Fluid and Gas Ambients with** Field Programmability and High Reliability Edwin C. Kan School of Electrical and Computer Engineering **Cornell University**

Motivation

- Silicon-based autonomous microsystem
 - Sensing ability
 - Communication
 - Computation
 - Control/memory units
 - Actuation capability
 Power self-sufficient
 Ease of manufacture

2

CORNELL

Outline

Literature Review (1/3)

• FET-based (Bergveld 1970)

> Materials in contact with silicon oxide > pH sensitive Many spin-offs □ ChemFET □ ENFET (Enzyme) **IMMUNOFET**

Literature Review (2/3)

Resistive-based

□ Tune resistivity in the sensing scheme **Gardner** (1991) □ Lewis (1996): electronic nose Advantage: sensitivity from tunneling distance modulation

Corneli

Literature Review (3/3)

- Chemicapacitive
 Yamamoto (1987)
 Steiner (1995)
- Chemomechanical
 Grimshaw (1990)
 Lang (1999)

ORNELI

SAW-IDT (Inter-Digital Transducers)
 Wenzel (1990)
 Nakamoto (1991)

Dong, et al., Sensors and Actuators **B76**, 130 (2001).

Why CoMOS?

- Integrated device structure for sensors
- Enhancement of DOFs in sensing
- Ease of integration with current CMOS technology
- Charge-based operation to reduce power consumption

- Potential for sensor-array application
- Possibility to integrated sensors and actuators with the same structure

CuMOS Objectives

- High sensitivity
- High selectivity
- Reproducibility, stability and reliability
- Simple calibration and reset protocols
- Field reconfigurability
- Versatile transient measurement
- Low power consumption in the system
- Low manufacturing cost

CuMOS Device Structure

Extended floating gate

Polymer-Coating Parameters

Polymer Coating	Solution	Molecular Weight		
poly(vinyl acetate)	20 mg in 10 mL Tetrahydrofuran	90,000		
poly(vinyl butyral)	20 mg in 10 mL Tetrahydrofuran	100,000-150,000		
poly(ethylene -co- vinyl acetate)	100 mg in 10 mL Benzene	72:28 (wt.)		
poly(vinyl chloride)	20 mg in 10 mL Tetrahydrofuran	110,000		

Polymer Coating	Thickness (nm)	Roughness Ra (nm)	Roughness Rq (nm)		
poly(vinyl acetate)	50	64	88		
poly(vinyl butyral)	25	20	27		
poly(ethylene -co- vinyl acetate)	30	2	2		
poly(vinyl chloride)	30	8	13		

Dip-Pen Technology

• For smaller sensing gates

ORNELI

Molecules delivered from the AFM tip to solid substrate via capillary transport

30-nm linewidth resolution

D. Piner, J. Zhu, F. Xu, and S. Hong, C. A. Mirkin, *Science* **283**, 661 (1999).

Microfluidic Channels

Close-up views

Outline

 Development of the chemoreceptive neuron MOS (CvMOS) trasistors

Device operations and results

Sensors

Actuators

Device Operation

- Record initial device *I-V* characteristics
- Apply polymer coating and insulation elastomer
- Deliver fluid to the microfluidic channel (base buffer, electrolytes, or buffer loaded with protein molecules)
- Observe and record changes in threshold voltages (V_t) and subthreshold slopes (S): extract C_{SG} and ϕ_{OHP}
- *Electron-tunneling operation: apply bias (30V or -30V for 50 seconds) at the control gate*
- Observe and record V_t and S
- Perform cleansing steps (e.g. rinsing, N₂ drying)

• Re-align insulation layer and repeat *I-V* measurements 14

Phenomena at the Interface

GCS model

Double-layer capacitance

C_{H} : Helmholtz-plane capacitance

$$C_{H} = \int_{0}^{A_{SG}} \left(\frac{\varepsilon_{r} \varepsilon_{0}}{x_{OHP}} \right) dA$$

 x_{OHP} : dist. between Helmholtz planes

C_{DIF} : Diffuse-layer capacitance

$$C_{DIF} = \int_{0}^{A_{SG}} \left(\frac{2\varepsilon_r \varepsilon_0 z^2 q^2 n}{kT} \right)^{1/2} \cosh\left(\frac{zq\phi_{OHP}}{2kT}\right) dA$$

z: magnitude of the charge on the ions *n*: concentration of the ions ϕ_{OHP} : potential at the OHP

IHP OHP

Capacitive-Divider Model

Sample IV Illustration

ORNELI

Notations:

c : after applying insulation elastomer with microfluidic channels

m : after delivering the sample fluid

o : after tunneling electrons out of the floating gate

t : after cleansing steps and a period of time in the dry box with constant N_2 flow

Sensing-Gate Responses

Influence from the fluid

- Induce image <u>charge</u> at the extended floating gate
- Modify series <u>capacitance</u> to the sensing gate
- Affect floating-gate potential and total capacitive load; create distinctive threshold-voltage shifts and subthreshold-slope variations

Capacitance indication

- Collect information via <u>capacitive coupling</u> from the fluid bulk to the extended floating-gate structure
- Detect variations before and after <u>electron-tunneling</u> <u>operations</u>

Subthreshold Slopes

Data Analyses

- Extraction of subthreshold slopes from the measured *I-V* recordings
- Direct estimation of sensing-gate capacitance (C_{SG}), eliminating control-gate capacitance (C_{CG}) variation

$$C_{T} = (\beta S) C_{CG}$$

$$C_{T} = C_{p} + C_{CG} + C_{SG}$$

$$C_{SG} = (\beta S - 1) (C_{SGr} + C_{pr}) - C_{p}$$

$$C_{p} = (C_{ox} / / C_{dep}) + C_{b} + C_{gs} + C_{gd}$$

$$\beta = \kappa / (U_{T} \ln 10)$$

Reference S_r

5 mM KCl	dI_r	dI_c	$d1_m$	dI_i	dI_t	$d2_r$	$d2_c$	$d2_m$	$d2_i$	$d2_t$
polysilicon	148	177	553	728	166	200	213	771	1019	217
poly(vinyl acetate)	187	198	270	272	194	284	296	435	455	293
poly(vinyl butyral)	228	231	687	985	228	160	176	663	830	165
poly(ethylene -co- vinyl acetate)	163	197	673	711	180	156	183	575	668	166
poly(vinyl chloride)	288	301	469	491	279	212	215	1164	1308	219

Notations:

d1, d2 : device 1, device 2r : initial referencec : after channel formationm : after fluid delivery

Normalization required to get rid of the fabrication variation

i : electron tunneling in, 30 V, 50 s. *t* : recordings after cleansing steps and a period of time in the dry box

Normalized ΔC_{SG}

Before electron injectionVariation by polymers (\sqrt) Difference between fluids(X)

ORNELI

After electron injection <u>"Discernible patterns"</u>

Selectivity Demonstration (1/2)

Mixture contains both solutions in corresponding concentration

Before electron injection "Difference not obvious"

ORNELI

After electron injection "Discernible patterns"

<u>23</u>

Selectivity Demonstration (2/2)

Sensor-array plots

ORNELI

Double-Layer Parameters (1/3)

$\Box \Delta C_{dif}$ from extracted S

Corneli

ΔC_{re}	DI	NaCl Solution				KCl Solution			
$(\mu F/cm^2)$	Water	50μΜ	0.005M	0.05M	0.5 M	50μΜ	0.005M	0.05 M	0.5 M
polysilicon	6.4	7.0	7.5	19.3	26.0	5.7	4.9	4.0	4.0
poly(vinyl acetate)	<u>20.1</u>	1.7	7.5	8.3	114.5	6.6	7.6	74.6	<u>15.0</u>
poly(vinyl butyral)	1.8	6.0	13.2	16.4	33.6	4.8	4.3	3.3	<u>4.0</u>
poly(ethylene -co- vinyl acetate)	1.2	8.9	67.7	105.1	<u>9.9</u>	<u>9.0</u>	0.9	1.3	2.3
poly(vinyl chloride)	1.1	2.1	3.2	8.3	20.6	0.4	2.4	26.6	<u>14.9</u>

$$S = \frac{U_T \ln 10}{\kappa} \left(\frac{C_T}{C_{CG}} \right) \qquad C_{SG} = \left(\frac{\beta S - 1}{\beta S_r - 1} \right) \left(C_{SGr} + C_{pr} \right) - C_p \qquad \beta = \frac{\kappa}{U_T \ln 10}$$

ORNELI

Double-Layer Parameters (3/3)

$\Box \Delta \phi_{OHP}$ (after electron injection)

The change of the ϕ_{OHP} increases with increasing concentration in NaCl For KCI solution, no significant increasing trend is observed as in NaCI

CORNELL

Detection in Gas Ambients

Protein Sensing

Sample-and-Hold Control Signal

Control signal for sample and hold in the readout circuits (monitoring signals from measurement)

Readout Calibration

CORNELI

Quasi-static operations with reliable resets

Readout Channel

Corneli

Outline

 Development of the chemoreceptive neuron MOS (CvMOS) trasistors

Device operations and results

Sensors
Actuators

Electrowetting Actuation

- Conventional approach the change of surface tension at the solid-liquid interface by directly applying different voltages
- Young's equation

 $\gamma_{sg} = \gamma_{s\ell} + \gamma_{\ell g} \cos \theta$

Lippman's equation

$$\gamma_{sl} = \gamma_{sl0} - \frac{C_{edl}}{2} (V - V_0)^2$$

$$\theta = \arccos\left(\cos\theta_0 + \frac{C_{edl}}{2\gamma_{12}} (V - V_0)^2\right)$$

 $\gamma_{sg} = \frac{\theta}{\gamma_{sl}}$

Cornell

Device Structures

Microfluidic channel only partially covered to avoid air pressure against actuation

Transparent elastomer layer provides easy observation of the saline-water actuation

CORNELL

Equilibrium in the Channel

CORNELL

Actuation Scheme

Result Illustrations

Liquid front advances about 10 μm after electrons are tunneled to the floating gate Less change in equilibrium liquid length for the wider channel after actuation

CORNELL

Control Experiments

Asymmetrical liquid-front advancing by directly sweeping external voltages Equilibrium length of the liquid almost unchanged after 30 minutes

CORNELL

Electrowetting on CvMOS

- Modification of interfacial charges results in the change in solid-liquid interfacial tension and hence the <u>equilibrium length</u> of the liquid in the microfluidic channel
- Potential for <u>integration</u> with the CvMOS sensors and conventional CMOS circuitry for <u>fluid delivery</u>
- Air-trapping considerations for further device designs in microfluidic application
- No actuation observed for KCI solution; results agree with $\Delta \phi_{OHP}$ after elec. injection

Selective to Buffer Species

$\Box \Delta \phi_{OHP}$ (after electron injection)

The change of the ϕ_{OHP} increases with increasing concentration in NaCl For KCI solution, no significant increasing trend is observed as in NaCI

42

CORNELL

Smart Sensors and Actuators

ORNELI

Controlled fluid delivery for more reliable sensing

- Analysis/feedback circuitry from CMOS to provide fluid information (variety, position, etc.)
- Various surface coatings individually applied on sensors and/or actuators

Outline

Development of the chemoreceptive neuron MOS (CvMOS) trasistors
Why – Review of literature
What – CvMOS device structure
How – Device operation
Sensors
Actuators

Summary and future directions

Summary (1/2)

- FET devices with <u>extended floating gates</u> for chemical sensing
- Floating-gate structure for <u>electron-tunneling</u> operations provides more DOFs for sensing
- Indicators from *I-V* characteristics: Subthreshold slopes (S) and threshold voltages (V_t)
- CMOS integration enables detailed control circuits

- Normalized △C_{SG} in the polymeric responses directly couples to subthreshold slopes and the patterns encourage <u>sensor-array</u> application in the lock-and-key implementation
- Electrowetting actuator for potential <u>microvalves</u> integrated with the sensors and conventional CMOS circuitry for fluid delivery and confinement