PROJECT TITLE:

Sustainable Biodegradable Green Nanocomposites From Bacterial Bioplastic For Automotive Applications

Lawrence T. Drzal

Composite Material and Structures Center
Michigan State University
East Lansing, MI 48824

drzal@msu.edu

http://www.egr.msu.edu/cmsc/biomaterials/index.html

Research Team

PI: Lawrence T. Drzal1

Co- Pls: Amar K. Mohanty², Manjusri Misra¹

Senior Personnel: Satish Joshi³,

Postdoc(1st year only): Shrojal Desai1

Graduate Students: Yashodhan Parulekar² and Dana G. Miloaga¹

¹Composite Materials and Structures Center,

The Department of Chemical Engineering and Materials Science,

2100 Engineering Building, ²The School of Packaging, 130 Packaging Building, ³ Department of Agricultural Economics, 301C Agriculture Hall,

Michigan State University, East Lansing, MI 48824

Industrial Partners:

General Motors, Metabolix Inc and Nanocor

with an evenior meniage of how to make and a

Giant Pollution Mass at Sea

When an oceanic garbage patch the size of Texas dumps some of its treasures along the West Coast this summer, By Marsha Walton -- CNN

Morld Cnu

World Environment Week

- ▲ To overcome the problems due to plastic wastes.
- ▲ To substitute non-degradable petroleum based polymers with biodegradable plastics.
- ▲ To introduce bioplastics from renewable resources into market.

Plastic B Cleanup Costs Appro Billion Dollars ...

Nov. 2003

Environment Day" one hopes to educate more people and contecture to the growing correctionness about how a bindgeoring population and movietz civiliatics is damaging even the tough-

macks to think almost where in a houshed in the future, in the very next flature, those is every likely based of life becoming more of a hell than a heaven for the people of this flams.

BIOPOLYMERS: CLASSIFICATION

Polyhydroxybutyrate (PHB)

- Bacteria
- Polyhydroxybutyrate (PHB) is a linear thermoplastic polyester produced by controlled bacterial fermentation process.
- Discovered by French microbiologist Maurice Lemoigne in 1923.
- Next generation PHB will come from Transgenic plants/micro-organisms
- Typical cost ranges from 1-2 \$/lb

Bacterial Polyester Developments

White patches in microorganism

PHA	R
PHB	- CH ₃
PHV	$-CH_2CH_3$
PHBV (Biopol®)	- CH ₃ & CH ₂ CH ₃
PHBHx	-CH ₃ & - CH ₂ CH ₂ CH ₃
РНВО	$-CH_3 \& -(CH_2)_4CH_3$

R = Hydrocarbon (up to C13)

x = 1 to 3 or more

PHA structure

Courtesy: Metabolix & Biomer

BACTERIAL BIOPLASTIC

ADVANATAGES

- **▲** Biodegradable
- **▲** *Eco*-friendly synthesis
 - ▲ Excellent processability
 - ▲ From renewable resource
 - **▲** Good mechanical properties

SHORTCOMINGS

- **▲** Poor interaction with fibers
- **▲** Narrow processing window
- **▲** Lack of reactive groups
- **▲** Thermal degradation
- **▲** Brittleness

OBJECTIVES

- ▲ To overcome some of the inherent material limitations of PHB/PHA bioplastics.
- ▲ To study the effect of PHB/PHAs modification on its Thermal and Morphological properties.
- ▲ To synthesize functionalized PHB/PHAs as a compatibilizer in PHB/PHAs based blends, and nanocomposites.

PART – I

"Functionalization and characterization of PHB and its derivatives via Solvent-free Reactive Extrusion"

MATERIALS & PROCESSING

- PHB-P226- from Biomer Germany
- Maleic Anhydride:MA
- Octadecenyl Succinic Anhydride: ODSA
- Trigonox 101 45B (2,5-dimethylhexane-2,5ditertbutyl peroxide)

EXPERIMENTAL SETUP

DSM MICRO 15, HOLLAND

Twin Screw Extruder

Feeder

Free radical grafting of MA/ODSA onto PHB via reactive extrusion

FT-IR

▲ Peak at 1782 cm⁻¹ indicates anhydride groups grafted onto PHB backbone.

NAME	Initiator wt%	MA/ ODSA wt%	ACID No.	% AN
PHBMA4	1.8	4	23	2.0
PHBSA4	1.8	8	14	1.3

- ▲ Peak at 1850 cm⁻¹ corresponds to unreacted MA in the PHB matrix.
- ▲ Vacuum drying of pellets at 80 °C for > 12 hrs ensures complete removal of unreacted MA.

OPTICAL MICROSCOPY

- Large spherulites with distinct maltase patterns and well defined boundaries are due to highly regular arrangement of pristine PHB chains
- Drastic decrease in spherulite size upon maleation results from hindered / irregular rearrangement of PHB chains bearing large anhydride groups
- · Smaller spherulites size results in less brittle material

XRD FT-IR

- XRD peak at 2θ =13.3° corresponding to crystalline region decreases upon maleation of PHB.
- Decrease in crystallinity of PHB upon maleation is evident from depletion of 1185 cm⁻¹ peak intensity in FTIR spectral overlay.
- Intensity of crystalline peaks in both the graphs depend on % anhydride in the PHB backbone.

PART – I: CONCLUSIONS

- ✓ Reactive extrusion can be successfully employed for the grafting of functional groups onto PHB backbone by a solvent free process.
- ✓ Degree of grafting can be controlled by varying the reagent concentrations and residence time of melt in the extruder.
- ✓ Desired changes in the thermal and morphological properties of PHB can be achieved upon its functionalization.
- ✓ Decrease in PHB spherulite size with the grafting degree is due to the imperfect crystal formation and irregular rearrangement of PHB chains bearing bulky anhydride groups.
- ✓ Smaller crystal size leads to a less brittle material.

PART - II-A

COMPTIBILIZED GREEN-NANOCOMPOSITES FROM PHB and NANOCLAY

MECHANISM

XRD ANALYSIS

The d_{001} spacing in organo-clay sample *is* 18 Å, and that of the PHB/clay sample is 44 Å. Upon intercalation, peak corresponding to clay crystallites shifts from 5° to 2° on 20 axis Decrease in the intensity of intercalation peak at $20 = 2^{\circ}$ indicates more number of exfoliated clay plates

TEM ANALYSIS

PHB + 9 wt% clay (arrow indicates clay tactoid)

PHB + 9 wt% clay+ 5 wt% PHB-g-MA (arrow indicates exfoliated clay)

Clay tends to remain as tactoids in the PHB matrix Addition of small of amount of PHB-g-MA facilitates Clay exfoliation

PART – II-A: CONCLUSION

✓ PHB-MA is a good compatibilizer for PHB Nanocomposites

PART – IIB Automotive application of nanocomposites

OBJECTIVES

- ❖PP's low impact strength led to the development of TPO but at the cost of flexural strength and scratch resistance.
- Clay-reinforced TPO has overcome these drawbacks and was the first instance of a nanocomposite being used for exterior automotive applications.
- However PP and subsequently TPO are both nonbiodegradable and also petroleum-based.
- ❖This project aims to replace these conventional petroleum-based clay-reinforced toughened polyolefin (TPO) materials with alternative 'Green' materials which will have comparable properties with TPO and also be biodegradable and recyclable.

Results (Patent application on process)

40% X does not affect the impact strength of PHB. But addition of 10 % additive Y improves the impact strength by 440% (50%more than TPO)

The modulus of PHB is reduced by only 50% when X and Y were added together and is only 20% lower than TPO.

Conclusions from Part II B: Toughened Green-nanocomposites

- Toughening of PHB resulted in improvement in Impact properties with a loss in modulus.
- Nanoclay platelets were added to regain the stiffness to some degree.
- ➤ Optimum clay exfoliation and surface chemical modification produced nanocomposites with enhanced properties capable of competing with TPO.

PART-III

(New Research Approach Underway)

Ionic liquids (ILs) to be used as:

- New plasticizer for PHA polymer matrix (replace phthalates)
- Exfoliating agent for layered silicates in 'green nanocomposites' preparation from PHAs

Project Schedule

Tasks

Spr.2003 Sum.2003Fall02003Spr.2004 Sum.2004Fall2004 Spr.2005 Sum.2005Fall2005

Acknowledgements

- EPA STAR award # RD-83090401
- ***FORD, GM, METABOLIX, EASTMAN & NANOCOR**

