US ERA ARCHIVE DOCUMENT

US EPA Collaborative Science & Technology Network for Innovation

Rosslyn, VA - October 18th, 2005

Project Overview and Progress Update
Industrial Ecology, Pollution Prevention & the NY/NJ Harbor

Marta Panero, Ph.D.

Industrial Ecology,
Pollution Prevention
& the NY/NJ Harbor

NY Academy of Sciences

Industrial Ecology (IE)

Goals of IE:

- **♯** Materials and energy optimization
- **♯** Ecological and human health
- **#** Environmental equity

♯ Systems-based approach

- Model the flow, transformation and dissipation of energy and materials through various systems (industrial systems, business and consumer communities, ecological systems) [Descriptive]
- Seeks to optimize the total industrial materials cycle from virgin material to finished product to waste disposal in order to lessen the impact of these processes on the environment [Prescriptive]

Analytical tools:

- **■** Material flows, substance flow assessments
- **♯** Life cycle analysis
- **■** Design for the environment, life cycle design

Overall Goals of Project:

- **Identify the locations in five toxicant cycles (Hg, Cd, PCBs, dioxins and PAHs) where pollution prevention (P2) would most efficiently contribute to long-term reductions in loadings to the harbor**
- **Develop practical P2 strategies that address toxicant releases / emissions**
- **Encourage implementation of the recommended actions by integrating stakeholders into the research and policy process**
 - Stakeholders Consortium includes: environmental groups, industries, trade associations, labor, academia and government

Why a consortium?

- **Emphasizes public involvement and communication:**
 - New Paradigm: Inform, Include, Decide
- **Benefits of engaging the public:**
 - participants provide valuable information and guidance
 - promote implementation of recommended strategies
- **Den process acts as educational forum**
 - Ensures continuity in participation
- **♯ Alternative valuation process** important when monetary valuation of benefits is not available
- **#** Diversity of sponsors

Step 1: Research

- Identify sources, flows and sinks for contaminants through the region including products, processes and sectors that produce, use and/or release these contaminants
- Develop a Substance Flow Assessment, quantifying contaminant flows and transformations (from extraction, production, consumption, to post-consumption, including disposal rates) [Industrial Ecology assessment]
- **Quantify contaminant flows in and out of the Harbor** through air, water and land [Harbor Mass Balance]
- **#** Compare two assessments [IE & MB]

Understanding contaminant movements (PCBs) [IE analysis]

Mass balance for NY/NJ Harbor

Modeling system interactions: integrating the IE & MB assessments

Step 2: Developing policy recommendations

- **♯ Identify P2 strategies that result in the greatest reductions**
- **Develop P2 recommendations with Consortium**
 - # Find leverage points for intervention. Identify economic sectors, substitute materials, technologies and/or alternative practices that provide effective leverage for policy tools.
 - **♯** Public Opinion Survey / Sector meetings
 - Determined total costs associated with P2 plan

Implementation

- **Identify partners**
- # Public Outreach
- **■** Voluntary actions & challenges

Primary versus final outflows

Identifying all flows & stakeholders through IE

Summary: Value added of IE

- ★ Material Flow analysis complements environmental Mass Balance for the NY/NJ Harbor
- **♯** Tracing contaminants back to the primary sources

Data availability/requirements

Mercury, Cadmium

- # Still commercialized (produced, used)
- ➡ National Material Flows Available from US Geological Service
- □ Industry data by sectors; some data by products

PCBs

- ♯ Production is banned but still inadvertently produced and used in products
- **♯** National Inventories from 1980s only

Dioxin, PAHs

- **■** Not commercialized, (by-product)
- # No national/regional material flow analysis, only emissions inventory

Industrial Ecology Resources

The Journal of Industrial Ecology:

http://mitpress.mit.edu/catalog/item/default.asp?ttype+4&tid=32

Pollution Prevention and Industrial Ecology:

www.umich.edu/~nppcpub/resources/ResLists/Ind.Ec.html

Industrial Ecology Compendium:

www.umich.edu/~nppcpub/resources/compedia/ind.ecol.html

For copies of documents and more information about our project:

http://www.nyas.org/programs/harbor.asp

"Pollution Prevention and Management Strategies for Mercury in the NY/NJ Harbor"

"Survey of Public Opinion: Opinions of Stakeholders on Issues that Concern the Future of the Harbor"

"Pollution Prevention and Management Strategies for Cadmium in the NY/NJ Harbor"

"Pollution Prevention and Management Strategies for PCBs in the NY/NJ Harbor"