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U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD),

National Center for Environmental Research (NCER)

Computational Toxicology Centers STAR Progress Review Workshop
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U.S. Environmental Protection Agency
Main Campus, Building C, Auditorium C111A/B
109 TW Alexander Drive
Research Triangle Park, NC 27711

Thursday, October 1, 2009
Agenda

Registration

Welcome, Introduction, and Review of Meeting Goals
Robert Kavlock, EPA, ORD, and Deborah Segal, EPA, ORD, NCER

Carolina Center for Computational Toxicology
Ivan Rusyn, University of North Carolina

Collaborative Work With EPA
Ann Richard, EPA, National Center for Computational Toxicology (NCCT)

Break

New Jersey Environmental Bioinformatics and Computational Toxicology Center
William Welsh, University of Medicine and Dentistry of New Jersey

Collaborative Work With EPA
Susan Euling, EPA, National Center for Environmental Assessment (NCEA)

Lunch (On Your Own)

Carolina Environmental Bioinformatics Research Center
Fred Wright, University of North Carolina

Collaborative Work With EPA
Richard Judson, EPA, NCCT

The Texas-Indiana Virtual STAR Center: Data-Generating In Vitro and In Silico
Models of Developmental Toxicity in Embryonic Stem Cells and Zebrafish
Maria Bondesson Bolin, University of Houston

Collaborative Work With EPA
Thomas Knudsen, EPA, NCCT

A Proposal from the European Commission’s Complementary Research Program
Bart van der Burg, BioDetection Systems B.V.

Discussion on Research Needs
Chair: Maggie Breville, EPA, ORD

Adjournment
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Carolina Center for Computational Toxicology

EPA Grant Number: R833825

Investigators:

1. lvan Rusyn E-mail: iir@unc.edu

2. Timothy Elston E-mail: telston@amath.unc.edu

3. Shawn Gomez E-mail: smgomez@unc.edu

4. Mayetri Gupta E-mail: gupta@bios.unc.edu

5. Andrew Nobel E-mail: nobel@stat.unc.edu

6. Wei Sun E-mail: wsun@bios.unc.edu

7. Alex Tropsha E-mail: alex_tropsha@email.unc.edu
8. Simon Wang E-mail: wangx@email.unc.edu

9. Fred A. Wright E-mail: fwright@bios.unc.edu

Current Investigators:

1. lvan Rusyn E-mail: iir@unc.edu

2. Timothy Elston E-mail: telston@amath.unc.edu

3. Shawn Gomez E-mail: smogomez@unc.edu

4. Alex Tropsha E-mail: alex_tropsha@email.unc.edu
5. Fred A. Wright E-mail: fwright@bios.unc.edu

6. Karin Yeatts E-mail: karin_yeatts@unc.edu
Institution:

1. University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599

EPA Project Officer:
Project Period: April 1, 2008 through March 31, 2012
Project Amount: $3,400,000

RFA:
Research Category:
Description:

Objective:

The objective of this proposal is to create The Carolina Center for Computational Toxicology. We present
a clear plan for an effective, broad and interdisciplinary effort to devise novel tools, methods and
knowledge that will utilize publicly available data to assist the regulatory agencies and the greater
environmental health sciences community in protecting the environment and human health.

Approach:

The Center will apply knowledge and expertise of the individual investigators and teams to develop
complex predictive modeling solutions that span from mechanistic- to discovery-based efforts. The
Center will be divided into three Research Projects and an Administrative Core Unit. To balance the
research needs detailed in the Funding Opportunity EPA-G2007-STAR-D1 and maximize the interactions
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within the Center and between the Center and the larger environmental health community, the
following sub-disciplines were recognized as critical to the Center: 1) Biomedical modeling of chemical-
perturbed networks (Project 1, Pls Gomez and Elston), 2) Toxico-genetic modeling (Project 2, PIs Wright
and Rusyn), and 3) Chem-informatics (Project 3, Pl Tropsha). Overall, we chose a bottom-up approach to
predictive computational modeling of adverse effects of toxic agents. Our emphasis spans from the fine-
scale predictive simulations of the protein-protein/-chemical interactions in nuclear receptor networks
(Project 1), to mapping chemical-perturbed networks and devising modeling tools that can predict the
pathobiology of the test compounds based on a limited set of biological data (Project 1), to building
tools that will enable toxicologists to understand the role of genetic diversity between individuals in
responses to toxicants (Project 2), to unbiased discovery-driven prediction of adverse chronic in vivo
outcomes based on statistical modeling of chemical structures, high-throughput screening and the
genetic makeup of the organism (Project 3). The Administrative Core Unit provides administrative and
programming staff in support of the entire Center, is responsible for ensuring that Center objectives and
goals are being met, and provides oversight for each for the Projects. A detailed Quality Management
Plan ensures that the research and data management will be conducted with integrity and adhering to
appropriate data interchange standards. The plans for Public Outreach will ensure that the activities of
the Center are translated into useable information and materials for the public and policy makers.

Expected Results:

The Center will advance the field of computational toxicology through the development of new methods
and tools, as well as through collaborative efforts. In each Project, new computer-based models will be
developed and published that represent the state-of-the-art. The tools produced within each project will
be widely disseminated, and the emphasis will be placed on their usability by the risk assessment
community and the investigative toxicologists alike. The synthesis of data from a variety of sources will
move the field of computational toxicology from a hypothesis-driven science toward a predictive
science.



Environmental Bioinformatics and Computational Toxicology Center
EPA Grant Number: R832721
Investigators:
1. William J. Welsh E-mail: welshwj@umdnj.edu

2. Panos G. Georgopoulos  E-mail: panosg@fidelio.rutgers.edu

Current Investigators:

1. William J. Welsh E-mail: welshwj@umdnj.edu

2. loannis Androulakis E-mail: yannis@rci.rutgers.edu

3. Christodoulos Floudas E-mail: floudas@titan.princeton.edu
4. Panos G. Georgopoulos  E-mail: panosg@fidelio.rutgers.edu
5. Marianthi lerapetritou E-mail: marianth@sol.rutgers.edu
6. Herschel Rabitz E-mail: hrabitz@princeton.edu

7. Weida Tong E-mail: weida.tong@fda.hhs.gov
Institution:

1. University of Medicine and Dentistry of New Jersey, Newark, New Jersey, 07101
2. Princeton University, Princeton, New Jersey, 08544
3. Rutgers University, New Brunswick, New Jersey, 08901

Current Institution:

1. Princeton University, Princeton, New Jersey, 08544

2. Rutgers University, New Brunswick, New Jersey, 08901

3. U.S. Food and Drug Administration, Silver Spring, Maryland, 20993

4. University of Medicine and Dentistry of New Jersey, Newark, New Jersey, 07101

EPA Project Officer:
Project Period: October 1, 2005 through September 30, 2010

Project Amount: 55,422,135

RFA:
Research Category:
Description:

Objective:

The Research Center will bring together a team of computational scientists, with diverse
backgrounds in bioinformatics, cheminformatics and enviroinformatics, from UMDNJ, Rutgers,
and Princeton Universities, and the USFDA’s Center for Toxicoinformatics. This team will
address, in a systematic and integrative manner, multiple elements of the toxicant Source-to-
Outcome sequence (Investigational Area 1, as identified in the RFA) as well as develop
cheminformatics tools for toxicant characterization
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(Investigational Area 2, Predictive Models for Hazard Identification). The computational tools to
be developed through this effort will be extensively evaluated and refined through
collaborative applications involving Center scientists as well as colleagues from the three
universities and USEPA; particular emphasis will be on methods that enhance current
guantitative risk assessment practices and reduce uncertainties.

Approach:

The proposed Center will address a wide range of issues in Investigational Areas 1 and 2 and,
furthermore, will pursue complementary applications in risk assessment (Investigational Area
3). This will be achieved with the requested resources, by building upon a variety of methods
and software systems recently developed at UMDNJ, Rutgers, Princeton (with funding from
USEPA, USDOE, NIH and NSF), and USFDA. Research activities over the proposed 5-year effort
will be organized in five projects; each project will develop a set of “stand-alone" components
addressing specific problems of computational toxicology. Furthermore, Research Project 1 will
provide an integrative framework for Investigational Area 1 while Project 4 will address the
core issues of Area 2. Extensive interaction as well as public outreach and training activities will
constitute essential elements of the Center and will be tightly interwoven with the research
activities.

Expected Results:

Research Project 1 (Development and Application of a Dose-Response Information Analysis
[DORIAN] System) will provide an integrative framework for the outcomes of the other
projects. This framework will include the following components: a web-accessible
Environmental Bioinformatics Knowledge Base (EBKB) that will provide a user-oriented
interface to an extensive set of information and modeling resources; the ebTrack integrated
analysis system that will include linkages to multiple (public and commercial) computational
and database systems; Bayesian computational tools for characterizing and reducing
uncertainties in mechanistic modeling of toxicity pathways; diagnostic computational tools for
sensitivity and stability analysis of mechanistic models and statistical methods for data analysis;
and enhanced tools for quantitative risk assessment (QRA) applications (e.g. for cross-species
extrapolation, chemical mixtures, and dose-response).

Research Project 2 (Hepatocyte Metabolism Model for Xenobiotics) will develop tools for
identifying maximally informative sets of toxicologically relevant genes; tools for analysis of
toxicologically relevant regulatory networks; an expanded version of the Rutgers hepatocyte
metabolism model that will incorporate transformations of xenobiotics; and tools for the
analysis of transcriptional regulation that will allow assessing changes in hepatocyte phenotypic
phase space.

Research Project 3 (Tools for Optimal Identification of Biological Networks) will develop
efficient identification tools for inferring biological network structure from available laboratory
data; optimization tools for extracting quantitative information of biological system parameters
(rate constants, diffusion coefficients, binding affinities, etc.); global sensitivity analysis tools for
identifying most effective molecular targets or pathways of biological networks and for guiding
the design of laboratory experiments; and optimal feedback control tools for inferring networks
with feedback loops.
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Research Project 4 (Cheminformatics Tools for Toxicant Characterization) will develop an
integrative hierarchical decision-forest framework for toxicant characterization that
encompasses several novel technologies, including the Shape Signatures tool that rapidly
matches organic and organometallic chemicals with each other or, alternatively, against target
receptor sites/subsites; the Polynomial Neural Network (PNN) that automatically generates
physically-intuitive linear or non-linear QSAR models; and virtual high-throughput screening
(VHTS) methods that predict ligand binding affinity and provide mechanistic information
(toxicity pathways).

Research Project 5 (Optimization Tools for In Silico Proteomics) will customize computational
methods for protein structure prediction and de novo protein design, with specific focus on the
important families of Glutathione Transferases (GST) (cytosolic, mitochondrial and microsomal
GST); develop and implement computational methods for elucidating the topology of signal
transduction networks and addressing uncertainties in experimental data and models; and
develop de novo computational proteomics methods for peptide and protein identification via
tandem mass spectroscopy.
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Carolina Environmental Bioinformatics Center

EPA Grant Number: R832720

Investigators:

1. Fred A. Wright E-mail: fwright@bios.unc.edu

2. Kenneth J. Galluppi E-mail: galluppi@unc.edu

3. Lawrence Kupper E-mail: kupper@bios.unc.edu

4. Stephen J. Marron E-mail: marron@email.unc.edu
5.Jan F. Prins E-mail: prins@cs.unc.edu

6. lvan Rusyn E-mail: iir@unc.edu

7. David Stotts E-mail: stotts@cs.unc.edu

8. David Threadagill E-mail: dwt@med.unc.edu

9. Alex Tropsha_ E-mail: alex_tropsha@email.unc.edu

Current Investigators:

1. Fred A. Wright E-mail: fwright@bios.unc.edu

2. Rosann Farber E-mail: rosann.farber@pathology.unc.edu
3. Leonard McMillan E-mail: mcmillan@cs.unc.edu

4. lvan Rusyn E-mail: iir@unc.edu

5. Alex Tropsha E-mail: alex_tropsha@email.unc.edu
Institution:

1. University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599

EPA Project Officer:
Project Period: October 1, 2005 through September 30, 2010
Project Amount: $4,494,117

RFA:

Research Category:
Description:

Objective:

The Carolina Environmental Bioinformatics Research Center brings together multiple investigators and
disciplines, combining expertise in biostatistics, computational biology, chem-informatics and computer
science to advance the field of Computational Toxicology.

The objective of this proposal is to create an Environmental Bioinformatics Research Center with broad-
ranging capability to enhance and advance the field of Computational Toxicology. The Center will
develop novel analytic and computational methods, create efficient user-friendly tools to disseminate
the methods to the wider community, and will apply the computational methods to data from molecular
toxicology and other studies.
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Approach:

Effort will be divided into three Research Projects and an Administrative Unit. Each Research Project is
further divided into Functional Areas consisting of Analysis, Methods Development, and Tools
Development. Project 1 (Biostatistics in Computational Biology) will provide biostatistical support to the
Center, performing analysis and developing new methods in collaboration with EPA personnel and the
computational toxicology community. Project 2 (Chem-informatics) will coordinate the compilation and
mining of data from relevant external databases and perform analysis and methods development for
investigating Quantitative Structure-Activity Relationships with burgeoning high-throughput chem-
informatics data. In addition, Project 2 will develop computational tools to perform these tasks. Project
3 (Computational Infrastructure for Systems Toxicology) will create a framework for merging data from
various —omic technologies in a systems biology approach. The investigation of rodent liver toxicity is
used as a driving biological problem, inspiring new methods and architectures for data storage. Finally,
Project 3 will provide programming support for the further development of tools arising from Projects 1
and 2. The Administration Core provides and staff and support to the Center, is responsible for ensuring
that Center objectives and goals are being met, and provides oversight for each for the Functional Areas.
A detailed Quality Management Plan ensures that the research and data management will be conducted
with integrity and adhering to appropriate data interchange standards. The plans for Public Outreach
and Translation Activity will ensure that the activities of the Center are translated into useable
information and materials for the public and policy makers.

Expected Results:

The Center is expected to advance the field of computational toxicology through the development of
new methods and tools, as well as through direct collaborative efforts with EPA and other
environmental scientists. In each Project, we expect that new methods will be developed and published
that represent the state-of-the-art. The tools developed within each project will be widely disseminated,
and will be useful both to trained bioinformatics scientists and bench scientists. The synthesis of data
from a variety of sources will move the field of computational toxicology from a hypothesis-driven
science toward a predictive science. Each Project is goal-oriented, with criteria for success that will be
reviewed by the Scientific Advisory Committee.
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The Texas-Indiana Virtual STAR Center; Data-Generating in vitro and in silico Models of
Developmental Toxicity in Embryonic Stem Cells and Zebrafish

EPA Grant Number: 83428901

Investigators:
1. Prof. Jan-Ake Gustafsson (Contact PI) E-mail: jgustafsson@uh.edu

2. Prof. Richard H. Finnell E-mail: rfinnell@ibt.tamhsc.edu
3. Prof. James A. Glazier E-mail: glazier@indiana.edu
Institutions:

1. University of Houston, Department of Biology and Biochemistry, Houston,

Texas, 77204

2. The Texas A&M Institute for Genomic Medicine, Texas A&M University/Texas A&M
Health Science Center, Houston, Texas, 77030

3. Indiana University, Department of Physics, Bloomington, Indiana, 47405-7003

EPA Project Officer: (leave blank)
Project Period:

Project start: November 1, 2009
Project end: October 31, 2012

Project Amount: $3,190,993
RFA: (leave blank)
Research Category: (leave blank)

Description

Objectives/Hypothesis:

As chemical production increases worldwide, there is increasing evidence as to their
hazardous effects on human health at today’s exposure levels, which further implies
that current chemical regulation is insufficient. Thus, a restructuring of the risk
assessment procedure will be required to protect future generations. Given the very
large number of man-made chemicals and the likely complexity of their various and
synergistic modes of action, emerging technologies will be required for the
restructuring. The main objective of the proposed multidisciplinary Texas Indiana Virtual
STAR (TIVS) Center is to contribute to a more reliable chemical risk assessment through
the development of high throughput in vitro and in silico screening models of
developmental toxicity. Specifically, the TIVS Center aims to generate in vitro models of
murine embryonic stem cells and zebrafish for developmental toxicity. The data
produced from these models will be further exploited to produce predictive in silico
models for developmental toxicity on processes that are relevant also for human
embryonic development.
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Approach:
The project is divided into three Investigational Areas; zebrafish models, murine
embryonic stem cells models and in silico simulations. The approaches are to:

1. Generate developmental models suitable for high throughput screening.

Zebrafish developmental models (transgenic GFP/EGFP/RFP models of crucial
steps in development) and embryonic stem cell (ESC) differentiation models
(transgenic beta-geo models of crucial steps in differentiation) will be generated.
Important morphology features and signaling pathways during development will
be documented. The impact of environmental pollutants on development and
differentiation will be assessed in the models. Finally, the models will be refined
for high throughput screening and automation.

Generate a computational model that faithfully recreates the major
morphological features of normal wild-type zebrafish development (ie-
segmentation into somites, proper patterning of vascular and neural systems)
and the differentiation to three primitive layers (endoderm, mesoderm and
ectoderm) in mouse embryonic stem cells. The data for simulations are
produced from developed high information content zebrafish and ESC models.
Once a working model of normal development has been generated, we will carry
out a directed series of parameter sweeps to try to create developmental
defects in silico. We will compare the results of computationally created defects
with experimentally-generated defects in zebrafish and embryonic stem cells.
Best matches between the two datasets will suggest hypotheses about possible
mechanisms by which defects occur.

Perform proof-of-concept experiments of the in vitro and in silico test platforms
with a blind test of chemicals.

Techniques will be molecular biology techniques on zebrafish and ESC models, such as
cloning, imaging, in vitro differentiation and in vitro exposure studies, and in silico
mathematical simulations.

Expected Results (Outputs/Outcomes):

In collaboration with other initiatives taken in the field of chemical safety, our generated
results and models will contribute to large screening effort to prioritize chemicals for
further risk assessment. We will specifically contribute with:

9 transgenic fish lines validated for toxicity screening

16 embryonic stem cell models validated for toxicity screening

High information content models on development and differentiation to produce
data for in silico simulations, within the project and elsewhere

Computational models for developmental toxicology of normal development and
of mechanisms by which chemical perturbations cause experimentally-observed
developmental defects

Information on developmental toxicity on 39 compounds
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All the data produced in this project will be released to public databases. The developed
models will be automated for high throughput screening.

Supplemental Keywords:

Risk assessment, effects, dose-response, teratogen, organism, cellular, infants,
chemicals, toxics, aquatic ecosystem protection, pollution prevention, green chemistry,
public policy, environmental chemistry, biology, physics, genetics, mathematics,
modeling, measurement methods
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Chemical Substance In Vitro/In Silico Screening System To Predict Human and
Ecotoxicological Effects (ChemScreen)

Bart van der Burg, BioDetection Systems, Amsterdam, The Netherlands (Coordinator)

The current system of risk assessment of chemicals is complex, very resource-intensive,
and extremely time-consuming. Because of this, there is a great need to modernize this
process. However, this is not feasible without alternative, integrated testing strategies in
which chemical characteristics are used to more advantage, and where costly and time-
consuming animal tests are replaced to a large extent by more rapid, cheap, and
ethically less controversial methods. This is particularly needed for reproductive toxicity
testing of chemicals. Reproductive toxicity is important to assess both human and
environmental toxicity and uses the most animals in toxicity testing. Unfortunately, there
are very few alternative methods. The EU project ChemScreen is a partnership between
nine European institutes and companies from five different countries. It aims to generate
alternative methods and place the tests in a more general innovative animal-free testing
strategy. For this, we will generate a simple rapid screening system, which aims at
widespread implementation within the tight time schedule of the REACH program. It will
be a flexible tool that can be adapted and used for applications beyond the scope of
REACH and in the post-REACH period. It will use in silico methods for prescreening
chemicals for all relevant toxic effects. When found positive, this will be followed by
further in silico and in vitro tests, most of which are available already. To fill the gap of
suitable alternative methods for reproductive toxicity testing, we will use a novel high-
throughput approach combining in silico/in vitro methods. In this approach, we will
combine knowledge of critical processes affected by reproductive toxicants with
knowledge on the mechanistic basis of such effects. Straightforward data interpretation
and decision trees will be developed in which all information on the potential toxicity of a
chemical is considered. In this way, we will provide a cost-effective means to generate a
basic set of data on toxicological properties of chemicals and a decision tool to assess if
further testing of chemicals is required.
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Carolina Center for Computational Toxicology
Organizational Structure

étternal Advisory Boam
Linda Griffith, PhD
Edward LeCluyse, PhD
Howard McLeod, PharmD
Kevin Morgan, PhD
Christopher Portier, PhD
Vitali Proutskiy, MD, PhD

David Threadagill, PhD
\ Maurice Whelan, PhD

|
Center Director \

/ )

Scientific Steering
Committee
Shawn Gomez, PhD
Tim Elston, PhD
Fred Wright, PhD

\_ Alex Tropsha, PhD )

@a rch Proje}

1. biomedical modeling

Ivan Rusyn, MD, PhD J

/ Administrative Core \

1. administration

2. outreach/translation

\ 3. quality management /

of chemical-perturbed
networks

2. toxico-genetic
modeling

Wm-infermaticy

Protein-protein/
-chemical interactions,
reaction rates and
predictive simulations
(Project 1)

Chemical-perturbed
network topology and
biomedical modeling

(Project 1)

Toxico-genetic modeling,
network inference and
pathway assessment
(Project 2)

Statistical modeling and
discovery based on
chemical, biological and
genetic descriptors
(Project 3)
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Carolina Center for Computational Toxicology
Administrative Core

Administration Function:

* Project and budget management

« Communications

* Reporting to EPA and UNC

« Organization of the annual EAB meetings

Integration Function

* Promoting interactions within the Center

* Promoting interactions with EPA/NCCT and other partners
» Facilitating scientific interactions between Projects

Public Outreach/Translation Function

» Created Center website: http://comptox.unc.edu

» Implementing bioinformatics and chemo-informatics tools into GUI-enabled software
» Conducting joint research meetings with EPA/NCCT

* Presenting at the state, national and international scientific meetings

Quality Management Function

» Center-wide quality management plan developed and approved by the EPA

» Quality assurance project plans developed and annual audits performed for Year 1
 Remedial actions will be completed by November 01, 2009
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In Step With the

US EPA Guidance: Commitment to Transparency
comptox.unc.edu

IHE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PROJECT 1

Predictive modeling of chemical-
perturbed regulatory networks
in systems toxicology

Cross-talk and co-regulation among
ruclear  receptors.  Designation  of
nodes and edges iz indicated at the
bottarn of the figure (from Woods et
al., 2007,

PROJECT 2

Toxico-genetic modeling:
Population-wide predictions
from toxicity profiling

| SOTL &} | TF tieting data |

| marie can | | genn axpression data 1\\

QL machite = #QTL oot st +

QONEE Irkad 1 the hot 8pot Activity peofiles of TFs.
e g
[ = <
= R
- TaaTT et Segnegants
Ianttty signicant TF regulation sfisct I

A strategy to detect the eQTL modules
that are rediated by transcription
factor activities (adapted from Sun et
al., z007).

PROJECT 3
Development of validated and predictive Quantitative Structure-
Toxicity Relationship models that employ both chemical and biological
descriptors of molecular structures and take into account genetic
diversity between individuals.

Maleculas Properties I

carcinogenicity,

Cornbining chermical and biclogical descriptors in QSAR rnodeling of chernical
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Carolina Center for Computational Toxicology

Project 1
Predictive modeling of chemical-
perturbed regulatory networks in
systems toxicology

Byproducts Small molecule @8-~ Expression —&—= Promoter Binding
o> —0-+ Molecular Synthesis
m Complex O, Regulation ¥
o= Molecular Transport —0—> Chemical Reaction

Functional Class Protein Modification —@—= Direct Regulation

—¢— Binding

Project 2
Toxico-genetic modeling:
Population-wide predictions from
toxicity profiling

! eQTL data '

| marker data gene expression data

TF binding data

eQTL module = eQTL hot spot +
genes linked to the hot spot
= eQTL hot spot

Activity profiles of TFs

Chrl

|
TF Activity

T - Yeast Segregants

Identify significant TF regulation effect
=T t = other linked g

Project 3
Development of validated and predictive
Quantitative Structure-Toxicity Relationship
models that employ both chemical and
biological descriptors of molecular structures
and take into account genetic diversity
between individuals

Environmantal Agents

'l' )

£
Binlogacal Diestriptors

v-Liver
ToxCast
ToxRefDB

EPAY,

~

ACToR  \@G'C
ToxCast @T >¢ 21
ToxRefDB

J

ToxCast
ToxRefDB




PROJECT 1

Predictive modeling of chemical-perturbed regulatory
networks in systems toxicology

Shawn Gomez — co-PI
Assistant Professor, Department of Biomedical Engineering, UNC-Chapel Hill

Timothy Elston — co-PlI
Professor, Department of Pharmacology, UNC-Chapel Hill

e Develop and apply data-driven methods for the inference and high-
level modeling of regulatory network response to chemical
perturbation

e Develop mechanistic models of nuclear receptor function

b=
<
L
=
=
O
o
(@]
98
=
—
-
O
(1 4
<
<
Q.
w
2
=

e Integrate and deploy high-, and low-level modeling tools
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Major Interactions with the US EPA

® Exploring toxicity modeling (mechanistic, dose-
response, etc.): with Rory Connolly (EPA-NHEERL)

e Extension and integration of mechanistic
metabolism and other models: work relevant to
the v-Liver Project, Imran Shah (EPA-NCCT)

® ToxCAST: with Richard Judson (EPA-NCCT)



Inference & Modeling of Biological Networks

. . . ._*
® Basis for mechanistic models arets SRt
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§ Short term: .

O ® Tool in data analysis and '33:1'-«« o e
o interpretation e
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Challenge #1: Data Integration
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Dynamic, condition-dependent, and other data
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Static interaction data
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Domain data TAP Data Two-hybrid ___ |Other interaction Expression Data Tran;criprion factor Phylogenetic Other
Data binding data Information
"':__‘_"—_‘_:_‘_——'-—-_'—1-____‘__
-\--_"# \—bd Regulatory Network Model
Domain-domain Domain-domain Domain-domain ————————7
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PCANS - NMR spectra alighment

w

r N r A i h
= sl
: || vl _adl I|I l 1i
O > L [T N
o ! Determine Alignment
a L Input Spectra | L Pick Peaks ,  Pairs by Correlation
m - ) - ™ " ' )
} ||I ||||I ||||| II ||.|.|||.|| |I| |I|‘||||
- [ i) 1l ) " !
I __;i_"" % | _I_l “|| | .|.||
U Dynamic Programming Segmentation of Naive Alignment of
m Alignment of Segments | Alignment Pair Highly Similar Peaks
q & '| .|‘. a. T b === Multiple Consensus Spectra ===>
o L -h""i""'

’

LL) ul |1|r’| | 1l | = One Consensus Spectrum => | | Output Results
m Creation of Consensus — from Alignment

Spectrum from ﬁ.lignmen_'_f‘
-

Staab J et al. (2009) BMC Bioinformatics (In revision)




Network Context: Traditional ways to create networks

(e )
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NEMO (Yan et al., 2007): frequent dense vertex set mining algorithm

(A) . : (B) .
C c
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Network Context: Subgraph Mining

“Functional Module” in Subgraph Mining

70%=> 7 assays

= , 22 & 24 chemical
§5°=>14 2553Y5 "5~ 15 assays & 46 chemicals >_ b A
=>13 assays

D40 -TNF receptor superfamily member 5
D38 -CD38 molecule

SELE -selectin E

D69 -CDE% molecule

L& -interieukin 8 JUN -jun oncogene

MNR113 -nuclear receptor subfamily 1, group |, member 3 RORA -RAR-related orphan receptar A

PPARG -peroxisome proliferator-activated receptor gamma POUZF1 -POU class 2 homeobao 1

PPARA -percxisome proliferator-activated receptor alpha BMPR2 -bone morphogenetic protein receptor, type I
NR112 -muclear receptor subfamily 1. group |, member 2 CREB3 -cAMP responsive element binding protein 3
CYP27B1 -cytochromea PAS0, family 27, subfamily B, polypeptide 1 CEBPB -CCAAT/enhancer binding protein (C'EBPF), beta
MTF2 -metal response element binding transcription factor 2 GABPA -GA binding protein transcription facter, alpha

® Mines binary data to find all
frequent ‘dense’ sub-graphs
(cliques)
® Nodes: Assay

@® Edges: Set of ‘Active’ Chemicals
shared between Nodes

® Finds all unique subgraphs for a
minimum frequency of ‘Active’
chemicals

@ Differs from Hierarchical
clustering by focusing on subsets
of the data

@ Useful for defining composite
assays that might be more
predictive

@ Useful for associating
Assay/Chemical combinations to
endpoints



Network Context: Subgraph Mining

Endpoint: RatLiver_Anylesion Minimum Frequency: 40 chemicals (~30%)
Module Found: 10 Assays for a set of 41 chemicals (*Active)

2D Hierarchical Clustering

= I *Active *Active
- Active - Active
InActive InActive
{EndPt} {EndPt]
= I InActive InActive

=>

<= Chemicals
<= Chemicals =>
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Development of a mechanistic model

of cellular metabolism:
predicting changes in metabolic flux

G G G Gw  Go
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PROJECT 2

Toxico-genetic modeling:
Population-wide predictions from toxicity profiling

Fred Wright — co-PlI
Professor, Department of Biostatistics, UNC-Chapel Hill

Ivan Rusyn — co-PI
Assoc. Prof., Dept. of Environmental Sciences & Engineering, UNC-Chapel Hill

e Develop toxicogenetic expression Quantitative Trait Loci (eQTL)
mapping tools, perform transcription factor network inference and
Integrative pathway assessment

e Perform toxicogenetic modeling of liver toxicity in cultured mouse
hepatocytes

e Discover chemical-induced regulatory networks using population-
based toxicity phenotyping in human cells



Major Interactions with the US EPA

® Developing in vitro tools which will enable testing
for inter-individual susceptibility: with David Dix
(EPA-NCCT) and other Tox21 partners

® Developing statistical methodology and
computational tools capable of processing higher-
order multi-dimensional data: work relevant to
future ToxCAST efforts and current Tox21 datasets

® ToxCAST: with Richard Judson (EPA-NCCT)
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Population-wide predictions from toxicity profiling:
linking toxicology with -omics and genetics

Data Analysis
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Genome-level analysis of genetic regulation of liver gene expression networks

(eQTL mapping)
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Gatti et al., Hepatology, 2007




Specific Objective 1: Development of Fast and Efficient Toxicogenetic
Expression Quantitative Trait Loci (eQTL) Mapping Tools

i Fast methods to

perform p-value-based
eQTL inference

(B)

Observed marker profiles

A geometric view of
permutation p-values

Center of a
significance set

e For each transcript, we
imagine a hypersphere in the
vicinity of the most significant
possible genotype profile

Permutation p-value estimation

B} f’ﬁ * Permutations correspond to
2 rotations of sets of observed

- /ﬁ genotypes within the space

=18
&

log10(pe)
—2.8
|
3

§‘§ » Significance thresholds

% determined by “volume” of
O space occupied by observed
S genotypes

G0
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Specific Objective 1: Development of Fast and Efficient Toxicogenetic
Expression Quantitative Trait Loci (eQTL) Mapping Tools

ORIGINAL PAPER &5 csmonomatmmors

Gene expression

FastMap: Fast eQTL mapping in homozygous populations

Daniel M. Gatti'-t, Andrey A. Shabalin®t, Tieu-Chong Lam", Fred A. Wright®,
lvan Rusyn'-* and Andrew B. Nobel?-3*

'Department of Environmental Sciences and Engineering, “Department of Statistics and Operations Research,
and 2Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
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e Java-based GUI which runs on a standard desktop PC
e Amenable to “proprietary” data

e Single marker or k-SNP window association mapping
e Permutation-based significance testing of the eQTLs

» Extended options for export of data/images and a link to UCSC genome browser



Specific Objective 1: Development of Fast and Efficient Toxicogenetic
Expression Quantitative Trait Loci (eQTL) Mapping Tools

eQTL Studies 2.0

n e .
S— We should care about disease phenotype
- - (susceptibility)
=
B B, | me | %
©  Control ] - = . .
@ 32 . o 3 » Most genotype-transcript correlations
v o mg a = o . .
P 65 m Sy 3 are incidental
- ] S 8_
(g EA me " "_l
iffer =] . .
" » We are interested in a small number of
Genotype | G | m, SNPs and transcripts with effects on
8 s phenotype

» This may be viewed as a huge variable
selection problem

Y = expression + genotype + genotype X expression
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Specific Objective 1: Development of Fast and Efficient Toxicogenetic
Expression Quantitative Trait Loci (eQTL) Mapping Tools

Understanding genomic context for expression

OPEN @ ACCESS Freely available online *'PLoS one

Dissecting Nucleosome Free Regions by a Segmental
Semi-Markov Model

5 1.2% : oy BAW 3 i . 3, 4,5,
Wei Sun , Wei Xie**?, Feng Xu”, Michael Grunstein™, Ker-Chau Li*

1 Department of Biostatistics. Carolina Center for Genome Science, University of Morth Carlina, Chapel Hill. Konth Camlina, United States of America. 2 Department of
Genetics, Cargling Center for Genome Science, University of North Carolina, Chaped Hill, North Camoling, United States of Amenica, 3 Department of Biological Chemistry,
University of Calfornia Los Angeles, Los Angeles, California, United States of America, 8 Department of Statistics, Universty of Calfomia Los Angeles, Los Angeles,
California, United States of America, 5 institute of Statistical Science, Genomics Research Center, Acadernia Sinica, Taipei, Taiwan

Nucleosome Occupation Data
by ChiP-tiling array

Detect locations of nucleosome
free regions, estimate their sizes,
degree of nucleosome depletion

Transcriptional activity
(RNA Polymerase Il Binding
by ChiP-tiling array)

DNA affinity estimations
from Segal et al.

Driving forces of nucleosome
depletion: transcriptional activity
versus DNA affinity to histones

BNIC Bioinformatics

Methodology article
Improved ChlP-chip analysis by a mixture model approach
Wei Sun*!, Michael | Buck?, Mukund Patel? and lan | Davis*34

Adddress: *Department of Riostatistics, Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC,
“Depantment of Biochemistry, Center of Excellence in Bioinformatics and Life Schences, State University of Mew York at Buffalo. Buffalo, my,
*Mepattment of Cenetics, University of Nosth Camoling at Chapel Hill, Chapel Hill, NC, USA and *Department of Pediatrics, Lineherger
Comprehensive Cancer Center, University of North Caralina at Chaped Hill, Chagel Hill, NC, USA
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PROJECT 3

Development of validated and predictive Quantitative
Structure-Toxicity Relationship models that employ

both chemical and biological descriptors of molecular
structures and take into account genetic diversity
between individuals

Alexander Tropsha — Pl
Chair, Division of Medicinal Chemistry & Natural Products, UNC-Chapel Hill

Develop rigorous end point toxicity predictors based on the QSAR
modeling workflow and conventional chemical descriptors

Develop novel computational toxico-genomic models based on
combined chemical and biological descriptors through QSAR
modeling workflow

Develop novel computational toxico-genetic models based on
combined genetic, chemical and toxicity descriptors through QSAR-
like modeling workflow



Major Interactions with the US EPA

® Integrating chemical descriptors into DSSTox: with
Ann Richard (EPA-NCCT)

® ToxCAST, ToxRefDB and ACToR data analysis: with
Richard Judson (EPA-NCCT)
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Predictive Quantitative Structure-Toxicity

Relationship Modeling

;.. \ J}-Q‘ 1{- I
._ : ' 5
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J \

| carcimogenesis Testing
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Testing

«'l = Multiple
B Chemical Descriptors H Training Sets
Molecular Properties |
— s Combi-QSPR
Original 7 Split '”tTo : Modeling
Dataset raining, Test,
and External
Validation Sets
o enees Only accept models
i Experimental | Multiple Activity that have a
{  Validation of Test Sets Prediction . q°>06
| Prioritized Alerts R% > 0.6, el.
p(':tr:rf’t'ig‘l'%‘;feft External validation Validated Predictive
y Using Applicability Models with High Internal
SRS Domain (AD) & External Accurac
Prioritize for 4
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Compound prioritization using the

ensemble of QSAR models

Database

QSAR models

nactive

Non-toxic JQ /)/b

Alerts: further testing

o



Data Curation

e In-vitro assays: 524 - 353

— Remove one of two highly correlated (R?>0.95) assays and
low-variance (<4 non-zero entries) assays

e Chemicals: 320 - 228

— duplicate structures, mixtures, inorganic compounds,
macromolecules were removed

— Kept only those for which in-vivo data is available (i.e.
chronic mouse toxicity)
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Focusing on a small subset of data: [
Chronic Mouse Toxicity

e Continuity (overlaps with previous ToxRefDB data)
e Manageable (has only 7 in-vivo assays)

e 3 assays with the highest fraction of actives
chosen for initial studies:

CHR_Mouse_LiverProliferativeLesions (87 actives)
CHR_Mouse_LiverTumors (68 actives)
CHR_Mouse_Tumorigen (88 actives)
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Data partitioning based on in vitro-in vivo [ a)
correlations as part of the QSAR Modeling workflow

-
4 For each In-vitro vs. In-vivo profile (3 x 353 = 1059 combinations):
LL)
E In-vivo g

S
- <A
O 4
O . Toxic
ﬂ in-vivo/inactive . Toxic (both) —
LL] in vitro
> S
= In-vitro
- =
@ :
oe l1l. Non-toxic .IV' Non-to?(lc o

in-vivo/active
<L (both) ey
in vitro
Q.
LL .
vitro

/)
-

Binary classification QSAR for “baseline” (Il & 1) vs. off-line (I & IV)
using chemical descriptors only




Developing Novel Bio-Descriptors

Pathway-derived

[L2ukocrTe TRANSENDOTHELIAL MIGRATION | - o]
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(D40 -TNF receptor superfamily member 5
D38 -CD38 molecule

SELE -selectin E

D69 -CD69 molecule

IL8 -interleukin 8

NR113 -nuclear receptor subfamily 1, group |, member 3
PPARG -peroedsome proliferator-activated receptor gamma

JUN -jun oncogene
RORA -RAR-related orphan receptor A
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PPARA -percaisome proliferator-activated receptor alpha
NR112 -nuclear receptor subfamily 1, group |, member 2

CYP27B1 -cytoc P45, family 27 ity B, T
MTF2 -metal response element binding transcription factor 2

BMPR2 -bone morphogenetic protein receptor, type Il
CREB3 -cAMP responsive element binding protein 3

CEBP® -CCAAT/enhancer binding protain (CEBF), beta
GABPA -GA binding protein transcription factor, alpha
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e Focus on accurate prediction of external datasets is
much more critical than accurate fitting of existing data:

— consensus (collaborative!) prediction using all acceptable models

— experimental validation of a small number of computational hits

— outcome: decision support tools in selecting future experimental
screening sets

e Neither cheminformatics nor HTS and —omics data alone
is insufficient to achieve the desired accuracy of the end
point property prediction

— Integration of cheminformatcs and bioinformatics: predictive model s of

selected endpoints using integrated short term biological profiles
(biodescriptors ) and chemical descriptors for compound subsets

— New computational approaches (e.g., hybrid and hierarchical QSAR)

— Interpretation of significant chemical and biological descriptors
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Center publications in Year 1

Choi K, and Gomez SM. (2009) BMC Bioinformatics (In revision)
Staab J et al. (2009) BMC Bioinformatics (In revision)
Gatti DM et al. (2009) Bioinformatics 4:482-489

Sun W et al. (2009) PLoS One 4:e4721

Zhu H et al. (2009) Envr Health Persp 117:1257-1264
Gatti, DM et al. (2009) Mamm Genome 20:437-454
Harrill AH et al. (2009) Tox Sci 110:235-243

Sun W, and Wright FA (2009) Ann Appl Stat (accepted)
Sun W et al. (2009) BMC Bioinformatics 10:173

Zhu H et al. (2008) Environ. Health Persp 116: 506-513
Zhu H et al. (2009) Chem Res Tox (In revision)
Artemenko AG et al. (2009) Chem Res Tox (In revision)
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Short-Term Goals for Year 2

Project 1:

e Continue in depth analysis of ToxCast Phase | data;

* Further refine the methods for integration across data types;

* Investigate the applicability of the metabolism model as a tool for the prediction of the effects of
chemical perturbation of metabolic pathways;

* Integration of the eQTL analyses/approaches with the network-focused methodologies (with Proj. 2);

e Establish the network context for QSAR (with Proj. 3).

Project 2:

e Continue development of FastMap software;

e Construct transcription regulation networks in the Bayesian framework by combining eQTLs,
nucleosome occupancy, and transcriptional regulation data;

e Complete characterization of the mouse hepatocyte cultures and perform experiments with key
toxicants;

* Complete GWAS analyses of the HapMap lymphoblast cell viability and apoptosis data and correlate
the toxicity endpoints with basal gene expression profiles.

Project 3:

* Complete the analysis of ToxCast data;

» Continue to explore other datasets that provide both in vivo and in vitro data for chemicals;

* Build models that could be used by EPA to prioritize the selection of ToxCast Phase 2 compounds.
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Carolina Environmental
Bioinformatics Research Center:
Collaborative work with EPA

October 1, 2009 Presented by Ann M. Richard

UNITED STATES ENVIRONMENTAL P 10M AGEN

OMPUTATIONAL
TOXICOLOGY

This work was reviewed by EPA and approved for presentation but does not
necessarily reflect official Agency policy. Mention of trade names or commercial
products does not constitute endorsement or recommendation by EPA for use.

nd Develoy

ffice of Research an
National Center for Computational To

Office of Research and Development )
National Center for Computational Toxicology

NC Bioinformatics STAR Center

Project 2: How can biological information

Cheminformatics & in vitro HTS data be
incorporated into QSAR
models?

@ Ability to generate thousands of QSAR descriptors representing
categories of structure-based computed properties (DRAGON):

» Electronic, topological, constitutional, geometrical
» feature counts, functional groups, 2Dfingerprints, etc.

@ Sophisticated QSAR workflow:

» kNN & sphere exclusion methods
» Randomized y variable test

» External test set validation

» Consensus models

F g TOTAL 2024

1 constitutional descriptors 48

2 | topological descriptors 19

3 walk and path counts 47

4 connectivity indices 33

Chemical Descriptors 5 [ information indices 47

. 6 2D autocorrelations 96

(DRAGON): T 07

8 | Burden eigenvalue descriptors 64

9 | topological charge indices 21

> Computed from 2D molecular 10 eigenvalue-based indices 44
structures provided in DSSTox SDF o Rg

N andic molecular profiles 41

files 12 | geometrical descriptors 74

» Can use selected categories, or all 13 | RDF descriptors 150

> Provide different representations 14 | SD-MoRSE descriptors 160

of chemical space in relation to oM WiiMIdescripiars 99

activity 16 GETAWAY descriptors 197

17 | functional group counts 154

> Different degrees of interpretability 18 | atom-centered fragments 120

19 | charge descriptors 14

20 | molecular properties 29

21 | 2D binary fingerprints 780

22 | 2D frequency fingerprints 780

NC Bioinformatics STAR Center

What statistical techniques are most appropriate for

Biostatistics for
Computational M
Toxicology i

IR L SAM

Detamensn

Project 2: How can biological information
Cheminformatics & in vitro HTS data be
incorporated into QSAR

models?
Project 3: What computational tools
Computational are necessary for these and
Infrastructure for related questions arising in

Systems Toxicology  model organism toxicity

Offce o Rescach and Development b
F S ol Teeoogy  TESEAICH?

Predictive QSAR Workflow*
,—P Y-Randomization

Multiple
I—V Training Sets
Gitge splitinto Combi-QSPR
Dataset —® Training, Test, Modeling

and External
Validation Sets

Multiple
Test Sets

Only accept
Activity | 9 models that have

Prediction q2>0.6

R?>0.6, etc.

Experimental
Validation of
Prioritized Alerts

f

Prediction of External validation Validated Predictive
Potential Safety ¢— USiNg Applicability ¢—— Models with High Internal &
Alerts to Domain (AD) External Accuracy
Prioritize for
Testing

Office of Research and Development
National Center for Computational Toxicology
*Tropsha, A.,* Golbraikh, A. Predictive QSAR Modeling Workflow, Model

Applicability Domains, and Virtual Screening. Curr. Pharm. Des., 2007, 13, 3494-3504.

NC Bioinformatics STAR Center

Project 2: How can biological information

Cheminformatics & in vitro HTS data be
incorporated into QSAR
models?

2 QSAR models based on DSSTox published data files and structure-
inventories

@ Share processed data files and calculated descriptors with EPA
researchers for public release

9@ Coauthored publications:

» ZhuH, Rusyn |, Richard A, Tropsha A. (2008) Use of cell viability assay data improves the
prediction accuracy of conventional itative structul tivity r i ip models of
animal carcinogenicity. Environ. Health Perspect. 116: 506-513.

» ZhuH, Ye L, Richard A, Golbraikh A, Rusyn I, Tropsha A. (2009) A Two-step Hierarchical
Quantitative Structure Activity Relationship Modeling Workflow for Predicting in vivo Chemical
Toxicity from Molecular Structure. Environ. Health Perspect. 117:1257-1264.

Office of Research and Development s
National Center for Computational Toxicology
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DSSTox: Distributed Structure-Searchable
Database Network Project...& NC CEBC

EPA

» CPDBAS (Rodent carcinogenicity data);
NTPHTS cytotox assays

o ZEBET acute tox data (to be published)
s ToxCast Phase | chemical inventory
(TOXCST)

= ToxRefDB in vivo endpoints for
modeling

14 current files, >15 substances, >10K structures

External links: PubChem, ChemSpider, Lazar, ACTOR

toxicology:
= SAR-ready summary
system

& Public forum for SAR
» DSSTox Structure-Brt

& Publishes high-quality standardized
structure-data (SD) files pertaining to

- EPA, HPV-IS, IRIS, NTP, FDA, NCBI, EBI...

# Public substance/structure ID registry

aProcessed data sets (ZEBET
acute tox)

= Calculated chemical
descriptors (DRAGON) for
ToxCast inventory

UNC CEBC

tox data for modeling

file/data sharing
owser

SEPA

Can in vitro IC50 data be used to inform
development of model for in vivo Rat Oral LD50?

Office of Research and Development N
National Center for Computational Toxicology
ZhuH, Ye L Richard A Golbraikh A, Rusyn |, Tropsha A. (2009) EHP 117:1257-1264,

g .
° .
E 0.00
2 . )
9 100- 4 ¢ No obvious correlation
« Can we break the problem
-2.00 into regions of higher
correlation?
3.00 . . . — « Can we use QSAR methods
4 2 0 > 4 to define those regions based

on chemical structure alone?
IC50 (mmol/l)

kNN Consensus QSAR Modeling of NTP-HTS Data

NP (S 83 Carcinogenic Potency Database 1481
Chemical

A 270
Descriptors Only
(9 models > 0.7 ( j

validation cutoff)

Chemical + 7 HTS
“Descriptors”
(34 models > 0.7
validation cutoff)

00

B Checal Mo onnl)
Descoptas

i Chamical Mok onnZ)
[ * Biclogeal HTE)

Semkiaty Speciboty  Chaned Predicihiny

Figure 3. Comparison of the results from kNN QSAR models using
two types of descriptors.

UNC CEBC

Zhu H, Rusyn |, Richard A, Tropsha A. (2008) EHP 116: 506-513.

Can in vitro IC50 data be used to inform
development of model for in vivo Rat Oral LD50?

SEPA

3.00

.
2 Class |
“

Class 3

LD50 (mmol/kg)

s Use “moving regression” to
define regions of higher correlation

@ Regions bear some
commonalities to “baseline toxicity”
representations

@ Attempt to distinguish regions

1C50 (mmol/l)

SEPA

3.00

Can in vitro IC50 data be used to inform
development of model for in vivo Rat Oral LD50?

y=0.4488x - 1.0041

2.00

/ =0.8946) )

- % _}/ ‘ + Baseline
/'ﬁss 2 7 Classification QSAR "%
/ L] = . ... -aseline
. l Compounds

1.00

LD50 (mmol/kg)
o
o
S}

'\-///ﬁlass I Outliers
&

x External
Elass 8 Compounds

——Linear (Baseline
Compounds)

@ Step 1: Apply Classification QSAR to

F QSARs, but not needed for prediction data
Zhu H, Ye L, Richard A, Golbraikh A, Rusyn I, Troj sha A. (2009) EHP 117:1257-1264.

IC50 used to inform construction of

assign new chemical to Class 1 or Class 2

@ Step 2: Apply QSAR 1 or 2 to predict

1C50 (mmol/h LD50 based on chemical structure alone

a Step 3: Validate approach with external

based on chemical structure alone

Office of Research and Development
National Center for Computational Toxicology
Zhu H, Ye L Richard A Golbraikh A Rusyn |, Tropsha A. (2009) EHP 117:1257-1264.

ToxCast & Tox21: High-Multi-Dimensional Data
S, . /©/ o } 1 S

5( Chemical Structures .

Expert-derived chemical and MOA classes
- Reactivity & Metabolic activity classes
Chenmical feature classes

: . DSgT
‘ : ??& 1 ;:gu?i ?_x;

ﬁ vity cutoffs

Activity groupings
Gene target groups
Pathway groupings

B ! {1

Bioassay Dat:

Activity Profiles
Aggregated
- endpoints
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Structure Class vs Bioactivity Class

Chemical structure class:

o Cluster according to
activity and mechanism
e Differences in activity
profiles can discriminate
within structure class

Bioactivity profile class:

& Can project onto multiple ¥
chemical classes . —
+ Potentially broader coverage of 3
chemical space

¢ Implies mechanistic similarity

it

. Chemicals il

wh
e

Assays

November 18

Structure-Activity Approaches to Toxicity Prediction

e

e

»‘
[orouy

Incorporate HTS Assay
Data (+/-) as Biological A': /SW SAR
“descriptors” Clu ters modeling
i
3 — 4. L
B HTS Data
tPrttrrttrttttt 1

.'&!Eég: Summary
LN Activity

+/-

In silico generation of . ‘
target-binding for use /noassay Data

in prediction
200 13

November 18, 2009

Data Mining

= Relational datamodels e
Toxicological description
Data standards f 7
06 Data integration
s Summary activities i
% PR

V, 'S, (@ o ~

QSAR Modeling '060 e 0\09‘ |

) e . !

Chemical properties ok
Structural descriptors Pre_dlctlve
Chemical similarity metrics Toxicology
Statistical associations

| Biological Profiling

&
g
2]
ToxicH 3 HTS assays
chemoinformatics = Toxicogenomic
.Q Metabolomics |
£~
Chemical genomics 3 Mode-of-actio]
=) .
-2
aQ

Chemical diversity
Chemical neighborhoods
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Environmental Bioinformatics and
Computational Toxicology Center (ebCTC):

Research in Multiscale Modeling
of the Effects of Environmental Toxicants

William J. Welsh and Panos G. Georgopoulos

www.ebCTC.org

Presented at USEPA C 7 icology Centers Progress Review Workshop
Research Triangle Park, NC - October 1, 2009

Funded by the USEPA Science to Achieve Results (STAR) Grant RD-83272101

Consortium Members

Computational Chemodynamics Laboratory,
Environmental & Occupational Health Sciences Institute
ROBERT WOOD JOHNSON

| MEDICAL SCHOOL Department of Environmental & Occupational Medicine

Department of Pharmacology

Informatics Institute

Department of Biomedical Engineering

m] I ‘ E RS Department of Chemical & Biochemical Engineering

Department of Environmental Sciences
E ﬁ UNIVERSITY

RSEY Department of Statistics

Computer Aided Systems Laboratory,
Department of Chemical Engineering

Department of Chemistry

Program in Applied and Computational Mathematics

1.8, Food and Drug ~ Center for Toxicoinformatics,
‘m =% Administration National Center for Toxicological Research

ebCTC objectives and general approach

« Objectives

« To address toxicant Source-to-Outcome Continuum through development of an
integrated, modular, computational framework

« To develop predictive cheminformatics tools for Hazard Identification and Toxicant
Characterization

« To demonstrate the above tools through applications in Quantitative Risk Assessment

« General Approach
<A computatlonal/englneerlng/systems perspecnve
- ur///IIng a team of and
i , and envirof
« New framework and tools build upon an extensive base of past developments
« The research effort emphasizes interaction and collaboration
- among participating scientists in the STAR Bioinformatics Centers
- with USEPA centers and laboratories
- with other centers and institutes of excellence

, with diverse backgrounds in

ebCTC research activities organized in 2 research areas and 5 projects

« Each project is developing a set of “stand-alone” components addressing specific CT problems
« Research Project 1 provides an integrative framework for Investigational Area 1
« Project 4 addresses the core issues of Area 2

Investigational Area |
Source-to-Outcome
Framework

Investigational Area II:
Hazard Identification

Area Leader

Area Leader e

P. Georgopoulos

Risk Assessment
Demonstration Applications

Project 1 - UMDNJ/USFDA:
Multiscale biologically-based
modeling of exposure-to-dose-to-
response processes
P. Georgopoulos, W. Tong

Project 4 - UMDNJ:
Collaborators Chemoinformatics Tools
for Toxicant
Characterization
Project 2 - Rutgers: Hepatocyte W. Welsh
Metabolism Model for Xenobiotics
M. lerapetritou, I. Androulakis Project 5 - Princeton!
Optimization Tools for
Project 3 - Princeton: Tools for In silico Proteomics
Optimal Identification of Biological C. Floudas

Networks
Collabor
Document Storage
SRt Reteyel

The ebCTC research integration plan is consistent with the “Vision and
Strategy” outlined by NAS in 2007 for Toxicity Testing in the 21st Century

Figure adapted from NAS (2007) Toxiity Testing in the 215 Century: A Vision and a Strategy

The ebCTC research integration plan is consistent with the “Vision and
Strategy” outlined by NAS in 2007 for Toxicity Testing in the 21st Century

Daose Response Assessment

Chemical
Characierizaton Mode of Ac

Risk Characterization Process

Figure adapted from NAS (2007) Toxicity Testing in the 21+ Century: A Vision and a Strategy




ebCTC pursues an integrative multiscale research approach A representative sample of USEPA/ebCTC

(from molecules to cells to tissues to organs to organisms to populations) project interactions and collaborations
recognizing the importance of processes/signals at all levels of biological organization

Toxlcogenomlc analysls of phthalate exposure data

Euling, B. Benson, W. Chiu, L.E. Gray, S. Hester, C. Keshava, N. Keshava, S. Makris, C. Thompson,
V Wilson fUSEPA)
1. Androulakis, M. Ovacik, M. lerapetritou (ebCTC)

;oxlcogenomlc analysis of conazole exposure data and in vitro species extrapolation in primary
epatocytes
S. Hester, D. Wolf, W. Ward (USEP,

A);
Primary M. lerapetritou, P. Georgopoulos, I."Androulakis, W. Welsh, V. lyer (ebCTC)

Cell
Eultures of morphology gexelrt‘)y[.)on:]e?‘t oEfllntegrated PBPK/PD models for Arsenic and its compounds
h“ma” depends on S. Isukapalll P. Georgopoulos, C. Brinkerhoff, A. Sasso, S. Stamatelos, I. Androulakis, M. Ovacik
EPH;OC)’(ZS the topology (ebCTC)
maintaine
for 6 days and . . Computanonal tools for reconstructlng exposures from blomarkers
a composition M. Tornero-Velez, C. Dary, D. Vallero, L. Reiter (U
3:’%::%[ of the matrix S. Isukapalli, P. Georgopoulos A. Sasso (ebCTC]
matrix environment « Incorporating the effects of aging on Physiologically Based Toxicokinetic (PBTK) models
conditions M. Tornero-Velez, M. DeVito, E. Kenyon, M. Evans (USEPA)

P. Georgopoulos, Isukapalll A. Sasso’ (ebCTC)
Optimal analysis of proteomic data

M. Hemmer, C. Walker (USEPA);

C. Floudas (ebCTC)

- * - « Computational modeling of cellular signaling pathways: Implications for dose-response (modular
(A) Rigid collagen, type I, substratum with no overlay. infrastructure for virtual organs — liver, skm?
(B) Rigid collagen, type 1, substratum with a Matrigel overlay. 1. Shah, R. Judson (USEPA); P. Georgopoul os S Isukapalli, M. lerapetritou, I. Androulakis, C.
(C) Gelled collagen, type I, substratum with a collagen overlay. Brlnkerhuff C. Roth, W. Welsh H. Rabitz (ebCTC)

(D) Matrigel substratum. Bar 50 pm

Interactions of ToxCast chemicals with liver Nuclear Receptors

R. Judson, D. Dix, I. Shah (USEPA); S. Mani, W. Welsh (ebCTC)
From Hamilton et al. (2001) Ce/ Tissue Res 306:85-99

Alist of ebCTC’s
peer-reviewed publications

environmental bivinforn aml can be found at
e C un||n|| ational Toxicology Center ebctc.org/publications.html

HETE Publicaions

Research Area I:

A Source-to-Outcome Framework
to Support Risk Characterization

Number of ebCTC Publications by Year
2006 [
007

2008

2008 (through August)

manuscrips subited ofin
preparation ffom September 2009)

ENVIRONMENT A general mathematlcal_ framewo_rk for e_nwronmental hea\_lth risk analysis
must consider multiscale bionetwork dynamics
(spanning the genome, transcriptome, proteome, metabolome, cytome, physiome)
linked with the dynamics of environmental (“extragenomic™) stressor networks

Gene Expression in cells and
tissues

Bioregulatory and Metabolic Networks

Cellular protein composition Cellular and tissue metabolic
and activities concentrations and fluxes
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\mage i the center has been adapted from Science 26 May 2006: Vol. 312. no. 5777, p. 1162
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Connecting genotypes with phenotypes to assess toxicokinetic and toxicodynamic
variability - and associated disease susceptibility - to environmental agents
requires integrating data/information across multiple biological levels

.—.

Variation in

(Texico)Ganomics | |

Phenatypic Variation
— I —

I I

Lo Proteomics/interactomics Sl ARered Enryma Function

=1

‘The hypothetical gene-protein-metabolite bionetwork of the left side of the figure has been adapted from

Brazhnik et al. (2002) Trends Biotechnol, 20, 467-472

Research to address the toxicant “Source-to-Effect Continuum”
through development of an integrated, modular, computational framework

Seurse/Straes Formatian

Figure adapted fram Georgopouls (2008) Water 4
representations of the source-to-outcome sequence, H Soil Poll: Focus 8 (1): 3
that were developed in recent years by USEPA.

“This schematic has evolved from various graphical

CERM: Center for Exposure and Risk Modeling
MENTOR: Modeling ENvironment for TOtal Risk studies (development started in 1993 with CDC funding; USEPA funding commenced in 1998)
ebCTC an Toxicolog,
DORIAN: DO Analysis system

Rutgers, Princeton and USFDA)

started in 2006 with USEPA STAR funding; consortium of UMDNJ-RWIMS with

~
ﬂE SEﬁ HCH FOCUS

CERMfM ENTOR

Emisson and Properties
Infoematicn Libraries

Enviromental
Information Library

Environmantal DBs

Demographic
Information Libeary

Coupled Interpretation with
Dase Response Analysés

Prysioiogical & Biochemical
Information Library

Cowpled Interpretation with
Scurceda-Dase Modeling

Genoméc Analysis Tools ;‘ Proteomics Amalysis Tools ; Pathway Anaiysis Tools

Information Library

Genomic Proteomé: Information

Pathwey Information
Litbrary

RESEARCH FOCUS

AREA FOI
\ ebCTC/DORIAN

Tenicity Information Libraries

A general Bayesian framework for exposure reconstruction
from inversion of biomarker data (individual and population)

Poenial Emesus iy wf Exprramcs

T —

jparison with Blomarker Data

(
h-

i Com,

Figure modified from Georgopoulos,
etal. (2009) J Expos Sci Environ

Screening Epidemiol 19 (2): 149-171.

Level Model { re Related™)

Novel methods have been developed that allow the systematic construction of
Fast Equivalent Operational Models (FEOMs);
these include the Stochastic Response Surface Method (SRSM)
and the High Dimensional Model Representation (HDMR)

A “sample” of on-going applications within Research Area | of ebCTC
(including various Risk Assessment Demonstration applications)

Air Contaminant Applications

Multimedia Applications

= urban/local/personal scale
inhalation exposures to complex
mixtures of co-occurring ozone,
PM, other criteria pollutants,
and air toxics,

= exposures to contaminant

releases from forest and urban

fires,

exposures to contaminant

releases from chemical facility

accidents,

exposures to bioaerosols

(ranging from anthrax spores to

birch and ragweed pollen),

= etc.

= exposures to mixtures of metals
and metalloids (Hg, Cd, Cu, As,
etc.) and their compounds,

= exposures to pesticides
(organophosphates, conazoles),

= exposures to organic solvents,

= exposures to water chlorination

by-products,

exposures to phthalates,

exposures to PCBs and dioxin-

like compounds,

exposures to CWAs,

= etc.

MENTOR employs an “anthropocentric” (person-oriented) approach, linking
multiple scales of macroenvironmental and local models and information with
microenvironmental conditions and human activities in time/space

Microenvironmental/exposure/dose modeling system

Alr Quality Model/Data

I Macro-grivironmental

land use ]
and ecology 'l

Air
watersheds and ‘;m
topography L f + PEPKM '
- [ " &
. 1 k — 1

w LI ]

" base grid and Groundwate:
subsurface
_properties v
—

/

.
Mac e

Groundwater ModelData

Source: Georgopoulos et al., ES&T, 1997, 31(1)

Source: 3MRA User Guide 2002

DORIAN aims to provide multiscale integration of toxicokinetic and

toxicodynamic processes (cell to organism) for dose-to-response studies
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MENTOR employs an “anthropocentric” (person-oriented) approach, linking
multiple scales of macroenvironmental and local models and information with
microenvironmental conditions and human activities in time/space

Human activities determine pathways of exposure

demographics

land use
and ecology

watersheds and
topography

Source: 3MRA User Guide 2002

Animation source: EA Games - The Sims™

Example: Cumulative distributions of total As (left) and TCE (right) in urine from
MENTOR predictions for Franklin County, OH compared with the measurements
from NHEXAS-V (corresponding percentiles) for different age groups

L) B4 e i B M 2] 84 yuan i & 14 s o 31 yuarn ol
Y -

— mararn — aa o — Aa rore — ot P e — ren e

= - wanan = - wanas =« mEas w = wenan | g | | =« enas

CR CE CHE]
] e s s o ont ot b

& Faen — Tex Fun

W e | [ wwan [ | | as
Wheo =" ek o B ——
" L W m" W

Forain Farrasie Fercarises

Left panel from: Georgopoulos, et al. (2008) J Expo Sci Environ
Epidemiol 18 (5): 462-476. Right panel from unpublished data

107 pg/L is the detection limit for TCE in the NHEXAS measurements

Comparison of total
As concentration

8 omparsonof ol AsnUte (49 o NHANES dai and PEPK mode!
levels in urine 0 N Men  sd s b Tsh %
samples of the

. 0 - PPK notel weww o e 81l 47 1S9
NHANES population g-g ; Measured ses 105 @1 ass 25 last st
with corresponding - ==HHAMES rins o

. ° . i
MENTOR predictions 0 100 0 300 400 S0 From: Xue, etal (2009). Manuscript submitted to Environ

Urine Cane fapL) Health Perspect

MENTOR-3P/DORIAN
provide a new

modular “whole body”
platform for consistent
characterization of
multicontaminant
toxicokinetic and
toxicodynamic processes
in individuals and
populations;

incorporate physiology
databases to account for
intra- and interindividual
variation and variability

AT

oo |

Generic compartmental substructure

blood cells

[ capillary

plasma

interstitial space

nonspecific
binding

tissue cells
specific
binding

= MENTOR-3P/DORIAN
wiges wtem| Provide a new

modular “whole body”
platform for consistent
characterization of
multicontaminant
toxicokinetic and
toxicodynamic processes
in individuals and
populations;

incorporate physiology
databases to account for
intra- and interindividual
variation variability

Simulated concentration profile of chemicals
and metabolites in the liver of a standard
reference male ingesting a mixture of metals.
Source: Georgopoulos (2008) Water Air Soil Poll Focus 8: 3-21

Individual and population human biology (physiology and biochemistry)
changes non-uniformly with development, aging, disease, drug treatment, diet,
environmental exposures, etc.

e v v
Hepatic cytochrome CYP1A2
and CYP2EL in children of
Weights of water, fat, various age groups as a
protein, and other percentage of adult weights
components as a function (from Cresteil, 1998).
of age, from birth to one
Organ weight from birth to year of age. [Figure
adolescence in boys (based reproduced from Fomon
on Haddad et al. 2001) (1966) with permission

from W.B. Saunders Co.]

Example references:

- WHO (2006). Principles for Evaluating Health Risks in Children Associated with Exposure to Chemicals. World Health
Organization. Environmental Health Criteria 237;

- USEPA (2006) Use of PBPK models to quantify the impact of human age and interindividual differences in physiology and
biochemistry pertinent to risk;

- Thompson, et al. (2009) J Toxicol Environ Health 8 12: 1-24.

MENTOR/DORIAN offes a “whole organism”
modular toxicokinetic/toxicodynamic platform for incorporating
organ/tissue representations at various levels of detail
(on-going projects focus on lung, skin and liver) Organism
response

Farie s it £tk

« Data from Jaques & Kim
2000) and Daigle, et al.
2003) studies at rest
and during moderate
exercise
« Experimental data
compared to model
predictions using MPPD2,
ICRP, and (HUMTRN-
derived) module of Organ
MENTOR-3P; response
experimental conditions
used as model inputs

Tissue

« Incorporation of “virtual response
organs” in MENTOR will
support the evolution from
Physiologically Based
Pharmacokinetic models Cellular
to integrative response
Physiologically Based
Pharmacokinetic/
Pharmacodynamic

- 5 e models Molecular
—

response

-

S, From (2008) Water
[ Air Soil Pol: Focus 8 (1): 3-21 (Graphics from Physiome Project)
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Lung and skin models are critical for assessing exposure and intake/uptake;
liver is critical for biotransformation and elimination of xenobiotics:
recent/current liver modeling efforts in MENTOR development focus primarily on
computationally efficient representations of the effects of heterogeneity

Arinar suctre

Basic modular modeling framework for
quantifying toxicodynamics of xenobiotics

madfied from Liebler & Suengerich (2005)
Nat Rev Drug Discov 4(5): 4:

Interaction
with
ceptar

Transpart processes Detoxification

Mutation

Adducts with
Protein small molecules
adducts {for example, GSH}

Activate
em to yield
High amount . R,
o e —— )
An overview of different mathematical descriptions of the liver An overview of different mathematical descriptions of the liver
for simulating toxicokinetics and toxicodynamics for simulating toxicokinetics and toxicodynamics (continued)
T T T References
One-Compartment Models Discrete, Agent-Based Models
p—— Bottom-up synthetic, non-mecharistictdescription of
ousmou h er o131 mutilevel pocesses within th iver Junt, et L (2006) s Phamacokinet
[Anissimov, et al.(1997) I Theor Bl 188, 89-101; lagent based -omputationally and data intensive. *Mechanisticis |Pharmacodyn 33, 737-72; Yan, et al. (2008)
E—— Fow s uniform it o msingand metsbolin s et povis 29,1 defined here asderved from frst princplesof |Pharm Res 25, 102336; Kawaru, et l. (2006)
i e ont Proc €€¢ 1418
Treor 158 55 101,
ospersion ow

miin [icguay, et . (2003).
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“Higher Dimensional” Models

Distribution-Based Models

INon-mechanistic study of distribution of toxicants |72 ¢t 8l (2007) Aaps lournal o, £268-£283; Weiss
E— o et sty f e iy o v 12037 e . 5071
Framsaas 513300
— metabolic Anissimov, et al. (1997) J Theor Biol 188, 89-
lontnuous merconnected o 01 b (590 Mt Corout
|Statistical distribution based [Representation of hetergenelty through a |lerapetritou, et al. (2009) Clinical and Translational ubes. flow. uniform -29; Chalhoub, et al. (2007) Ann.
[model |due ta imited set of factors [sclence tn press), momed Eng 35,474-491
e e a1 200 P e £ P <1
[stochastic/fractal models. [Heterogensity i the i odeled through 112007) Aaps Journal 9, E268-£283; Ditlevsen and de-
5
ioaels metabolc poperts
ostbutedzones o 1 (19971 Theor Bl 18, 85-101
e e o e e oo ooy T o i S e crossse

[313; Anssimo and Roerts (2002) Pharmacakinet

lesTrs nseres mixed.Flow s uniform andfrom on egion o the oyt cn 25, 131.56;Ridgway, et a. (2003} bournal

i — =
et imaconmeced wbes ;\TZ-&_’ L §Wg pE—————— RN
2 e o oo . .

Mt zonal muti-
lcompartmentai) madel

Jdcep st

[Back mixing lus fed lag
times s perfusec:
enusoids

s s s 200 skt o3 y
[Pharmacocyn 29,1315 s mechanics modelingof = T | computational flid dynamics based, detailed
e eof == - realstic modeling of ndviduallver lobules; [Rani, et al. (2006) ) Biomech 39, 55163

|computationally and data intensive.

- [ronat modetwith sgnfcant ack mivin:

lcompartmental model with
eeliar compartments

with
dcep issue,and

56 Tanaks, et o
—r —r ceiiar space. [Pharmacokinet Bopharm 27, 597.623

Current liver modeling efforts in MENTOR/DORIAN development focus primarily on Example of on-going research: Modeling sources, transport,
computationally efficient representations of the effects of heterogeneity biotransformations, and toxicodynamics of As species in the human body
Example: Modeling variable CYP induction by TCDD via a Distribution-Based Model
(Preliminary/unpublished results from
Isukapalli et al., 2009)

« Induc , genetic
Induce alterations in methylation patterns

{ Predictions of CYP Metabolic network

induction compared to adapted from: drinking + Generate reactive cxygen species and 8-oxo-dG adducts
| Kumagai and Sumi water « Interfere with DNA repalr
measurements of (2007) Annual n! 1] i
Santosefano et al. Review of and feod * Induce pbj_and cell proliferation
(1998). Shaded areas Framocoiogy and | '|I + Mause carcinagen and co-carcinogen
| represent the 5/95, Toxicology 47: p - y
| 13/87 and 25/75" 243-262. i = I T 56 ~ Effluxed v 2
percentiles. (The o=mon| —o | b |o—| Ak Induce oxidative stress
centrilobular and i L] | | as” S0 by G5H depletion
eriportal zones are .
| Bestmed o be 27 and MMAs e L2 L= 1« Induce chramosomal
1 39% of the liver, as from gut "—-’"—'j aberrations and
per Andersen et al. microflora [} ' DNA breaks
11997). I . 1 I S i
’ © nhibit DNA repai i Coemarnnitie,
Predictions of CYP + Non tumarigenic -— | O=/F=0 $-ow0-dG adducts
- induction compared to mice and rats o Rt midi
H to data of S profiferation
= ntosefano et al. i :
g (ngégizsriseffﬁum pesticides + Inhibit DNA repair
E MRNA
£ a0 measurements. + Induce DNA damage < Mndisen chratioasmial
3 and B-oxo-dG adducts | TTATTH aberrations and
£ 30 Model parameters: + Induce p53 and call o - Srsanchataine
3 A= 141, Ky, = 3.4, . from food DNA breaks
&2 neass ™ proliferation pa « Generate reactive
[EP + ot biadder 1 oxygen species
carcinogenandrat  arsenosugars | + inhibit DNA repair
. bladder tumaor from foad + Induce p53 and

0 promaoter cefl profiferation
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Research in-progress: “reconciliation” of biotransformation and transport of
As modeled at both the individual hepatocyte and the whole organ level
(preliminary/unpublished results from Stamatelos et al., 2009 and from Sasso et a/., 2009)

Cellular arsenic uptake and metabolism
hepatocyte ,

PBTKM predictions
s —‘@—‘ . of cumulative
urinary arsenic
excretion in human
N.M._.I._@._ L . volunteers after
exposure 1o iAs
Solid lines:
predictions of the
MENTOR/DORIAN
multiscale whole-
body PBTK model
Dashed lines:
predictions of the
MENTOR-3P
implementation of
the El-Masri et al.
PBTKM
Data (from El-Masi
& Kenyon 2008):
controlled exposure
experiments of
humans ingesting
100 pg Asli1 (top)
and 100 pg AsV
(bottom)

Time course
prediction of As
methylation in
human
hepatocytes vs
data from Styblo
etal. 1999

Research in-progress: “reconciliation” of biotransformation and transport of
As modeled at both the individual hepatocyte and the whole organ level
(preliminary/unpublished results from Stamatelos et al., 2009)

Cellular arsenic uptake and metabolism Schematic of component interactions of the

hepatocyte TK/TD model; arrow and hammerhead indicate
activation and inhibition respectively
e _‘@_‘ N\ GSTO VT T e e aEem 1
- .
N-M..-.-—@-— As-ha, m&—@—-
—
cpig

Pt o s

. - | — —
T e

MENTOR/DORIAN TK/TD model predictions of time-dependent
transcription (left) and translation (right) of GCLC enzyme in murine
hepatocytes. The measured values represent the fold increase of MRNA
and protein levels of the enzyme after exposure to 10 M of iAslll. The
data depict average values +SEM of at least three independent
experiments from Thompson et al. 2009

Modeling quantitative metrics of oxidative stress from exposure to TCE
(preliminary/unpublished results from Brinkerhoff et al., 2009)

Toxicokinetic model Toxicodynamic model
[ e
TCE ——> TCA —DCA (et
2000 mghkg 1000 mgig S ooa S
B0y
g e " L 1. tomicant
2w > | af actvabon
3 | v
s | pcovwes Py unsauod
> 9w = o @ @ Dose o e
£ 300 kg womgkg  Of o+ 2 cdatin
= TCA i ‘autcwdation
= |
3 ED &0 A
T w0 a0 ¥ .
E 20 | 200 Irydroponide
o e o — 3. reduction
o w2 [} o t
time (hours) time (hours) .
E — 1000 makg 100, 00 maka TBARS = thiobarbituric acid-
E g - Dose reactive substances
S o
- “ ngA
Eg Toxicodynamic equation
ge
0 O w o dOBARS] Vi[Toxicant] | rpppey iy sTBARS,,
time (hours) time (hours) dt K, +[Toxicant]

data of Larson & Bull, Toxico/ Appl Pharmacol (1992) 15 268277

Intercellular interactions in the liver
Source: Rodes et al. (2007) Textbook of / - -
Hepatology - From Basic Science to Clinical s o - ——
Practice, 3¢ ed, Vols 1 & 2

Constituents of liver

¢ . ]
extracellular matrix Lo }

Source: Dufour & Clavien (2005) el

Signaling Pathways in Liver Diseases [ | P

e haricar, (2007) Hepatotoxicity
- aecoen, bigian From Genomics to In

Vitro and In Vivo Models

Research Area Il:

Hazard ldentification

Molecular-scale methods

Characterize molecular components and interactions
at a "local" (e.g. ligand-receptor) scale

Receptor-based Approaches

Predictive
Molecular

Toxicology

Ligand-based Approaches
(QSARs, etc)

A

8

Virtual Screening;
Data Analysis
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Ligand-Receptor Interactions
Pregnane X Receptor (PXR)
* PXR modulates the transcription of metabolic enzymes and >36 other genes.
« PXR co-regulates the CYP3A4 metabolic gene and the ABCB1 “drug efflux” gene
[Synold, Tw, et al., Nature Medicine 7, 584-590 (2001).]
« Involved in many drug-drug interactions, giving rise to adverse drug effects.
= Many xenobiotics activate or repress the transcriptional machinery of PXR.
» Studies on PCBs show that the responsive active of PXRs to xenobiotics varies
from species to species.

PXR ligands are pervasive and structurally diverse

« bile acids (bile salts, cholesterol metabolites)

« food ingredients, dietary supplements (e.g., isothiocyanate sulforaphane in broccoli)
« prescription drugs (e.g., statins, paclitaxel, antibiotics, azole antifungals, rifampicin)
« herbal components (e.g. hyperforin in St. John's Wort)

« environmental chemicals (EDCs, pesticides, plasticizers, PCBs, PBDES)

PXR and Xenobiotics
Ory, DS. Nuclear receptor signaling in the control of cholesterol homeostasis: Have the Orphans Found a Home?
Circ. Res. 95:660-670 (2004).
Tabb MM, Kholodovych V, Griin F, Zhou C, Welsh WJ, Blumberg B. Highly chlorinated PCBs inhibit the human
xenobiotic response mediated by the steroid and xenobiotic receptor (SXR). £HP 112:163-169 (2004).
Yu S, Kong AN. Targeting carcinogen metabolism by dietary cancer preventive compounds. Curr Cancer Drug
Targets 7(5):416-24 (2007).
Goetz AK, Dix DJ. Mode of action for reproductive and hepatic toxicity inferred from a genomic study of
triazole antifungals. 7oxico/ Sci. 110(2):449-62 (2009).
Lin YS, Yasuda K, Assem M, Cline C, Barber J, Li CW, Kholodovych V, Ai N, Chen JD, Welsh WJ, Ekins S, Schuetz

EG. The major human pregnane X receptor (PXR) splice variant, PXR.2, exhibits significantly diminished
ligand-activated transcriptional regulation. Drug Metab Dispos. 37(6):1295-304 (2009).

Kortagere S, Chekmarev D, Welsh WJ, Ekins S. Hybrid scoring and classification approaches to predict human
pregnane X receptor (PXR) activators. Pharm Res. 26(4):1001-11 (2009).

Unusual PXR antagonist binding site of conazoles
A series of conazoles antagonize PXR (10-20pM); mutagenesis data indicate
that they bind to the outer surface of PXR---AF-2(H12) binding site

Huang et al., Oncogene 26: 258 (2007); Wang et al., Clin Cancer Res 13: 2488 (2007)

conventional structural model for nuclear receptor agonist and antagonist action

AGONIST ANTAGONIST

Hydrophobe / aromatic ring

Ekins, Welsh, et al., Mo/ Pharmacol 72:592-603 (2007),

Unusual PXR antagonist binding site of conazoles

« Using ligand-PXR docking simulations, we identified an alternative antagonist
binding site anchored by Lys277 located in the AF-2 site

« Lys277 most likely serves as a “charge clamp” for interaction between the co-
activator SRC-1 (His687) and PXR

« Conazoles compete with binding of co-activator SRC-1 to the AF-2 site

Ekins, Welsh, et al., Mol Pharmacol 72:592-603 (2007)

Methods Development for Data Analysis

Analysis of Toxcast 309 Data Set

Biological Spectra Analysis (BSA):

Link biological activity profiles to molecular structures

« Traditional (Q)SAR methods use the structure-based features
(molecular descriptors) of a collection of chemicals to describe
and compare their biological activities.

molecular structure mmmp bioactivity

< In contrast, BSA uses the biological response profiles of the
chemicals to describe and compare their molecular structures.

molecular structure <gmmm bioactivity

Fliri AF et al PNAS 12(2), 261-266 (2005)
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Biological Activity Spectra (BSA)
- depicted as a heat map -
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Fliri AF et al PNAS 2005, 12(2), 261-266

Heat map for a collection of chemicals
and a panel of protein receptors

Two-way Hierarchical Clustering

| clusters proteins based on similarity in their bioresponse profile |

clusters chemicals
based on similarity
in their ability to
induce bioresponse
profile

Fliri AF et al PNAS 2005, 12(2), 261-266

BSA study on assay data from Attagene, Inc.

= Transcription Activation (TA) assays

« 309 ToxCast chemicals @ 81 assays

« Reported LEL (lowest effective level) values from each assay

« [nactive chemical-assay combinations were assigned LEL =1000000

« Two-way hierarchical (UPGMA) clustering from Bioinformatics Toolbox
v.3.1, MATLAB 7.6

« Analysis employed both Euclidean distance and Cosine metrics
= Assay results and calculated molecular descriptors were pre-processed using
Unsupervised Forward Selection (UFS)

BSA study on Attagene Data

81 Attagene Assays

ToxCAST compounds
278 chemicals

Dark regions - Compounds with measurable reported LEL (lowest effective level).
White regions- /nactive chemical-assay combinations (LEL =1000000).

Heat map for reduced set of 28 assays

28 Attagene assays (values
standardized along columns)

More Active =
Cluster

ToxCAST chemicals

Hierarchical clustering of ToxCast chemicals in the space of Attagene response
biospectra reveals two major clusters TOX1 (red) and TOX2 (violet-green-lime-blue).

Heat map for space of chemical descriptors

TOXCAST*+EPI Suite descriptors

ToxCAST chemicals

Hierarchical clustering of ToxCast chemicals in chemical descriptor space reveals two major clusters CHEM1
(red-violet) and CHEM2 (blue-green).

* TOXCAST: _a combined set of Leadscope, QikProp and PhysChem derived descriptors
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Connection between similarities
in biospectra and chemical space

TOX similarity profile

= B

ossTOX 40330 DssToxX_aos13

DssTOX_a0356. DssTOX 40545

DssTOX 40378 DssTOX 40623

ossToX 40413 DssToX 40627

No obvious chemical similarities within individual subclusters.

Cross-mapping of TOX and CHEM spaces

TOX similarity profile
/ CHEM 1 CHEM 2 il il

TOX 1 |101(74%) | 36 (26%)

TOX2 |[55(39%) |86 (61%)

74% of cmpds from cluster TOX1 fall
into CHEM1 and 61% of cmpds from
TOX2 fall into CHEM2.

Overall association between major
clusters of two spaces is found to be
69%.

Ligand-based Models,
Rapid Virtual Screening
&

Chemical Prioritization

Shape Signatures
molecules are compared by subtracting their histograms

17p-estradiol

HO'

Shape Signatures
Chemical Libraries|

3+ million
chemicals

Shape-based QSAR Models for Toxicity Prediction

Cardiotoxicity

- hERG

— 5HTy

Chekmarev DS, Kholodovych V, Balakin KV, Ivanenkov Y, Ekins S, Welsh WJ. Chem Res Toxicol. 21(6):1304-14 (2008).
Neurotoxicity

— blood-brain barrier (BBB) permeability

Kortagere S, Chekmarev D, Welsh WJ, Ekins S. Pharm Res. 25(8):1836-45 (2008).
Hepatotoxicity

— PXR induction & repression

AiN, Krasowski MD, Welsh WJ, Ekins S. Drug Discov Today 14(9-10):486-94 (2009).

Lin YS, Yasuda K, Assem M, Cline C, Barber J, Li CW, Kholodovych V, Ai N, Chen JD, Welsh WJ, Ekins S, Schuetz EG.

Drug Metab Dispos. 37(6):1295-304 (2009).
Pesticides
- acetylcholinesterase inhibitors
Chekmarev D, Kholodovych V, Kortagere S, Welsh WJ, Ekins S. Pharm Res 26(9):2216-24 (2009).

Fungicides, Herbicides, Insecticides

Analysis of Pesticides

Data on pesticides were collected from 7he Pesticide Manual:
http://www.pesticidemanual.com/index.htm

Herbicides 300 compounds
Fungicides 169 compounds
Insecticides 277 compounds

Cluster B: 48 Inhibitors of
acetolactate synthase (ALS)




Interactions/integration Or. William Welsh
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Analysis of pesticides U | I ! | I of ebCTC research projects Project Princpal Investigator (RPO4)
i | UMDNJ-RWJ Medical School
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Molecular properties distribution: Project Principal Investigator (RPO1)
MW, drug likeness, etc
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Enrichment study on Herbicides

= variable descriptor-based techniques
» Shape Signatures alone
» Shape Signatures + MOE
» Shape Signatures + MACCS keys

neoL
Cramintormatics
Tools for Toxscant
Charactesization

Dr. Marianthi
lerapetritou
Project Principal
Investigator (RP02)
Rutgers University
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Retrieval study with 30,000 NCI b
Cluster B is only 0.16% of entire set

Or. loannis
Androulakis

Project Co-Principal
Investigator (RP02)

Enrichment factor E > 250
E(random) = 1; E(ideal) = 600

Rutgers University

r e "‘ -
[\ .4, Dr. Herschel Rabitz

Project Principal Investigator
l {(RPO3)
2 4Princeton University

Dr. Christodoulos Floudas
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Princeton University
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Collaboration on An Approach to Using . . .

Toxicogenomic Data in Risk Assessment: “+loannis P. Androulakis

Dibutyl Phthalate (DBP) Case Study

Susan Y. Euling, Meric Ovacik, and loannis P. Androulakis

L - = ; 2 : ) . -
Comp Tox Center STAR Progress Review Workshop s*Meric Ovacik
RTP, NC . .
October 1, 20! 2 at Rutgers University

do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Strengths and Limitations of Using Omic Data in Risk Assessment

HOW CAN GENOMIC DATA BE
USED EFFECTIVELY IN RISK
ASSESSMENT?

Approach for Evaluating Genomic Data in Health Ass

STEP

1. Develop an approach for using toxicogenomic data in risk
assessment.
2. Perform a case study using this approach.

STEP 3: y Questi
Corrsider Vitather the Genomic Dss Inform
CASE STUDY SCOPE: Tawicokneics  Hazaed
Tackodynames  Evpasun
Intraspeciestnlenpecies Difrences 0.7
Cehar Data-Depandant Quesons

= Use an ongoing or completed assessment as starting point.
= Evaluate available data; not a data generation project

= Selected DBP for case study:

« has arelatively large genomic data set and phenotypic
anchoring for some of the observed gene expression
changes.

« case study is separate from IRIS assessment with a
different purpose.
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Proposed DBP Mechanism of Action

Figure adapted
from Barlow et
Serteli Cell al. (2009), Liu
etal. (2005),
Shultzetal.
(2001),
Thompson et
al. (2004), and
Wilson et al.
(2004). Based
on male
reproductive
developmental
toxicity and
toxicogenomics
studies. Some
genes and
— pathways found
Fretal Leydig Cell to be altered
areincluded.
Purple
lettering,
proposed
modes of

Mabe developmental I | action.

Case Study Project:
Pathway Analysis of Liu et al. Microarray Study

Issue:
«Differentiating signal from noise in microarray
studies

Explored use of:

+*Signal-to-noise ratio (SNR) method for
identifying DEGs

+DEG filter methods comparison: SNR to
Rosetta Error Model (REM)

IN COMMON PROCE & PATHWAYS IDENTIFIED (SNR & REM)

BIOLOGICAL PROCESS ~ PATHWAYS

CELL ADHESION ytoskeleton remodeling; ECM remodeling; Endothelial cell contacts by junctional mechanisms;
gnaling; Integrin inside-out signaling; Integrin outside-in signaling; Integrin-mediated cell
signaling by ephrin B

CELL SIGNALING Activation of PKC via G-Protein coupled receptor; CCR3 signaling in eosinophils; ChREBP regulation
Protein beta/gamma signaling cascades; G-Proteins mediated regulation p38 and JNK
malu\g Regulation of actin cytoskeleton by Rho GTPases; Role of PKA in cytoskeleton
reorganisation; Leptin signaling via JAK/STAT and MAPK cascades2

DISEASE NF-AT signaling in Cardiac Hypertrophy; NTS activation of IL-8 in colonocytes

GROWTH WNT signaling pathway; Regulation of acetyl-CoA carboxylase 2 activity in muscle; MAG-dependent
DIFFERENTIATION inhibition of neurite outgrowth; EPO-induced Jak-STAT pathw sin signaling via STATS;
Angiotensin activation of ERK

HORMONES Ligand-dependent activation of the ESR/SP pathway
IMMUNE RESPONSE XCR4 signaling pathway; MIF - the neuroendocrine-macrophage connector

METABOLISM Androstenedione and testosterone biosynthesis and metabolism p.1; Cholesterol Biosynthesis;
Cholesterol metabolism; dATPIAITP metabolism; dGTP metabolism; Estrone metabolism: Fructose.
sm; G-alpha(q) regulation of lipid metaboll

olism; Glutathione metabolism; Glycolysis and g ogenesis (short map); Glycolysis
and gluconeogenesis p. 1; Glycolysis and gluconeogenesis p. 2; Histamine metabolism;
glutamate-glutamine and proline metabolism; Leucine, isoleucine and valine metabols

chondrial ketone bodies biosynthesis and metabolism; Mitochond
ation; Mitochondrial unsaturated fatty acid beta-oxidation; Peroxisomal branched

chain fatty a ation; Phenylalanine metabolism; PPAR regulation of lipid metabolism;
Propionate metabolism p.1; Propionate metabolism p.2; Regulation of fatty acid synthesis: NLTP and
EHHADH; Regulation of lipid metabolism by niacin and isoprenaline; Regulation of lipid metabolism
via LXR, NF-Y and SREBP; Regulation of ||pn1 metabolism via PPAR, RXR and VDR; Serotonin -
melatonin biosynthesis and metabolism; TCA; Triacylglycerol metabolism p.1; Tryptophan
metabolism

TRANSCRIPTION Transcription factor Tubby signaling pathways; Role of VDR in regulation of genes involved in
osteoporosis; Breal as transcription regulator

Toxicogenomics Dataset:
Studies of Male Rat Tissues after in utero DBP Exposure

sTUDY DBP DOSE TREATMENT INTERVAL OXICOGENO ot TISSUE COLLECTED

MICROAR
(Platform)

Bowman et al 500 mgikgiday GD 1219 0r 1921 ¥ o A Yes Wolffian ducts

005 )

Lehmann et al., 04,10, 10, 0. GD1219
2004

500 mgikglday X Yes (Aftymetrix
GeneChip oligo arrays)

‘Shultz etal., 2001 || 500 mgikgiday GD1216,12-19,01 1221 | Yes (Clontech cDNA
arrays)

Thompson et al 500 mo/kgiday. S N Testis
004

Wilson etal., 2004 1000 mgikgiday

Thompson etal. || 500 mgikgiday 05-24hr on GD 18-190r || Yes (Affymets
2005 @p19 Genechup liga arays)

500 mglkgiday GD 125155125175, 0r || Yes (Agilent 22K & 44K Testis: Whole,
125195 oligo arrays) Seminiferous cord, and
interstitial regions

NEW ANALYSIS OF LIU et al. DATA:
COMPARISON OF TWO STATISTICAL FILTERS

Exploratory Methods Development for
Analysis of Genomic Data for
Application to Risk Assessment

Issue:

< For risk assessment, we're interested in affected pathways;
traditional pathway analysis methods may lose gene and
pathway information

Explored use of:
«Pathway Activity Level method & utilized the results to build
a gene network model.
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Pathway Activity Level Approach

eAdapted method of Tomfohr, J; Lu, J; Kepler, TB. (2005) Pathway
level analysis of gene expression using singular value
decomposition. BMC Bioinformatics 6:225.

eldentifies impact on a pathway without 15t identifying differentially
expressed genes

Advantages:
eConsiders all genes (whether DEG or not) in a pathway

eCan compare PA among pathways

Exploring Methods to Measure Interspecies
Differences in Toxicodynamics
Issue:

< Need for approaches and metrics to extrapolate
from animal model to human for risk assessment.

Explored use of:

< Utilizing available data to develop cross-species metrics
for the biosynthesis of steroids pathway -

1) DNA sequence data: Compared predicted amino acid
sequences of proteins

2) Enzyme presence data

Final Report Available on the NCEA Website

An Approach to Using Toxicogenomic Data in U.S.
EPA Human Health Risk Assessments:
A Dibutyl Phthalate Case Study

Available at: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=205303

Putative Metabolic Gene Netw

rk Based on the Pathway Activity Method:

Liu et al. (2005) Data and KEGG Datab

WValine, Leucine and Isolsucine Degradation

PasDifference between
control and DBP treated
samples

Citsate Cycle

Sterokd Hormone Metabolism

Team Members

U.S. EPA

Susan Makris (NCEA, ORD)
Banalata Sen (formerly NCEA)
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. . Organization Organization
The Carolina Environmental & &

Bioinformatics Center (CEBC)

Scientific Co-Director
¢ One of two EPA STAR Centers funded in November 2005,

intended to extend capabilities in computational toxicology

Scientific
Advisory
Committee

Director

¢ Three major Research Projects: (1) Biostatistics, (2)
Cheminformatics, and (3) Computational Infrastructure
for Systems Toxicology

Fred Wright, PhD

¢ Administrative Unit
¢ Outreach and Translational Activity (POTA)

e Publications deltamethrin. BMC Genomics, 2008 Nov 18;9(1):546

Harrill JA, Li Z, Wright FA, Crofton K (2007). Transcriptional response of rat
cerebrocortical tissue following acute exposure to the pyrethroid insecticide
permethrin or deltamethrin, submitted.

* Collaborations with environmental scientists «Judson R, Elloumi F, Setzer WR, Li Z, Shah I. (2008) A Comparison of Machine
Learning Algorithms for Chemical Toxicity Classification Using a Simulated Multi-
Scale Data Model BMC Bioinformatics, Vol. 9, 241.

«Li Z, Wright FA and Royland JE. Age-dependent Variability in Gene Expression in

Research Projects
e Specific capabilities highlighted included ‘omics expertise and 1. Biostatistics ‘Administration Outreach and Translation ¢ Each project includes direct collaboration with
strengths in elucidating genetic variation A - ImEGEET - EEm environmental scientists
2. Cheminformatics -~ Quality training
Alex Tropsha, PhD
. Here we describe the Center and highlight recent 3~°°;:;‘:3§;;'a""5¥“5'"5
collaborations Tean Rlsyni MD)PhD
Leonard McMillan, PhD
1 2 3
- | .Ag-' f - A T '...- -'. = l L ; P Representative Joint Publications with EPA
[ % _1 Carpllna Environmental Bioinformatics Center 3 rogress *Harrill JA ,Li Z, Wright FA, Crofton KM. Transcriptional response of rat frontal
L: | ‘1"“"’ 3 2] cortex following acute exposure to the pyrethroid insecticide permethrin or

* UNCawarded a second STAR Center (2008), The Fisher 344 Rat Retina. Toxicological Science, 2008 Nov 18;9(1):546.
Ca rolina Center fOI’ Computational Toxicology (CCCT, *Zhu H, Rusyn |, Richard A, Tropsha A. Use of cell viability assay data improves the
prediction accuracy of conventional quantitative structure-activity relationship
Ivan RUSYn, Pl) models of animal carcinogenicity. Environ. Health Perspect. 2008; (116): 506-513.

*Zhu H, Tropsha A, Fourches D, Varnek A, Papa E, Gramatica P, Oberg T, Dao P,
Cherkasov A, Tetko | V. Combinatorial QSAR Modeling of Chemical Toxicants Tested
« software development and web tools against Tetrahymena pyriformis. J. Chem. Inf. Model. 2008; (48): 766-784.

’ *Zhu H, Ye L, Richard A, Golbraikh A, Rusyn |, Tropsha A. A Two-step Hierarchical
Quantitative Structure Activity Relationship Modeling Workflow for Predicting in
vivo Chemical Toxicity from Molecular Structure. Environ. Health Perspect.
Submitted.
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Representative Joint Abstracts/Posters

“Dix D, Judson R, Elloui, F, Li Z, Wright FA. Reif, David, Rotroff, Daniel, Singh, Amar, Knudsen, Thomas, Houc k, Keith (2008). The
Analysis of Genomic Dose-Response Datain the EPA ToxCast Program. SRA Annual Meeting, Boston, USA, submitted
“Dix D, Judson R, Kaviock R, Li Z, Martin M, Richard A, Setzer W, Houck K (2007). EPA'S ToxCast program for predicting hazard and
prioritizing toxicity testing o int Toxicology. Research Triangle
Park, NC.
<Dix D, Martin MT, Li Z, Judson R, Houck KA (2007). Development of EPA's ToxCast program for prioritizing the toxicity testing of
envirnmenta chamicals. Annual Mesting of Saciety for Blomolscular Sciences, Montreal Canada,
«Elloumi, F,Li, Z, Judson, Richard (2008). EPA Analysis for MAQC The 8th MAQC
Developmant and Valdation of Predictive Models March 24-6, 2008, Washingion DG, USA
+Kavlock RJ, Dix D, Judson R, Li Z, Martin M, Richard A, Setzer W and Houck K (2007). US EPA's ToxCast program for predicting
hazard and prioritizing toxicity testing of environmental chemicals. 6th World Congress on Alternatives and Animal Use in the Life
Sciences, Tokyo.
“Li Z, Wright FA and Royland JE (2007). Age-dependent heterogeneity of gene expression n Fisher 344 rat retina, The 46th Annual
Mesingof the Society of Toxialogy, Charlate, NC
2, Wright FA and Royland JE (2007) Variation Change i 15th Annual
ternational Confarence on Iteligent Syetems for Molecular Bology and 6ih Annucl European Conference o1 Computaional
Biology, Vienna, Austria.
“Rodgers AD, Zhu H, Rusyn | Tropsha A. QSAR Modeling of Human Liver Adverse Effects Database Using KNN method. Abstract 244
presented at the 47th National Meefing of the Society of Toxicology, Seattle, WA, March 2008
“Wang K, Richard A, Rusyn |. and Tropsha A (2007). Toxico- cnemmmmancs and QSPR Modeling of the Carcinogenic Potency
Database. The 46th Society of Toxicity (SOT) Annual Meeting, Charlot
hang 20 b Rusyn - ison R, i D Houek K, Marin i, Fiehard A Kaviock . nd Tropsha . Cherinformatics Analysi of EPA
ToxCast Chamical Libariss to ntity Domains of Appicailty ot Predictive Toxiiy Model and Pioize Campounds for Toxicty
1y of Toxicology Annual Meeting, Bali

o R Bchar A. and Tropaha A (3557 The il ston of NTP-HTS data i precictve ADMERox modeling. US EPA
ernatonalScience Forum on Camputaionsl Toxcology, Research Trangle Park,
“Zhu H, Wang K. Rusyn |, Richard A, and Tropsha A (2007) dictive ADME/tox modeling. The 46th
Socity of Texicly (SOT) Annal Meting, Charlotie NG, accepted.

yn 1, Richard A, Golbraikh A, Tropsha A. Two-step Quantitative Structure Activity Relationship modeling of in vivo
toxicity using in vitro cytotoxicity data. Abstract 245; presented at the 47th National Meeting of the Society of Toxicology, Seattie, WA,
March 2008,
412, Blloun . Wight A (200, Cherncal Tocty Prediction for ToxicagsnamicsStudles. The i Anrusl Maeting of the Socley of
Toxicology. Seattle, U

While the CCCT is more highly focused on
biology and mechanistic modeling, the CEBC
focuses on discovery and obtaining valid
statistical conclusions.

Discovery an
Modeling

* seeks to establish a universally

* Focuses on Quantitative

* Establishes a modeling

(2) Cheminformatics

applicable and robust predictive
toxicology modeling framework

Structure Activity/Property
Relationships (QSAR)

workflow, toxicity prediction
scheme and software
development

(1) Biostatistics in Computational

Toxicology

Existing emphasis on strengths in
microarray analysis, elucidation
of networks/pathways, eQTL
analysis

New emphasis on dose-response
testing, data mining, and
penalized regression

Analysis of ToxCast Phase | datal
from EPA and development of
related methods will likely bea = == o= o
large portion of remaining :

activity

(3) Computation and
Systems Toxicology

i

Uses model for toxicity profiling in .,
multiple strains of mice to set up
computational infrastructure
Computational methods
development

Develops user-friendly software
tools from methods in Projects 1
and 2

Project 1:
Biostatistics in Computational Toxicology

Fred Wright, Ph.D. (P.l.) —statistical genetics, genomic
analysis

Andrew Nobel, Ph.D. — clustering, data dimensional
reduction, genetic pathway analysis

Other faculty have been phased out
Zhen Li, M.S. — all of the above
Partial postdoc and student positions
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Project Objectives

eprovide biostatistical support to the Center
eperform data analysis and develop methods

ecollaborate with EPA and the computational toxicology
community.

Recent Activities

Direct collaborations and data analysis

Work with Project 2 investigators on toxicity
prediction/data mining methods

Work with Project 3 investigators on rodent toxicity
and eQTL mapping

Analysis of clinical toxicity and metabolomic data to
explore a large number of prediction approaches

abstracts on ToxCast data and proposed analyses for
prioritization of chemicals

Expression QTL mapping relevant to toxicity

At any one time, about 3 active analysis projects
-Collaborations inspire new methods development
-A recent example:

BMC Genomics e

Our pathway analysis procedure SAFE used to identify pathways...
A |

[ -

e

Dene
-l

1] m

o | Ay Dottamathuin .

p=001T2

Cumulstive periertage

...followed by experimental evidence of pyrethroid effects on the total
number of branch points in primary cortical cell cultures exposed to
deltamethrin or permethrin.

2 A. - D. ok
E. 175
2y T 1 T
:E 150 L.
. z  AgtN
EE 125 e P
-
23 1009 E 1
5 L
W 75 r
(N 5 g ] by B
S F S F NI

Harrill et al., BMC Genomics. 2008 Nov
18;9:546.

This experience, in addition to exposure to dose-
response data from NCCT personnel, got us thinking...

* Relatively few methods for dose-response that are tuned to
gene expression studies

« Even fewer that consider “pathways” (gene sets)

¢ A primary challenge is maintaining appropriate type | error
control for individual transcripts, whether parametric or not

* We would like methods to be fast, for permutation or
bootstrapping.

* How to aggregate evidence across transcripts within a
pathway?
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Dose response modeling for gene expression and pathways

Y, =f(d0)+e, & ~N(0.0°)
Yjj is (continuous) response of the j-th subject on the i-th dose

d;; @ is the vector of parameters for the distribution f

We have performed extensive
investigation of simple
(approximate) two-parameter
logistic fits, establishing
reasonable false positive rates
and power for small sample sizes

expression

Powe funcion plot -5 ose:

Power of simple dose-
response
approximations (linear
after transformation)

- two parameter logistic model; - linear model; -- fast sigmoid curve

fitting

eSeveral other collaborative examples

EAAC Bwrvormanes 2008, 9241

Ay Dopecdenn Varaiity in (s Exsrasaion in Mabs Fischar 144

Chemical Toxicity Prediction for Toxicogenomics B S LEHN | L I
Studies Using an Example Dataset. L et al, SOT

So that we can build on top of our existing
gene expression pathway analysis software

Dose-Response Pathway Analysis for Gene Expression Data

~ |3 Pathway Dass Responss Profiles

Gara arprevsizn

dose e s

Prediction of in vivo toxicity endpoints from
ToxCast™ Phase | data using a variety of
machine learning approaches

right' ", Zhe Li
ey Crur’. Fiuss Wostinge:

‘Departmant of Bicatatsses, T
Buniormancs and C:

Chapel H 'Departmert of
Sciences and Enginesring. Univeraty of Morth Caroina

Prediction of in vivo toxicity endpoints from
ToxCast™ Phase | data using a variety of
machine learning approaches

gt Inen Li'™, Harmesn Huar
Ming Cnu®, Riuss Woifinger”, '

Aepata Ghesh' . Wargn B’ L
Sun', Fes Zow™, hewen Ry

 ‘Depart
+309 chemicals e

Depart or
Sciences and Enginesring. Univeraty of Morth Caroina

+ over 70 toxicity endpoints to be predicted
* 600+ bioassay results

+1224 Dragon chemical descriptors provided by Drs. Hao Zhu and Alex Tropsha
(Project 2) as additional toxicity predictors.

sExtensive work on cross-validation and ROC area under the curve (AUC)
assessment of 84 (and now nearly 200) prediction models provides a global
view of the strengths and weaknesses of various prediction approaches
(details in talk at ToxCast Data Analysis Summit web site).
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Both chemical descriptors and ToxCast assays
remain in the predictive models

|
Adl 4 8.4l oo d . wolbibli dBLIL

Even biologically naive prediction models suggests
improvement for several endpoints

percent AUC improvement
ToxCast Phase | assays over

Endpoint
chemical descriptors
CHR_Rat_LiverProliferativeLesions. 18.2%
DEV_Rat_Urogenital_Ureteric 13.6%
CHR_Rat_LiverTumors 14.0%
DEV_Rat_Urogenital_Re.1l 8.3%
CHR_Rat_LiverNecrosis 9.6%
MGR_Rat_LiveBirthPND1 9.1%
DEV_Rat_Orofacial_CleftLipPalate 8.4%
CHR_Rat_TesticularAtrophy 8.0%
MGR_Rat_Fertility 6.7%
MGR_Rat_Prostate 4.5%
MGR_Rat_Epididymis 53%
MGR_Rat_Implantations 53%

Additional methods development in Project 1
(one example)

¢ Methods for detecting true “trans-bands” in eQTL
studies

2 4 “Real” or not?
Liver

Results appear highly unlikely to be due to
i chance, but can artificially result from transcript
o correlation

! / We have worked out permutation and analytic
3 - = (matrix decomposition) methods to assess

A more refined view

Biological Context

ToxCast {\ Chemical

assays descriptors

Sensitivity/specificity
tradeoffs may be

favorable, and better
prediction for certain
applicability domains

prediction

This work is part of a larger effort to get a statistically valid
“snapshot” of eQTL data without the need for resampling.

Related efforts include

(i) transforming transcript data to handle outliers, which can be a
problem for SNPs with low minor allele frequency

(ii) Principal component handling of stratification

PC2

PC-based stratification control
for eQTL analysis, mouse data

-log10(p) residual
regression

Ml

. R -log10(p) multiple regression
Bottom line — these issues matter in identifying eQTLs, and

therefore in elucidating genetic susceptibility
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Project 2:
Cheminformatics

Alex Tropsha, Ph.D. (P.Il.) — Quantitative Structure
Activity Relationship (QSAR) modeling, software tools
for chemical descriptor-based prediction

Hao Zhu, Ph.D. — QSAR modeling

Additional postdoctoral researchers, research faculty,
and students

Leverages effort in the Laboratory for Molecular
Modeling, School of Pharmacy, UNC

Project Objectives
scoordinates the compilation and mining of data from
relevant external databases

eperforms analysis and methods development for building
statistically significant and externally predictive
Quantitative Structure-Activity Relationship models of
chemical toxicology data

*Performs collaborative work within the Center and with
EPA collaborators

* Recent activity highlighted here

C
@)
M
P
O
U
N
D
S

Quantitative
Structure

Relationships
nmy

Improved quantitative models of chemical
toxicity based on combined application of
chemical and biological molecular descriptors

* Overall project vision: exploiting the entire
structure — in vitro — in vivo continuum

* Predictive QSAR Modeling Workflow

* Applications
— The use of hybrid chemical biological descriptors
— novel data partitioning approach based on in vitro —in

vivo correlations: Hierarchical QSAR modeling of
rodent toxicity

<-4 mMmUO=XT

wWozZzCcOoOTvZOO
<-4 mMmUO=XT

Predictive QSAR Workflow*

Multiple
Training Sets

Original $p_\it into
Dataset Training, Test,
and External

Validation Sets

Combi-QSPR
Modeling

Only accept models
Experimental Multiple Activity that have a
Validation of Test Sets Prediction | 9>>0.6
Prioritized Alerts R?> 0.6, etc.

I

P;'eer‘?l‘ig"’snai"efw External validation Validated Predictive
Aertsto |+ Using Applicability Models with High Internal
Prioritize for Domain (1) & External Accuracy
Testing

“Tropsha, A.,* Golbraikh, A. Predictive QSAR Modeling Workflow, Model
Applicability Domains, and Virtual Screening. Curr. Pharm. Des., 2007, 13, 3494-3504.
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Compound prioritization using QSAR models

| Database |

Application I. Using Full High-Throughput
Screening Dose Response Curves as Biological
Fingerprints of Organic Compounds in QSAR
Studies

Zhu, Sedykh, et al, in preparation; EPA Collaborator: Ann Richard

*Zhu H, Rusyn |, Richard A, Tropsha A.* Use of cell viability assay data improves the prediction
accuracy of conventional quantitative structure-activity relationship models of animal
carcinogenicity. Environ Health Perspect 2008; (116): 506-513

Using HTS data for Carcinogenicity

Modeling
328 compounds with
CPDB carinogenicity
and HTS data 227 Dragon 324kNN
descriptor carcinogenicity _
matrix models
278
compound 418 kNN
modeling set carcinogenicity
models
162 biological

descriptors

50 external
" compounds

Using HTS Dose Response Curve to Assist QSAR
Modeling of Carcinogenicity

* Three types of descriptors:
Chemical (300+); Biological (150+); Hybrid
(400+)

¢ CPDB carcinogenicity data: 328 unique organic
compounds with multi-cell carcinogenicity
calls, 189 actives and 139 inactives

Prediction of the External Validation Set

_ KkNN-Dragon KNN-Hybrid

Sensitivity 69% 66%
Specificity 46% 56%
CCR 57% 62%
Coverage 2% 70%

average values after repeating the experiments 5 times.

Application Il:
A Two-step Hierarchical QSAR
Modeling Workflow for Predicting in
vivo Chemical Toxicity*

n, Wright, et al, EHP, 2009(8), 1257-64;

“Zhu, Rusyn,
in collaboration wih Ann Richard, NCCT, US EPA
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ZEBET Database* and Data Preparation

cytotoxicity IC50 and both rat

SO0 and/or mouse LD50
compo].mds
201 inorganics, mixtures and heavy
metal salts are removed
compornds
253 both in vitro IC50 values and
compolinds rat LD50 results
Random split

*ZEBET database
230 23 provided by Dr. Ann
compounds compounds Richard (EPA)
modeling set validation set

Data partitioning based on the moving
regression approach

¢ |IC50 vs. rat LD50 values

a 3, o C1Compounds
# CZ Compounds
—Linear Fit (C1) - A o

- n

Log(1/Rat LDsp)

Log(1/1Gs0)

R?=0.74or Class 1 compounds.

Modeling Workflow

Prediction Workflow

L Predict LD, values
Class 2 compounds —> by 40 kNN LDs,

models

s s

S F e

Classification of the Rat LD50 Values for the
External Set of 23 Compounds

No ~0: With A0
Classification rate = 62% Classification rate = 78%

Pred. | Pred. Pred. | Pred.
C1 Cc2 C1 c2
Exp. 7 2 Exp. 6 0
C1 C1
Exp. 6 5 Exp. 4 5
Cc2 Cc2

Pred.Log(L/LDS0)

Prediction of the Rat LD50 Values of the
External 23 Compounds

¢ R2=0.79, MAE=0.37, Coverage=74% (17 out of 23)

= C2 compounds]
4 C1 compounds|

2,00 -1.50 -1.00 -0.50 0.00 050 100 150
Exp.Log(1/LD50)
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Future Studies

¢ Analyze models to identify significant assay-
chemical combinations that are predictive
of in vivo outcomes

¢ Explore the entire NTP dataset

¢ Apply model prospectively to prioritize new
compounds for focused toxicity testing.

Project 3:
Computational Infrastructure for Systems Toxicology

e |van Rusyn (co-Pl):
toxicology, genomics
¢ Leonard McMillan (co-Pl):

computer science, GUI,
software engineering

¢ Additional programmers
and students

COMPUTATIONAL
CHEMISTS

*has created a framework for handling emerging —omics data on
genetic susceptibility in model organisms.

*provides programming expertise to create graphical tools that
are used by partners within the Center and in collaboration with
EPA personnel and other environmental scientists

sstrengthens and advances the field of computational toxicology
through direct partnerships and the dissemination of tools used
by both bioinformatics and bench scientists.

Project Objectives

¢ Develop and implement algorithms that streamline the analysis of
multi-dimensional data streams in dose-response assessment and
cross-species extrapolation

 Facilitate the development of a standard workflow for (i) analysis
of the -omics data, (ii) linkages to classical indicators of adverse
health effects, and (iii) integration with other types of biological
information such as genome sequences and genetic differences
between species

* Build web-based, open-source and user-friendly graphical
interfaces associated with interoperable computational tools for
data analysis that facilitate incorporation of new data streams into
basic research and decision-making pipelines (methods from
Projects 1 and 2)

Staff Locations:
Facilitating Inter-Disciplinary Interactions

Biostatistics
Environmental Sci&Eng i

»Office location (¢b-B1
g | |
interactions with corly
scince parsonne!

*Bragranits atteri

- compsicee meetings
Bis and st o
Srat gon ma

Driving Biological problem:
Population-wide predictions from toxicity profiling

Data Analysis Knowledge

ﬂ]fr;‘ii’

Mouse Geneties

tiver Biology
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Mause population-gulded resequeneing reveals
that variants in Cllyg contribute 1o

v sonmALT (D)

APPLICATIONS NOTE °. meivdio]
Gene axpresson
SAFEGUI: g-based tests of categ g in
gene expression dal.a made easy
‘med A Wiight? and Wiliam T, Blarry’
o e s o

-

Integration of existing and new tools into

a Predictive Toxicology Web Portal (ceccr.unc.edu)

Inferring missing genotypes in large SNP pansls using fast
nearesl msiphbor searches sver sbding windows

e

Fhe poy s pism architecture of mouse gt e
eluchlated using m I hata: bmpl far
OTL discovery and systems gemetics

e s ot P Ut & LB
o g et i B . Tt

HiDimm Viewer snpBrowser
nm;:::::’:;::‘::;'uﬂu IH SNP Density ———e
T ——

Collaborative Cross
Simulator IBDViewer
Visualization of 18D
intervalsin a chosen
subset of mouse srains,

Creates syntheticfounder mice
and breeds them in the CC
funnelscheme to producea
syntheticinbred mouse ine

10
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The next year — Project 1

Finish methodology for open projects and
collaboration

¢ Finish dose-response pathway analysis method

e ToxCast data analysis — bring to intermediate
conclusion

» ToxCast — go deeper, in terms of choices of endpoints,
sensitivity vs. specificity, domains of applicability

The next year — Project 2

*Continuing work on QSAR modeling of multiple
animal toxicity endpoints

*Developing novel QSAR methodology by using in
vitro biological information to model in vivo toxicity
endpoints

* QSTR modeling of nanotoxicology data.

*For all of these activities we on data collected under
the ToxCast, DSSTox, and other projects.

Center-wide

*Emphasis on training other scientists in tools
developed

*Bringing open source code and methods to new stage
in evolution

The next year — Project 3

«Continuing integration/support of tools from other
CEBC projects

scontinued programming and algorithmic |
simprovements to algorithms in tools and applications

«development of specific data-mining algorithms for
genomic databases

econtinued biology-driven research that generates
appropriate datasets for testing and implementing
novel computational and biostatistical approaches.

EXTRA

11



h 50 endpaints selected based on the rank of th frequency o “aciives™ Chemical Toxicity Predi for Toxi ics Studies Using
e o an Example Dataset Project 2 Acknowledgements
[ELTCIENE an Zhen Li, Fathi Elloumi, Fred A Wright Pr— T
'DEV_Rabbit_PregnancyRelated_Mate 109 . - - . rincipal Investigator p
Goal: dl |l for13
Gt e 0 oal: o predict potentialtoxicity for Alexander Tropsha UNC: I. Rusyn, F. Wright, S. Gome
” Performance of different classifiers PA: T. Martin, D. Young
G e i) = Chemicals (13 in total and single dose): A. Richard, R. Judson.
m CHR_Mouse_Tumorigen @ 1,5-Naphthalenediamine, 2,3- Reseorch}Prof‘essors Dix, R K lock 1
T e @ bonsofuran. &-NitroamthraniieN-1- Clark Jeffries, Alexander . Dix, R. Kavlocl
MGR_Rat_Kidney n naphthyl)ethylenediamine 100.00% Golbraikh, Hao Zhu,
CHR_Mouse_UiverTumors n dihydrochloride, benzene, coumarin, i - b
'DEV_Rabbit_PregnancyRelated_Embr ) pentachloronitrobenzene, 2,2- 90.00% Sifwen Wi THi raduate Research Assistants
MGR_Rat_ViabiltyPND4 @ bis(bromomethyl)-1,3- propanediol, 80.00% ! hristopher Grulke, Nancy Baker,
CHR _Mouse_LiverHypertrophy o 1,2-dibromoethane, 2- 70.00% B Wong, Hoo Tang, Jui-Hua
[T e—— o :l:r::le;:‘vlg:\l;:'z :-av:rr‘zc"h:‘r‘;de N- 60.00% Postdoctoral Fellows Hsieh, Rima Haijo, Tanarat
CREAR R =) mala““ion i 4 50.00% Georgiy Abramochkin, Lin Ye, Kietsakorn, Tong Ying Wu, Liyin
S e = ’ 000 Denis Fourches Zhang, Melody Luo, Guiyu Zhao,
DEV_Rabbit_General_FetalWeightRe a9 Controls; com oil, water, rodent chow o NlH Andrew Fant
Vb g s © Ly Visiting Research Scientist - P20-HG003898
0v_pt Sl Aoperier o 1000% Aleks Sedykh - R21GM076059
CHR_Mouse_KidneyPatholog s 0.00% p Re h Pr
S Nave  Logsic | Neul | KN Fardom | SV -RO1-GM66940 Qi orch PR
o MGR_Rat_Litersize s Bayes Network  (k=3/5)  Trees - RO-GM068665 eo Walker
EPA
n . . As UneMembar System Administrator
ik Pl Mihir Shah
n n Zheng, Shubin Liu
Age-Dependent Variability in Gene _Exp{cssuon in Male Fischer 344 Project Ob]ectlvesl cont.
Rat Retina
Then Li* Fd A Wirighe s bt
Needed method for quantifying changes in variability with high
statistical power * Provide an interdisciplinary computer science resource to the
environmental sciences and toxicology community
n i1 Plas 41 T —
I.. 20 HN| * Longer-term objectives include new software engineering
m i1 : #"1 methods for better execution and maintenance of above, and
i sharing and disseminating results
]
i
¥ - . "
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Overview of Carolina Center for
Computational Toxicology
STAR Program

October 1, 2009

UNITED &

MPUTATIONAL

TOXICOLOGY

This work was reviewed by EPA and approved for presentation but does not
necessarily reflect official Agency policy. Mention of trade names or commercial
products does not constitute endorsement or recommendation by EPA for use.

o and Developmen
mputational

Many Chemicals, Little Data

Chemical ClI; f Int t
. Tox21 Priority List: ~19,000 Chemicals W

«EPA. NTP. NCGC. FDA. OECD Medium Production Volume

Pesticidal Actives
Antimicrobial Actives

80% Pesticide Inerts

70% Drinking Water Contaminants
60% 7 Air Pollutants

ig: 1 Superfund Priority Chemicals

30% Food Additives
£ 1 Fragrances
S Drugs
10% - 9 )
0% Green Chemicals

Persistent Chemicals

Percentage of Chemicals With Test

&* & *\o\* é@@ wu\"é w@* ,;e‘* +\¢\°\ g“* Active Metabolites
A @/\o o&z é\o@ &91/\0 S X 4@/\0 \“/\o
& F e E§ (}\@*\ Toxicity Areas
@Q < -Carcinogens
* < -Genotoxicants

-Developmental Toxicants

Toxicity Category
-Developmental Neurotoxicants

Office of Research and Development -Reproductive Toxicants,
National Centr for Computatona Toxicoogy _Endocrine
-Immunotoxicants

SEPA Carolina Computational Toxicology Center
£ ’ STAR Program: Project 1

- Develop and apply data-driven methods for the
inference and high-level modeling of regulatory
network response to chemical perturbation

- Develop mechanistic models of nuclear receptor
function

- Integrate and deploy high-, and low-level
modeling tools

- Prioritization
« Mechanism of Action
- Dose-Response Modeling

Office of Research and Development
National Center for Computational Toxicology

- Susceptible Populations

The EPA’s Task

H,C=0 RD

BRITISH MEDOCAL JOCRNAL 15 Maeca 1973

MEDICAL MEMORANDA

EPA nomination held up amid debate
over formaldehyde risks

September 24, 2009 Formalin Asthma in Hospital Staff
Protection Agency Lisa

Jackson visited Sen. David Vitter, R-La., in his D. ]. HENDRICK, D, J. LANE

office Thursday to ask him to release his hold on the

nomination of Paul Anastas to be the EPA's assistant

administrator in charge of its Office of Research and

Development. Vitter wants the EPA to agree to have

the National Academy of Sciences review its

assessment of the risks posed by

formaldehyde, which s best known to folks in the

Gulf Coast because of respiratory complaints

lodged by people who lived in FEMA trailers with

elevated levels of formaldehyde.

Feport bere the e of Inbalation provocation tets 1 invevigate

the relevance of inbaled formalin fmes to sirways obstruction

In two hospial eafl mecsber comsinuslly expoved 1o this wob-
pravesp

Brisish Medkcal Formal, 1973, 1, 807608

Few cases of sirways obutruction anributsble 1o ishaled formal-

Computational Toxicology

- Addresses Issues of Too Many Chemicals, Too Little
Data

- Priority Areas of Research and Method Development
—Prioritization
—Mechanism of Action
—Dose-Response Modeling
—Susceptible Populations

Office of Research and Development 5
National Center for Computational Toxicology

l Mechanism of Action

Network Context: Subgraph Mining

“Functional Module” in Subgraph Mining & mMinesbinery detata find &l
freguert ‘dense” sub-grapns

e e ——— RS {eliques}

et e

# Hades: Assay
& Edpes: St of “Aetive’ Chumic
e bedwenn Nodes
® Fincs all umiqua schgraghs fors
minimunrimeguency of Actse”
chemicsls
# Differs from Hierarchical
clustaring by focusing on subsets
ofthe dat
& Ucaful for defining compocite
azsays thet might be mane
prediciive
* Us=ful for assadeting
Assay{Chemical combinatians ta
andpaints
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SEPA Carolina Computational Toxicology Center
£ " STAR Program: Project 2

- Development of Fast and Efficient Toxicogenetic
Expression Quantitative Trait Loci (eQTL)
Mapping Tools

« Discovery of the chemical-induced regulatory
networks using the population-based toxicity
phenotyping in human cells

« Prioritization

« Mechanism of Action

» Dose-Response Modeling
« Susceptible Populations

Office of Research and Development
National Center for Computational Toxicology

Susceptible Populations

Specific Objective 3: Mechanism of Action

Discovery of the chemical-induced regulatory networks using
the population-based toxicity phenotyping in human cells

pea-118

g q 1 I % 0 oelamethiin

| 7 1 ’ 5  Triadimefon
.‘ (] l' '. & § Propiconazole
by | Wyclobutanit
aEmEETnk 1[.] Hnurmme oo
i il B 1 Phenobarbital

. l': . I Caspasa 37 Assay

PCB-118
Propiconazole
Triadimefon
Myclobutanil

15 W " I EE Phenobarbital
PFOA

Prioritization

Compound prioritization using the ensemble of QSAR models

QSAR model : o % & Active
Inactive
Non-toxic /)J\/}

Alerts: further testihg

Susceptible Populations
Mechanism of Action

Specific Objective 1: Development of Fast and Efficient Toxicogenetic
Expression Quantitative Trait Loci (eQTL) Mapping Tools
ORIGINAL PAPER

ot apeassion
FastMap: Fast eQTL mapping in homozygous populations
Darie e i1, Tieu-C

¢ Java-based GUI which runs on a standard desktop PC

» Amenable to “proprietary” data

« Single marker or k-SNP window association mapping

» Permutation-based significance testing of the eQTLs

» Extended options for export of data/images and a link to UCSC genome browser

SEPA Carolina Computational Toxicology Center
o STAR Program: Project 3

- Develop rigorous end point toxicity predictors based on
QSAR modeling workflow and conventional chemical
descriptors

- Develop novel computational toxico-genomic models
based on combined chemical and biological descriptors
through QSAR modeling workflow

« Develop novel computational toxico-genetic models based
on combined genetic, chemical and toxicity descriptors
through QSAR-like modeling workflow

« Prioritization

« Mechanism of Action

« Dose-Response Modeling
- Susceptible Populations

Office of Research and Development
National Center for Computational Toxicology

lMechanism of Action

Developing Novel Bio-Descriptors

Pathway-derived

Dose-response-derived
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Summary

« Carolina Center for Computational Toxicology is
developing promising new approaches to address
EPA CompTox research areas of:

—Prioritization
—Mechanism of Action
—Susceptible Populations

« Can some of these methods be extended to help
understand dose-response relationships?




The Texas-Indiana Virtual STAR center:;

Data-Generating in vitro and in silico Models of Developmental

Toxicity in Embryonic Stem Cells and Zebrafish

Jan-Ake Gustafsson, Richard H. Finnell and James A. Glazier

University of Houston, Texas A&M, Indiana University

November 2009-October 2012



Background

Birth defects
Birth defects affect about one in every 33 babies born in the United States each
year (3%) (6% worldwide). They are the leading cause of infant deaths,
accounting for more than 20% of all infant deaths. Babies born with birth defects
have a greater chance of illness and long term disability than babies without birth
defects.

Heart defects: 1 in every 100 to 200 babies

Neural tube defects: defects of the spine (spina bifida) and brain (anencephaly).
1 of 1,000 pregnancies (2.6/1000 worldwide)

Orofacial clefts: include cleft lip, cleft palate, and combined cleft lip and cleft
palate.

1 in 700 to 1,000 babies Reasons

Genetic and environmental factors

Methyl mercury:

The birth defects are small head size,
cerebral palsy, developmental delay and/or
mental retardation, blindness, muscle
weakness, and seizures.

Knowledge gap!




Research objective

New screening models for developmental toxicity

From Biological
Models of
Developmental
Toxicity to
Computer
Simulations




Main research goals

1. Generate developmental models based on mouse embryonic
stem cells and zebrafish suitable for high-throughput screening.

2. Generate high-information-content models on development
and differentiation using mouse embryonic stem cells and
zebrafish.

3. Develop computational models for developmental toxicity with
the ultimate aims of first recreating normal development (in
wild-type) and then classifying possible mechanisms by which
chemical perturbations cause experimentally observed
developmental defects.

4. Perform proof-of-concept experiments of the in vitro and in
silico test platforms with a blind test of chemicals.




Investigational Areas

Three Investigational Areas:

1. Zebrafish as a model to elucidate the morphological and
mechanistic effects of environmental pollutants.
Pl Jan-Ake Gustafsson

2. The effects of environmental contaminants on mouse embryonic
stem cell differentiation.
Pl Richard H. Finnell

3. Development of computer simulations facilitating assessment of
toxicity based on perturbed development in zebrafish and mouse
embryonic stem cells.

Pl James A. Glazier




Management

US-EPA

Center Director

Quality Control Manager Project Manager

Advisory Board

TIVS Board

Investigational Areas
1,2,and 3

Advisory board

Advice and Evaluate

George Daston, Procter and Gamble

Nadine Peyrieras, CNRS, Paris

Helen Hakansson, Karolinska Institutet, Stockholm
Menghang Xia, NCGC, NIH

TIVS board
1 representative from each IA
Main decisions

Center Director/Project Manager
Operational management
Reporting

Fiscal responsibility

Quality Control Manager
Donald P. McDonell, Duke University

Bart van der Burgh, ChemScreen (EC-funded project on ENV.2009.3.3.1.1)

STAR Center representatives




Teaching and information

Courses

Three courses for PhD students
and post docs:

1. Zebrafish development

2. Embryonic stem cells

3. Computer simulations

Posted on our website
www.cnrcs.uh.edu/TIVS-Center

Information

Develop public web

Internal web

Meetings, workshops, newsletters

Collaboration with stakeholders and other projects

OECD, WHO, ChemTRUST

STAR Centers

Chemscreen, Cascade, Crescendo, Ceasar, Carcinogenomics, SafeFoods,
Rainbow, RA-Courses, TRISK




Zebrafish as a model to elucidate the morphological and
mechanistic effects of environmental pollutants

Zebrafish, Danio rerio

«Small size, small test volumes
*Transparent embryos/fish

*External rapid embryonic development
*Hundreds of eggs weekly/pair

Genome sequenced,

75% of genes have human homologues
*Conserved developmental processes and
signaling pathways

Many mutants

*Morpholino knockdown

*Cost efficient

«Adaptable to medium to high through put screening




Generation of screening models for teratogens

10 transgenic fish expressing fluorescent markers to follow development
and patterning.

Endpoints:
*Gastrulation and early embryonic cell movements
*Patterning of CNS and neurogenesis
*Hematopoiesis and angiogenesis
*Yolk utilization and morphological effects on somitogenesis

Morphology and GFP/RFP expression will be recorded
during normal development.

Is development changed by teratogenic chemicals?

Scale up and automate for high throughput screening



Transgenic fish for screening

Gene HTTA Reporter Readout Start time of expected
Status expression (hpf)
1 goosecoid Early patterning, epiboly, early RFP- to be made Time of appearance/disappearance, Spatial 3.5 hpf
cell movements and distribution of expression domain, intensity of
developmental delay expression
2 dharma Early patterning, epiboly, early GFP —to be made Time of appearance/disappearance, Spatial 3.5 hpf
cell movements and distribution of expression domain, intensity of
developmental delay expression
3 bmp2b Patterning (anterior-posterior GFP-to be made Total length of expression domain, Time of 1 cell stage 0 hpf
symmetry), early cell movements appearance/disappearance, Spatial distribution |(maternal contributed)
of expression domain, intensity of expression
4 wnt8 Patterning (anterior-posterior GFP-to be made Total length of expression domain, Time of 1 cell stage 0 hpf
symmetry), early cell movements appearance/disappearance, Spatial distribution |(maternal contributed)
of expression domain, intensity of expression
5 bmp4 Patterning (left-right symmetry) |GFP-to be made Total length of expression domain, Time of 10 hpf
appearance/disappearance, Spatial distribution
of expression domain, intensity of expression
6 ngnl Neurogenesis, Axon guidance, GFP/RFP-available Time of expression, region of expression, 10 hpf
early, developmental delay intensity, cell numbers, axonal length and
pathfiinding
7 flil Angiogenesis and blood vessel EGFP-available with | Time of expression, region of expression, 11 hpf
remodeling, heart morphology us intensity, angiogenesis, blood flow, heart size,
and function rate of heart beat, number and size of trunk
vessels
8 flk1 Angiogenesis and blood vessel GFP-available with us |Time of expression, region of expression, 11 hpf
remodeling, heart morphology intensity, angiogenesis, blood flow, heart size,
and function. Expressed in tip rate of heart beat, number and size of trunk
cells. vessels
9 Unc5b Blood vessel formation, RFP-to be made Time of expression, region of expression, 9hpf
expressed in tip cells at the intensity, angiogenesis
forefront of arterial and venous
sprouts.
10 unc45b Muscle development and GFP-available Somite formation, somite size, time of 9hpf

somitogenesis

appearance, muscle formation, intensity,
spontaneous movements, time and region of
appearance




Generation of high-information-content models

*Somite formation
*Blood-vessel formation
*Axonal pathfinding

Map expression of

' Knockdown
crucial factors f o
Adhesion factors OT crucia

' factors
Repulsion factors
Immunostaining, In Morpholino
: knockdown

situ hybridization

Simulations in silico



Test chemicals

37 CERCLA chemicals known
or expected to be teratogens
and associated with
developmental
malformations

Rank number indicates the
potential threat to human health
of these environmental
pollutants as determined by
ATSDR and the EPA.

Abbreviations:

Chemical Abstracts Service (CAS),
central nervous system (CNS),
gastrointestinal (Gl),
genitourinary (GU),
musculoskeletal (MS).

(The Comprehensive
Environmental Response,
Compensation, and Liability Act,
CERCLA)

RANK

o Ol hWWDN

16
17
24
45
47
53
54
61
71
78
80
84
93
94
145
147
176
182
189
209
224
240
241
244
250
264
271
272
274

SUBSTANCE NAME

arsenic

lead

mercury
vinyl chloride

polychlorinated biphenyls

benzene

cadmium
chloroform
trichloroethylene
dieldrin

aldrin
pentachlorophenol
carbon tetrachloride
nickel

endosulfan
methoxychlor
toluene
naphthalene
methylene chloride
hydrazine
hexachlorobenzene
2., 4-dinitrotoluene
parathion
selenium

carbon disulfide
phenol

carbon monoxide
2,4-dichlorophenol
arsenic trioxide
dichlorvos

sodium arsenite
formaldehyde
diuron

methyl parathion
styrene

carbaryl
acrylonitrile

CAS #
007440-38-2
007439-92-1
007439-97-6
000075-01-4

001336-36-3
000071-43-2
007440-43-9
000067-66-3
000079-01-6
000060-57-1
000309-00-2
000087-86-5
000056-23-5
007440-02-0
000115-29-7
000072-43-5
000108-88-3
000091-20-3
000075-09-2
000302-01-2
000118-74-1
000121-14-2
000056-38-2
007782-49-2
000075-15-0
000108-95-2
000630-08-0
000120-83-2
001327-53-3
000062-73-7
007784-46-5
000050-00-0
000330-54-1
000298-00-0
000100-42-5
000063-25-2
000107-13-1

CNS Eye
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
= +
+ +
+ o
+ +
= +
- +
+ +
+ +
+ +
+ +
- +
+ o
+ +
+ +
- +
+ +
+ o
+ =
= +
+ +

+

Heart

+ +

+ +

+ 4+

+

Gl

GU MS
+ +
+ -
+ +
- +
+ +
+ +
+ +
+ +
+ +
+ +
+ =
+ -
+ +
+ +
+ +
+ -
+ =
+ +
+ -
+ +
+ -
- +
+ =
+ -
- +
+ +
+ -
+ -
+ +
+ -
+ +
+ +
+ -
+ +
+ -



Mouse embryonic stem cells as a model to elucidate the morphological
and mechanistic effects of environmental pollutants

House Mouse, Mus musculus
*Mouse genes (99%) have homologues in humans
*Relatively short gestational age

Mouse Embryonic Stem Cells

«Small size, small test volumes

*Conserved developmental processes and signaling pathw
*Mimic in vivo development

Amendable to genetic manipulation

*Cost efficient

«Adaptable to medium to high through put screening




Embryonic Stem Cell Differentiation

In the Beginning...
ES cells must be isolated and maintained or ES Cells

else...
ES cells differentiate into epiblast

Epiblast gives rise to
embryoid body &
germ layer cells

Germ layer cells
differentiate into specific cell

types




Genetic Manipulation of Mouse ES Cells: Gene Trap

C57BIl/6 Gene Trap Library

« Retrovirus inserts transgenic construct

e > 350,000 ES cell clones produced - SA I AT
* > 10,000 genes contain inserts Retroviral gene trapping vector

* ROSA [-geo gene trap vector (marker)

Wildtype Locus

//
o
P
Mutant Locus //
-—{ S——

Marker Fusion Transcript




Selection and Generation of ES Based Screening Models

16 transgenic mouse ES cells expressing a reporter (3-geo) thawed and
cultured:

Selected Genes:
Follow developmental and patterning processes.

Including:

Gastrulation and early embryonic cell movements
Patterning of CNS and neurogenesis
Hematopoiesis and angiogenesis

Expected Reults:

Documentation of morphology and -geo expression during:
*normal development
teratogenic chemical exposure

Scale up and automate for high throughput screening



Selected Transgenic B-geo Mouse ES cells for Screening

Gene

Nodal

Wnt3
Fof4

Gsc

Cdh1l
Pou5fl
Meox1

Bmp4
Mapt

Synl
ABCG2
Tiel

Pcaml
GATA3
Mef2a

Myl2

Name

Nodal

wingless-related MMTYV integration site 3
fibroblast growth factor 4

Goosecoid

cadherin 1 (E-cadherin)
POU domain, class 5, transcription factor 1
mesenchyme homeobox 1

bone morphogenetic protein 4

tau
synapsin |

ATP-binding cassette superfamily G member 2

tyrosine kinase with immunoglobulin-like and
EGF-like domains 1

platelet/endothelial cell adhesion molecule 1
GATA binding protein 3

Myocyte-Specific Enhancer Factor 2a
myosin light chain 2V

Function/Expression

Interacts with type | receptor complexes: ALK4 and ALK7, and type Il
receptors: activin receptor 2a or 2b

Whnt signaling ligand

FGF signaling ligand

homeodomain transcription factor, executer of cell migration during
gastrulation

calcium ion-dependent cell adhesion molecule in epithelial cells
regulation of pluripotency during normal development

homeobox gene expressed in mesoderm of primitive streak and somites

bone and cartilage development
neuronal microtubule associated protein

synaptic vesicle glycoprotein present in cells involved in synaptic
transmission

stem cell and hematopoietic stem cell marker
angiopoietin receptors and endothelial marker

cell adhesion molecule and endothelial marker
transcription factor in myocytes
transcription factor in myocytes

regulatory light chain associated with cardiac myosin beta




Alternative Transgenic 3-geo Mouse ES cells for Screening

In the event that selected clones do not pass quality control, or are not responsive
to chemical insults, alternative gene/clones are also available, e.g. :

Gene
Smad1l

Prdm14
Spred

Zic family

VEGF

Notchl

Zic2

Zich

Vegfb

Vegfc

Name
MAD homolog 1

PR-domain containing protein 14
Sprouty-related protein with an EVH1 domain

Zinc finger protein of the cerebellum

Vascular endothelial growth factor

Notch gene homolog 1

Function/Expression
Proteins that modulate the activity of TGF g ligands

Functions in PGC specification
Regulates Ras-ERK signaling pathway

Neural development

VEGEF signaling ligand

Functions in vascular remodeling during development




Generation of High Throughput/Information Content
Models

Detection of transgenic ES cell f-geo (lacZ) expression:
In Vivo (ImaGene Green, Invitrogen)

Imagene Green staining of ES cell-derived Imagene Green and propidium iodide
spontaneously contracting cardiac staining of in vitro endothelial differentiation
myocytes

| AKX "‘
_ _ e, Arteriosclerosis, Thrombosis, and Vascular Biology.
Circulation Research. 1996;78:547-552. 2004:24:691




Generation of High Throughput/Information Content
Models

ES
cells
o -
. by ™
Standardized i, = ,
Embryoid Body ’ ,
Production -

Application of teratogen

¥ ’. ‘.'
NN
3.0

; ﬂ\“h

.‘ﬁ‘ 4

Differentiatation & Detection

of B-geo expression

www.cmhd.ca/genetrap/database/search_expression.h
tml

Simulations in silico




Development of computer simulations facilitating assessment of toxicity based
on perturbed development in zebrafish and mouse embryonic stem cells

Multi-cell modeling provides a platform to go from molecule to cell behavior to development.
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http://www.stanford.edu/group/Urchin/LP/

Multi-cell Modeling as a Bridge from in vitro to Organ/Organism

Still a huge gap between level of molecular data and observed developmental
patterns.

Multi-cell Models separate two questions:
How do molecular processes drive cell phenomenology?
How does cell phenomenology drive tissue-level patterning?

Why useful?

Brute force (molecule—>organism) computationally intractable.
Allows focus on key molecular pathways. And cell-cell interaction
mechanismes.

Most mammalian cells are fairly limited in their behaviors, simplifying model
construction.

Rapidly developing tools and standards.




Data Inputs for Multi-cell Modeling

Organ/Organism level:
Qualitative selection of model developmental systems.
Quantitative study of normal and perturbed development of these.
Cell tracking (in vivo).
Expression mapping (in vivo and in vitro).
Identification of key ECM & extracellular signals (in vivo and in vitro).

Cell level:
Qualititative identification of key cell types.
Quantitative descriptions of their phenomenology in vivo and in vitro.

Molecular level:
Qualitative identification of key regulatory pathways (in vivo and in vitro).
Quantitative description these pathways and their perturbations (in vitro).




Multi-Modeling Tools (I)—CompuCell3D

CompuCell3D (Indiana University, Bloomington)
Multi-Cell Modeling Environment
= 7

Open-Source, Multi-Platform Simulation Environment:

Simulations Based on Cell Behaviors

Simulation Specification in High-Level Language
(CC3DML, Python)

Fast Simulation Development

Reuse of Simulation Components

Connects to Systems Biology Workbench for
Pathway Modeling



Multi-Modeling Tools (II)—Systems Biology Workbench

Systems Biology Workbench (U. Washington, Seattle)
Reaction-Kinetics Modeling Environment

™) Systems Biology
D Workbench

Open-Source, Multi-Platform Simulation Environment:
Simulations Based on Molecular Reactions
Simulation Specification in High-Level Language
Fast Simulation Development
Reuse of Simulation Components
Connects to CompuCell3D for Multi-Cell Modeling



Multi-Modeling Tools (lll)—Cell Behavior Ontology/CBMSL

Cell Behavior Ontology/ Cell Behavior Model
Specification Language (Under Development)

&

Community-Oriented Language Development
Implementation-Independent Specification of Multi-
Cell Models
Improved Annotation of Microscopy Data for High-
Throughput Experiments and Model Generation
Unification of SBML and CC3DML




Information Flow

In vitro Pathway identification and quantification . .
Y a Cell and Tissue Behavior Focus

"
SBML Path\ivay Models In vivo Cell identification, fate mapping —
SBML Prediction Data Sets l’
C In vivo/in vitro interaction identification
SBML Validation Data Sets
1‘ A Initial Conditions <
In vitro Pathway perturbation studies ‘
v
—> CC3D Cell Models < ) 7

% CC3D Organogenesis Models -

Library of Cell Types
| 7

C CC3D Prediction Data Sets \

CC3D Validation Data Sets J

Molecule and Cell Focus 1
In vivo Perturbation studies

In vitro cell phenomenology quantification




Existing CC3D Applications (1) Role of VE-Cadherin in Angiogenesis

Maturation
),' Remodelling

 Vasculogenesis * Angiogenesis
— The formation of early vascular — The formation of ne.w.blood
plexus from in situ differentiated vessels from pre-existing ones
Endothelial Cells (ECs) * Sprouting Angiogenesis
N * Non-sprouting Angiogenesis
w e (Intussusceptive angiogenesis)
l Vasculogenesis -
lLf
J L P;';r;\uasry capillary
DAY N
géo&c Non-sprouting
- ey | e In Vitro HUVEC Model
%/ diﬂ“ ie/modgelling
J éy:; e
l D vascular system

v\‘

e

Mature
vascular system

Werner Risau, Nature 386, 671 - 674 (1997)

f?

D. Ambrosi et al., Phys. Rev. Letters 90, 118101



Existing Applications (I) Role of VE-Cadherin in Angiogenesis

VE-Cadherin (an adhesion molecule) clusters at adherens junctions between
endothelial cells and suppresses chemotaxis at cell-cell interfaces

Control

+anti-VE-Cadherin

Oh 7h 21h

Anti-VE-cadherin antibody inhibits de novo blood-vessel growth in mouse

allantois cultures. (Roeland M. H. Merks , Erica D. Perryn , Abbas Shirinifard, and James A.
Glazier, PLoS Computational Biology 2008)




Existing Applications (I) Role of VE-Cadherin in Angiogenesis

Wild Type Simulation VE-Cadherin Knockout Simulation




Existing Applications (lI) Role of N-Cadherin in Somitogenesis

Anterior
(he

ites
ing somite
er cells more anterior

™ Younger cells
&, Mmore posterior




Existing Applications (1) Role of N-Cadherin in Somitogenesis

Anterior -
Body Axis ¥
T 90 Min (~100 mm)
RA Level —t—
I Q Somites /
Q Repulsion Adhesion
) strength ~ Strength
Pre-pattern Region . EphAd4
mm N-cadherin
ephrinB2
o — Notch
Lot — Wnt
L 3
....... |« Presumptive
.‘ . Somite
FGF Level Hensen's Node i /Boundary
Threshold Expression
Strength
Posterior

FgF

FgFr WNT,
" p:as. E:K “RE?RK DshIFz /‘m.ung\
S| — alse— i pecatenin wos[Deltal
R lx l-— Gsk3 1
; S ; ‘ Delta‘
‘ \ ) Axin2 Ling l
i .f‘DySEE;l 'm T Notch } 1
Delta Dena‘
Egi, WNT, petts. Del(at
s l_’ Rasy Dsh{.Fz Notch | |
Duspé —ERKy: R ERK; p,-cmeninJ Ling ek
~ 5 17 la— Gsk3 LW e
— AN 2
\ “{Deltal
Axin2
12 4 “§Dusp8 | < 8xin2 T INi"D yiing
Lfng
10 2 - —— Axin2
Duspé o
8 S T (Lewis et al. 2003)
6 e
(Goldbeter & Pourquié 2008)
4
5 o W
o+ v - — — .
600 700 800 900 1000
time (min)

Whnt cluster

1«
sl ™ V..
e \
”?Cfi’/
055 v :
UK

5
-1 / -1- A
-15- 1.5+ 5
2- Notch cluster -2 Fgf cluster 21
2J—*--Hes? Lfng —*Nrarp—+Nkd1 Zé—O—Spry.'Z Efnal-Hspg2-+Egr1 ~+Axin2  Dactl —+Myc —+Has2
Hes5 + Nrarp-+-Hey1 —Bcl9l Dusp6 -~ Bcl2l11-+-Shp2 Dkk1 -~ Sp5-+-Tnfrsf19—Phlda1

Dequeant et al. 2006 (microarray time series of mMRNA in mouse)




Existing Applications (1) Role of N-Cadherin in Somitogenesis

|
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N-cadherin knockout
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T, = (Neadherin, Eph;)
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Ty = (NCAM ephring)

T, = [ Neadherin ephring)
T, = [ Neadherin,ephring)
T, = (Neadharin)

T, = (ECM)




Multi-Cell Modeling as a Predictive Tool

Multi-cell modeling in CompuCell3D+SBW will integrate molecular,
cellular and whole-organ level data to predict developmental effects of
pathway disruption.

Allows construction of standard libraries for reuse of information.

Lack quantitative experimental data to build/validate simulations:
— Cell Tracking
— Mechanics
— Pathways
— Interactions
— Morphology

TIVS will provide these data.

1)
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Collaborations:
Texas-Indiana Virtual STAR Center

Thomas B. Knudsen, PhD
National Center for Computational Toxicology

UNITED & ROMMENTAL PROTECT

MPLUTATIONAL
TOXICOLOGY

Disclaimer: views are those of the presenter and do not necessarily
reflect Agency policy

nd Developn STAR Workshop - October 1, 2009

or Computational

[ .
'ﬂ'EPA ~ Some key research issues ...

1. TIMING: morphogenesis and differentiation require
precisely timed genetic signals and responses

2. SENSITIVITY: metabolic and regulatory pathways are
prone to genetic errors and environmental disruptions

3. COMPLEXITY: simple lesions propagated to complex
phenotypes or complex lesions - simple phenotypes

4. MATERNAL FACTORS: impact of maternal exposure
biology during prenatal and lactational stages

Office of Research and Development 5
National Center for Computational Toxicology

)
$EPA  Fundamental processes

Core developmental processes
« patterning (sets up future events)

« timing (clocks and oscillators) Morphogenetic movements
« differentiation (cell diversification) « folding P TR

« morphogenesis (tissue organization) « epiboly - =
« convergent extension

« branching morphogenesis
« cell condensation

Cellular primitives

« growth (proliferation) « cell sorting

« death (apoptosis) « trans-differentiation
« differentiation (function) « cavitation I
« adhesion (DAH) « involution

« shape (geometry) « tractional forces

« motility (cell migration)
* ECM (remodeling)

F e e o paonm omcology After: Bard (2005) J Anat 206: 1 - 16 5

Developmental Toxicity

+ RFA-EPA-G2008-STAR-W:
Computational Toxicology Research Centers: in vitro
and in silico models of developmental toxicity pathways

< exposures that perturb biological events during
formative stages of the reproductive cycle affecting:

- embryo and fetal development
- postnatal development

- fertility and reproduction

+ children’s health

Office of Research and Development )
National Center for Computational Toxicology

SEPA  Cellular dynamics

Zebrafish tracked with H2B-EGFP
by DSLM at 90s intervals over 18h

National Center for Computational Toxicology

F e e e Develonment Source: Keller et al. (2008) Science 322: 1065-69 4

3EPA __ TIVS Project 1: zebrafish development

Zebrafish as a model to elucidate the morphological and
mechanistic effects of environmental pollutants

Padilla (EPA): pathways linking to
developmental & neurodevelopmental
endpoints

data sharing: same compounds to
confirm (+)ves and (-)ves across labs
and fish strains

resource sharing: reporter fish lines,

existing (vegF) and new (STAR), for
functional analysis of specific pathways

Office of Research and Development
National Center for Computational Toxicology
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SEPA Developmental signaling pathways

~— EEdor..

B @y e TLR NF-NB L-1)

Office of Research and Development ;
National Center for Computational Toxicology SOURCE: National Research Council, 2000

e

SOURCE: T Knudsen, NCCT SOURCE: H Mortensen, NCCT

Office of Research and Development o
National Center for Computational Toxicology

GEPA __ Toward a Virtual Embryo

-

data from in vitro
HTS assays

data from in vivo
animal studies

predictions from
machine learning

knowledgebase simulation
development engine
(VT-KB) (VT-SE)

epidemiology and

exposure monitoring

Office of Research and Development "
National Center for Computational Toxicology

3EPA __ TIVS project 2: Embryonic Stem Cells

The effects of environmental contaminants on mouse
embryonic stem cell differentiation

Hunter (EPA): pathways that control cell
signaling and specify cell fate

data sharing: same compounds to
confirm (+)ves and (-)ves across labs
and ES lines (human, murine)

llII'IIIIII!'ilIl

resource sharing: TIGM gene trap
resources for functional analysis of
specific pathways; genomic profiling

Office of Research and Development s
National Center for Computational Toxicology

SEPA TIVS project 3: Agent-based models

-

Development of computer
simulations facilitating
assessment of toxicity
based on perturbed
development in zebrafish
and mouse embryonic stem
cells

4 In silico model, CompuCell3D software
SOURCE: Glazier et al. (2008) Cur Top Dev Biol 81:205

Hes1-EGFP time-lapse (3h) clock-wavefront
SOURCE: Masamizu et al. (2006) PNAS USA 103:1313-18

Office of Research and Development 10
National Center for Computational Toxicology

“EPA ... Opportunities for collaboration

< testing chemicals using developmentally-competent in
vitro assays (ES cell and ZF embryos) and targets

< use predictive associations from ToxCast™ HTS data to
build hypotheses about mechanisms of action

< studies to generate data testing hypotheses and
improving predictive models

< improve virtual tissue models to a level that can help
prioritize chemicals for quantitative risk assessment

Office of Research and Development 1
National Center for Computational Toxicology
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An introduction to

Chem

Bart van der Burg

Qutline

® What is ChemScreen?
® Background

® Approach

Chem
Chemical substance in vitro/in silico screening system
to predict human- and ecotoxicological effects
® EU framework program 7 (FP7)
® Collaborative project
® 9partners from 5 countries
® Not yet started
L]

1 Month after signing of the contract: December 1
2009?

® 4years program, with majority of practical work in the
first three years

W very little/no
O tested

100,106 chemicals on market in 1981 (“existing substances”);
1% tested on hazardous properties

EU White Paper: Strategy for a future Chemicals Policy, 2001

Chem

Most of 100,000 chemicals on market largely untested: REACH

® Registration Evaluation Authorisation of CHemicals
program to catch up
® Start: June 1, 2007

General features REACH
® Supply chain to provide data
® Shift responsibilities from authorities towards industry
® Registration all compounds >1 ton/year
— At central European Chemicals Agency (ECHA)
— Data sharing obligatory (One Substance One Registration:OSOR)
— Substance Information Exchange Forum (SIEF)
® Evaluation dossiers by ECHA/public authorities
— May request additional data, with animal testing to the absolute
minimum
® Authorisation required for harmful compounds taking into
account risk, benefits, alternatives, etc.
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Which prioritized effects in REACH?

How many chemicals?

All chemicals >1 tons per year: ~30,000

° s: Carcinogenic, mutagenic or toxic to
reproduction
° s: Persistent, bio-accumulative and toxic
b s: Very persistent, very bio-accumulative
Chem

Estimated costs REACH:
® Costs: 2.8 -5.2 bn € (EU) (Hartung 2009: x6)

® Carcinogenicity, Mutagenicity and Reproductive toxicity
(CMR): ca 90% costs

Estimated benefit:
® Health improvement: 50 bn € (EU)

Chem

Phases

Pre-registration: June 2008
Higher risk (e.g. CMR): December 2010
> 1000 tons (HPV): December 2010
Remaining >100 tons: June 2013
Remaining >1 tons: June 2018
Completed: June 2022

Majority of testing 2011-2017

Chem

When traditional animal tests are used progress of REACH will be
seriously hampered by:

: resistance to the excessive use of animals.
: particular those linked to labour intensive animal testing
: lack of capacity to carry out these tests.

: the use of the same traditional methods will not allow
major advances in speed of the process to be made

N

>In order to be successful cost-effective, rapid in vitro tests need
to be adopted

Chem

Incentives use of alternative (non-vertebrate) tests in REACH:

® Agency (ECHA) will publish test proposals (by chemical
manufacturers) and invites third parties to submit alternative
proposal

® Explicit allowance for alternative to in vivo tests, including in
vitro and non-testing methods (QSAR, grouping, exposure,read
across)

® Accepts “suitable methods”

® Regular reporting by Agency and Commission on use of
alternative methods




Chem Chem

Why reprotox?
Our approach:
® Prioritised in REACH
® Reproductive toxicity is important to assess both human * |dentify sensitive parameters for reproductive toxicity

and envwonmentgl toxu_:lty o ) Identify critical mechanisms involved in perturbation
® Uses the most animals in toxicity testing of these parameters

® Unfortunately, there are very few alternative methods * Build high throughput system using this modules
® Expand step-wise
® Integrate with bioinformatics/data interpretation
® Build integrated testing strategies, including non-
testing methods
Chem Chem

Work packages

1.Establish in silico prescreening and toxicity prediction methods prioritizing in vitro _@
toxicity testing (WP1, leading partner; DTU)

2.Establish a database and an in silico prescreen to identify potential reproductive
toxicants (WP2, FhG)

Potentially
reprotoxic

3.Establishment of sensitive parameters and a medium throughput ‘minimal essential’ T
in vitro assay panel (WP3, RIVM)

4.Establish a high throughput mechanistic pathway screen, for reproductive toxicants I
(WP4, EKUT) 1 e 1
| methods |

Integrative tool development

5.Integrative methods to predict in vivo reprotoxicity allowing informed decisions on
prioritization for eventual further testing (WP5, TNO)

[

-
| Prioritisation |

6.Integration into one user-friendly tool (WP6, P&GEN)

7.Dissemination (WP7, BDS) L

Chem
e —
Light signal o
proportional , N
to amqunt of blologlcal o ? 4 g
active chemical in = 8 5 -
O sample s < ]
c 2 [
LUCIFERASE protein - < N £ -
6 O 4
4 3 2 1 0 " - "
ERa. CALUX AR CALUX

[ LUCIFERASE mRNA
1

g O ﬁReceplnrbmdmg elements  LUCIFERASE - In vitro -
____________ — | BIOLOGICAL EFFECT

ENDOGENOUS GENE Sonneveld et al.2006 Toxicol. Sci., 89:173-87
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Chem Chem

TABLE 4. How Some Human Teratogens Have Been Discovered
OVeI’eStimaliOn Major Means of Discovery Screening Systems
power animal data:

Physician in
oor predictions iCemiolosy Scientist, Animal Studie .
poorp Agentororug GRSt Sures 5 ® Panel (15-50) reporter gene assays in human cells (nuclear
Rubella receptors, dioxin receptor, signaling/stress /developmental
Aminopterin " pathways)
Anticonvulsants
Hydantoins 1963 ® Reporter gene assays in mouse ES cells (ReProGlow;
15 R " developmental pathways)
Valproic acid 1982 +++ i ) .
Vitamin A, 1953 ® Wildtype ES/transcriptomics
Isotretinoin 1963 - L
- +=strong ® Metabolising cell systems
Coman ot o nuclear ® Zebrafish/transcriptomics
Smiens o I'.ecepd“" ® Others for critical endpoints reprotoxicity (e.g. spermatogenesis)
outantbestoo ‘. 1gands
Penicillamine 1971 -
Misoprostol -
Trimethorpin .
Chorionic vllous - Brent (2004)
. Pediatrics 113, 984
m Chem Chem
: BioDetection Systems (BDS) Bart van der Burg Netherlands
® Ex rem |
pr?u € Odl’! € Fraunhofer Institute for Toxicology and Inge Mangelsdorf Germany
® Toxicity screening tool (>70 QSARs) Experimental Medicine (FhG)
U ¢ Invivo reprotoxicity database (FeDTex, RepDose) Netherlands Organization for Applied Dinant Kroese Netherlands
® Automated decision tool Scientific Research (TNO)
o Simpple (SIM) Eduard Pauné Spain
National Institute for Public Health and the Aldert Piersma Netherlands
Environment (RIVM)
Danish Technical University Food Institute Jay Niemala Denmark
(DTL)
Procter & Gamble Eurocor (P&GEN) Joanna Jaworska Belgium
m Eberhard Karls University of Tibingen (EKUT) Michael Schwarz Germany
> University of Konstanz (UKON) Daniel Dietrich Germany
- 4
q ® Sorry, no results yet!
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Computational Toxicology Centers Science To Achieve Results (STAR) Progress Review Workshop

U.S. Environmental Protection Agency
Office of Research and Development
National Center for Environmental Research
Computational Toxicology Centers Science To Achieve Results (STAR)
Progress Review Workshop

U.S. Environmental Protection Agency
Research Triangle Park, NC

October 1, 2009
MEETING SUMMARY

OVERVIEW

The U.S. Environmental Protection Agency (EPA) Office of Research and Development’s (ORD)
National Center for Environmental Research (NCER) Computational Toxicology Centers Science To
Achieve Results (STAR) Progress Review was held October 1, 2009, in Research Triangle Park, North
Carolina. The workshop was sponsored by ORD’s NCER. Scientists from academia, government, and
nongovernmental organizations assembled to discuss recent computational toxicology research and plan
for future needs. The meeting provided an opportunity for grantees in the EPA-funded STAR Program to
present their research and interact with EPA staff and others conducting computational toxicology
research. Approximately 60 individuals attended the meeting.

Welcome, Introduction, and Review of Meeting Goals
Deborah Segal, EPA, ORD, NCER; and Robert Kavlock, EPA, ORD, National Center for
Computational Toxicology (NCCT)

Ms. Deborah Segal explained that ORD provides leadership in science and conducts the majority of
EPA’s research and development. NCER is ORD’s extramural research arm, with a research budget of
$440 million, of which $65.5 million is allocated for competitive extramural grants and fellowships, such
as the STAR, Small Business Innovation Research (SBIR), and Greater Research Opportunities (GRO)
Programs. ORD works with other EPA offices to select research topics for the STAR Program, which was
established in 1995 as part of a reorganization of ORD. STAR aims to include the country’s universities
and nonprofit centers in EPA’s research program to ensure the highest quality science in areas of highest
risk and greatest importance to the Agency. STAR issues approximately 25 Requests for Applications
(RFASs) and awards approximately $65 to $100 million annually.

The STAR Research Program in Computational Toxicology aims to integrate computational methods and
advanced molecular biology techniques and develop the use of computational approaches to provide tools
for quantitative risk assessment and more efficient strategies for prioritizing chemicals for screening and
testing. Five RFAs have been issued under this program. A new RFA is in development for Fiscal Year
2010.

Dr. Robert Kavlock noted that the grand challenge is predicting human toxicity, moving from exposure
conditions to impacts on molecular targets that result in cell changes and ultimately in toxicity to the
organism. Tools that allow scientists to interrogate different levels of this biological complexity now are
being released. These range from high-throughput screening biochemical assays to cell-based assays to
modeling systems. The STAR Center researchers presenting at this progress review are actively involved
in various phases of this work.

The Office of Research and Development’s National Center for Environmental Research 1
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Computational Toxicology Centers Science To Achieve Results (STAR) Progress Review Workshop

A variety of reports guide the Computational Toxicology Research Program (CTRP), including the
National Academy of Sciences 2007 report, Toxicity Testing in the 21st Century: A Vision and a Strategy.
Other reports that have informed the Program in terms of the challenges of the current testing paradigm
and the opportunities available to use innovative technologies to address these important issues include
Applications of Toxicogenomic Technologies to Predictive Toxicology and Risk Assessment; Phthalates
and Cumulative Risk Assessment: The Task Ahead; and Science and Decisions: Advancing Risk
Assessment. Toxicity Testing in the 21st Century: A Vision and a Strategy discusses biological processes
and the changes caused by exposure. At lower doses, cellular changes begin to manifest, but there still is
an adaptive response. At higher doses, the result can be cell injury and morbidity and mortality.
Understanding and developing assays for signaling systems involved in the induction of toxicities will
help researchers to better understand toxicity.

The CTRP’s mission is to integrate modern computing and information technology with molecular
biology to improve Agency prioritization of data requirements and risk assessment of chemicals. The
Program provides decision-support tools for high-throughput screening, risk assessment, and risk
management and is committed to transparency and public release of all data. The Program operates under
tight deadlines, initially given 5 years to prove that this type of approach is effective. The recently
completed Board of Scientific Counselors (BOSC) review recommends that the Program be renewed for
an additional 5 years.

The Program supports EPA’s strategic plan by focusing on its goals of identifying and screening toxicity
pathways, conducting toxicity-based risk assessment, and providing the information to EPA’s regulatory
arm. EPA Administrator Lisa Jackson’s priorities include managing chemical risks; she has stressed the
importance of assessing and managing risks of chemicals in consumer products, the workplace, and the
environment as well as the importance of protecting vulnerable subpopulations. The Essential Principles
for Reform of Chemicals Management Legislation includes the review of chemicals against safety
standards based on sound science, reflecting the risk-based criteria protective of human health and the
environment. An initial list of chemicals that EPA is considering for action plan development under these
principles includes bisphenol A, perfluorinated chemicals, and phthalates.

Computational toxicology research is conducted via the NCCT, ORD projects, and the Computational
Toxicology STAR Centers. The STAR Centers are housed at the New Jersey Environmental Bio-
informatics and Computational Toxicology Center, Carolina Environmental Bioinformatics Research
Center, Carolina Center for Computational Toxicology, and Texas-Indiana Virtual STAR Center.
Implications for success include additional closing of the toxicological information gap, providing mode
of action information to risk assessment, more effectively using animal and human resources related to
the evaluation of hazard and risk, and performing ancillary applications related to mixtures, chirals, nano-
materials, green chemistry, and lot variations. This meeting will provide an opportunity for introductions,
reflections on the work accomplished to date, integration of the work, and discussion of next steps.

Carolina Center for Computational Toxicology
Ivan Rusyn, University of North Carolina

Computational toxicology is a synthesis of chemistry, high-throughput screening, in vivo data, and
molecular pathways to generate new knowledge. With increasing amounts of data becoming available,
risk assessors now are better able to understand the risks to human health and the environment. As it is an
interdisciplinary science, computational toxicology represents a tremendous opportunity for incorporating
other disciplines into traditional toxicology research and for training new researchers. Researchers need to
recognize that this should not be simply an academic exercise; it is very important that the value and the
early results of computational toxicology research be communicated to the general public, industry, and
other stakeholders.

The Office of Research and Development’s National Center for Environmental Research 2
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Computational Toxicology Centers Science To Achieve Results (STAR) Progress Review Workshop

The Carolina Center for Computational Toxicology consists of an administrative core and three research
projects and is directed by an internal steering committee assisted by an external advisory board. The
administrative core serves a number of functions, including management, integration, public
outreach/translation, and quality control. Project 1 is focused on predictive modeling of chemical-
perturbed regulatory networks in systems toxicology. Objectives of this project include: developing and
applying data-driven methods for the inference and high-level modeling of regulatory network response
to chemical perturbation, developing mechanistic models of nuclear receptor function, and integrating and
deploying high- and low-level modeling tools. Interactions with EPA have been centered on exploring
toxicity pathways, extending and integrating mechanistic metabolism and other models, and working with
ToxCast™ data. For inference and modeling of biological networks, short-term goals include developing
tools for data analysis and interpretation and helping to establish the biological-chemical context in high-
throughput screening assay datasets. Long-term goals include developing components to systems
(simplistic wiring); developing a framework for understanding systems’ properties, pathways, and cross-
talk; and providing a basis for mechanistic models. The first major challenge of this project involves the
integration of different types of data, from genome data to phenotype data. The individual data streams
are not well-defined, and the network context can be viewed in a number of different ways. A software
package that will stratify data for subgraph mining to study various pathways is under development; this
is an innovative approach, as it can define composite assays that will be more predictive than individual
assays. Also under development is a mechanistic model of cellular metabolism that will predict changes
in metabolic flux.

Project 2 is focused on toxicogenetic modeling: population-wide predictions from toxicity profiling. This
project is exploring the promises and challenges of incorporating the knowledge of interindividual genetic
variability as an important dimension of toxicity testing. Objectives of the project include developing
toxicogenetic expression quantitative trait loci (€QTL) mapping tools; performing transcription factor
network inference and integrative pathway assessment; performing toxicogenetic modeling of liver
toxicity in cultured mouse hepatocytes; and discovering chemical-induced regulatory networks using
population-based toxicity phenotyping in human cells. Interactions with EPA have included developing
and testing novel in vitro tools that will enable testing for interindividual susceptibility, developing
statistical methodology and computational tools capable of processing higher order multidimensional
data, and working on future ToxCast™ efforts and current Tox21 datasets. This project is combining
multiple streams of data and adding a level of genetic variability. One basic idea for combining genetic
diversity and biology is through eQTL mapping. The challenge, however, is determining true genetic
susceptibility and doing so in a timely fashion. This project also aims to understand whether the type of
mapping used can determine how genetic polymorphisms can control the molecular pathways perturbed
by environmental exposures. Another aim is to understand genomic context for expression.

Project 3 is focused on the development of validated and predictive quantitative structure-toxicity
relationship models that employ chemical and biological descriptors of molecular structures and take into
account genetic diversity among individuals. Objectives of the project are to develop rigorous endpoint
toxicity predictors based on the quantitative structure-activity relationship (QSAR) modeling workflow
and conventional chemical descriptors, develop novel computational models based on combined chemical
and biological descriptors through QSAR modeling workflow, and develop novel computational
toxicogenetic models based on combined genetic, chemical, and toxicity descriptors through QSAR-like
modeling workflow. Interactions with EPA have focused on integrating chemical descriptors into the
Distributed Structure-Searchable Toxicity (DSSTox) Database Network, ToxCast™, Toxicity Reference
Database (ToxRefDB), and Aggregated Computational Toxicology Resource (commonly known as
ACToR) data analysis. This project integrates chemical descriptors and high-throughput screening
biological descriptors with the QSAR modeling paradigms to predict animal in vivo endpoints and,
hopefully, human disease endpoints. This work has shown that a focus on accurate prediction of external
datasets is much more critical than accurate fitting of existing data. Also, cheminformatics, high-

The Office of Research and Development’s National Center for Environmental Research 3
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Computational Toxicology Centers Science To Achieve Results (STAR) Progress Review Workshop

throughput screening, nor omics data alone is sufficient to achieve the desired accuracy of the endpoint
property prediction.

In the first year of the Center’s operation, 12 research papers have been produced and are in various
stages of the publication process. Project 1 short-term goals for Year 2 are to continue in-depth analysis of
ToxCast™ Phase | data, further refining the methods for integration across data types, investigate the
applicability of the metabolism model as a tool for the prediction of the effects of chemical perturbation
of metabolic pathways, integrate the eQTL analyses/approaches with the network-focused methodologies,
and establish the pathway-based biological network context for QSAR. Project 2 short-term goals for
Year 2 are to continue development of FastMap software; construct transcription regulation networks in
the Bayesian framework by combining eQTLS, nucleosome occupancy, and transcriptional regulation
data; complete characterization of the mouse hepatocyte cultures and perform experiments with key
toxicants; and complete genome-wide association studies of the HapMap lymphoblast cell viability and
apoptosis data and correlate the toxicity endpoints with basal gene expression profiles. Project 3 short-
term goals are to complete the analysis of the ToxCast™ data, continue to explore other datasets that
provide both in vivo and in vitro data for chemicals, and build models that could be used by EPA to
prioritize the selection of ToxCast™ Phase Il compounds.

Dr. Kavlock asked whether the researchers had identified gaps in pathway coverage for which new assays
are needed. Dr. Rusyn responded that for Project 1, the focus is on current ToxCast™ assays, whereas
Project 2 is searching for the genes and pathways that are most susceptible to interindividual variability;
after those genes and pathways are identified, the next step will be to consider the assays needed.

Dr. David Dix referred to Project 2, asking if there was value in focusing on more specific molecular
endpoints. He asked Dr. Rusyn for his thoughts on moving this type of approach forward. Dr. Rusyn
stated that some of the Center’s work has involved taking a leap of faith and moving forward with the
most commonly used assays; he would like to complete this analysis before determining the next steps.

A participant noted that dose-response information for individual assays was missing and asked whether
the researchers had considered using a composite dose-response. Dr. Rusyn replied that the current binary
classification does not necessarily take into account all of the dose-response information. Dose responses
differ between different datasets, making it difficult to align the information. The Center is testing a
number of different approaches to determine the meaning of the dose-response information. Dr. Rusyn
welcomed suggestions on the best features of dose-response to study.

Collaborative Work With EPA
Richard Judson, EPA, ORD, NCCT

EPA studies individual chemicals and determines maximum safe doses for human exposure. The Tox21
Priority List includes 19,000 chemicals, and there is an enormous data gap for many of these chemicals,
So it is imperative that the testing be prioritized and performed in a timely manner. Priority areas for
research methodology and development include prioritization, mechanism of action determination, dose-
response modeling, and susceptible populations.

The Carolina Center for Computational Toxicology’s Project 1 is developing and applying data-driven
methods for the inference and high-level modeling of regulatory network response to chemical
perturbation, developing mechanistic models of nuclear receptor function, and developing methods for
integrating and deploying high- and low-level modeling tools. An important issue for NCCT has been
selection of assays to be developed for ToxCast™ and Tox21. The Carolina Center’s work will help EPA
with this task. Project 2 is developing fast and efficient toxicogenetic eQTL mapping tools and working to
better understand chemical-induced regulatory networks using population-based toxicity phenotyping in
human cells. The Carolina Center is in the early stages of this work. Project 3 is developing rigorous
endpoint toxicity predictors based on QSAR modeling workflow using conventional chemical descriptors.

The Office of Research and Development’s National Center for Environmental Research 4
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Computational Toxicology Centers Science To Achieve Results (STAR) Progress Review Workshop

In addition, the Center is developing novel computational toxicogenomic models based on combined
chemical and biological descriptors. This project is addressing mechanism of action and should help EPA
to prioritize chemicals for further study. In summary, the Carolina Center is developing promising new
approaches to address EPA computational toxicology research areas of prioritization, mechanism of
action determination, and susceptible population study methodology. The question is whether some of
these methods can be extended to help understand dose-response relationships.

New Jersey Environmental Bioinformatics and Computational Toxicology Center
Panos Georgopoulos and William Welsh, University of Medicine and Dentistry of New Jersey

The objectives of the New Jersey Environmental Bioinformatics and Computational Toxicology Center
are to address the toxicant source-to-outcome continuum through the development of an integrated
modular computational framework, develop predictive cheminformatics tools for hazard identification
and toxicant characterization, and demonstrate the above tools through applications in quantitative risk
assessment. The Center takes a computational/engineering/systems perspective, utilizing a team of
computational scientists and engineers with diverse backgrounds in bioinformatics, cheminformatics, and
enviroinformatics. New frameworks and tools build on an extensive base of past developments. This
research effort emphasizes interaction and collaboration among participating scientists in the STAR
Bioinformatics Centers and with EPA centers and laboratories and other centers and institutes of
excellence. The research is divided into two major areas. Investigational Area I focuses on a source-to-
outcome framework to support risk characterization, and Investigational Area Il focuses on hazard
identification. There are three projects under Investigational Area I. The first project involves multiscale
biologically based modeling of exposure-to-dose-to-response processes, the second project involves
hepatocyte metabolism modeling for xenobiotics, and the third project focuses on tools for optimal
identification of biological networks. Under Investigational Area Il, a fourth project develops
cheminformatics tools for toxicant characterization, and a fifth project develops optimization tools for in
silico proteomics. The Center’s research integration plan is consistent with the 2007 NAS report, Toxicity
Testing in the 21st Century: A Vision and a Strategy. The Center pursues an integrative multiscale
research approach—from molecules to cells to tissues to organs to organisms to populations—recognizing
the importance of processes/signals at all levels of biological organization. Additionally, the Center’s
close interaction with EPA has resulted in several publications.

Dr. Georgopoulos described Investigational Area | in further depth, noting that computational toxicology
emphasizes chemicals, pathways, and toxicity, but it also must inform the science of risk assessment. In
addition to biology, risk also depends on the environment, behavior, and time (development and aging).

A general mathematical framework for environmental health risk analysis must consider multiscale
bionetwork dynamics (spanning the genome, transcriptome, proteome, metabolome, cytome, and
physiome) linked with the dynamics of environmental stressor networks in food, air, water, and soil. The
Center has studied how these networks are coupled with the regulatory and metabolic bionetworks using
complex, multiscale modeling. Dr. Georgopoulos displayed a graphic depicting the sequence from
source/stressor formation to dose to toxicokinetic effects to modifications of the environmental agent by
the organism to biological effects to health outcomes. This includes a key element that is missing from
most representations of source-to-effect continuum approaches; this element allows using biological data
and biomarkers to evaluate assessments of exposure, locate source contributions, and perform account-
ability studies. Thus, a general Bayesian framework is being developed to reconstruct exposure from
inversion of biomarker data for individuals and populations.

The Modeling ENvironment for TOtal Risk Studies (MENTOR) employs an anthropocentric (person-
oriented) approach, linking multiple scales of macroenvironmental and local models and information with
microenvironmental conditions and human activities in time/space. It has been applied to study exposures
to a wide variety of contaminants in different media (e.g., metals, dioxins and polychlorinated biphenyls,
air toxics), selecting in particular arsenic and trichloroethylene (TCE) as “model contaminants” for

The Office of Research and Development’s National Center for Environmental Research 5
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Computational Toxicology Centers Science To Achieve Results (STAR) Progress Review Workshop

comprehensive source-to-dose-to-response studies. These studies showed close agreements of predictions
with measurements of population biomarkers. The Center is working to further refine the MENTOR
system and integrate it with the Dose-Response Information Analysis (DORIAN) system.

MENTOR with Physiologically Based Pharmacokinetic Modules for Populations (MENTOR-3P)
combined with the DORIAN system provides a new modular “whole body” platform for consistent
characterization of multicontaminant, toxicokinetic, and toxicodynamic processes in individuals and
populations. This approach incorporates physiology databases to account for intra- and interindividual
variation and variability. Major ongoing research efforts of MENTOR/DORIAN focus on a library of
software modules for “virtual organs” (with primary focus on the liver) that account for heterogeneities
(in metabolism and biological response) within an organ. One case study focused on the spectrum of
cytochrome P450 induction by dioxin within the liver and was able to account for and explain observed
biochemical variability. Research in progress is using arsenic and TCE as model contaminants and aims
to reconcile the biotransformation and transport at both the individual hepatocyte and the whole-organ
scales, as well as on modeling quantitative metrics of oxidative stress resulting from exposure to these
contaminants. The computational models are being used in collaborations with scientists from EPA to
study issues of sensitivity analyses and effects of aging and assess population exposures from biomarkers.

Dr. Welsh further described Investigational Research Area Il, noting that in any multiscale enterprise,
molecular scale must be addressed, for which there are three different approaches. Receptor-based
approaches study the protein structure of a receptor associated with a pathway or some aspect of a
toxicological event. Ligand-based approaches seek to gather data about the ligands to determine
commonalities among the ligands that give rise to a certain biological effects. The third approach is
virtual screening.

Receptor-based approaches figure prominently in computational toxicology. Pregnane X receptor (PXR)
is a hepatic nuclear receptor that is responsible, along with other nuclear receptors and proteins, for
modulating a number of metabolic enzymes and more than 36 other genes. PXR ligands are pervasive and
structurally diverse. They come from dietary products and supplements, hormones, prescription drugs,
herbal components, and environmental chemicals. Thus, humans are exposed to PXR ligands constantly.
Published experimental data show that when certain conazoles bind to PXR, they turn off the
transcriptional machinery. Based on this observation, the researchers performed computational docking
studies that show that the conazoles do not competitively bind with the agonist site but instead appear to
bind on an outer surface. This is an important finding that can inform the development of new hypotheses.

Analysis of the ToxCast™ 309 dataset helped the researchers to develop and adapt various new
computational models for data analysis. Traditional QSAR techniques use the structure-based features
(molecular descriptors) of a collection of chemicals to describe and compare their biological activities.
Biological spectra analysis is a new technique that uses the biological response profiles of the chemicals
to describe and compare their molecular structures. Panels of chemicals and protein receptors were
assayed and the numerical values depicted as heat intensity bars. Chemicals were clustered based on
similar abilities to induce a biological response across all of the proteins. Proteins were clustered based on
similarities in their bioresponse profiles. Ultimately, cross-mapping of the toxicological and chemical
similarity profiles showed that 74 percent of the compounds from the TOX1 cluster also were in the
CHEML cluster, and 61 percent of the compounds from the TOX2 cluster also were in the CHEM2
cluster. Overall association between the major clusters of the two spaces was found to be 69 percent.

The Center also has developed a novel technique for comparing molecules. Shape signatures compare
molecules by subtracting their histograms. A software program sketches the molecule, and a special
algorithm converts three-dimensional molecules into small, compact representations based on the
molecular shape and surface charge distribution, the two features predominantly associated with receptor
ligand binding. The shape signatures of different molecules then can be compared. The smaller the
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difference between the histograms, the more similar the molecules. The Center has created a shape
signature library that houses more than 3 million compounds. A number of shape-based QSAR models
for toxicity prediction have been developed.

New Jersey Environmental Bioinformatics and Computational Toxicology Center — EPA
Collaboration on an Approach to Using Toxicogenomic Data in Risk Assessment: Dibutyl Phthalate
Case Study

Susan Euling, EPA, ORD, National Center for Environmental Assessment (NCEA)

How can genomic data be used effectively in risk assessment? Collaboration between mathematicians and
biologists is needed to answer this question. Genomics technologies are powerful because they are global
or genome-wide and toxicogenomic data can identify precursor events, biomarkers of effect or exposure,
and mechanisms and modes of action. Strengths of microarray data include the ability to identify
pathways, build gene networks, and identify affected processes, pathways, and networks. Challenges
include the size and complexity of the datasets and the fact that statistical cutoffs do not necessarily
indicate biological significance. Limitations of using toxicogenomics technologies have included
reproducibility issues, the need to link affected pathways and genes to an adverse outcome, and the cost
involved in performing dose-response microarray studies.

The overall project goals were to develop an approach for using toxicogenomic data in risk assessment
and perform a case study using this approach. Dibutyl phthalate (DBP) was selected for the case study
because it has a relatively large genomic dataset, and there is phenotypic anchoring for a number of the
observed gene expression changes. There are two well-characterized modes of action for DBP responsible
for the male reproductive developmental effects: a decrease in InsI3 and a decrease in fetal testicular
testosterone. Questions were identified to direct the DBP case study evaluation. The questions were
whether the toxicogenomic data could inform additional modes and mechanisms of action for the DBP
male reproductive developmental effects and whether the genomic dataset could inform interspecies
differences in the reduced testicular testosterone mode of action. To explore modes of action, the
consensus pathways were identified from two different pathway analysis approaches for a selected
microarray study of testes after in utero DPB exposure.

There is concern that the traditional method of first identifying differentially expressed genes and then as
a second step performing pathway mapping might result in a loss of information. Thus, the STAR Center
collaborators took a different approach to identify significantly affected pathways, considering all of the
genes in the pathway and calculating a pathway activity level for different pathways. Advantages of this
approach include the consideration of all genes in a pathway and the ability to compare activity among
pathways.

Methods to inform interspecies differences in mode of action were explored. There is a need for
approaches and metrics to extrapolate from animal model findings to humans for risk assessment.
Available data were used to develop cross-species metrics for the biosynthesis-of-steroids pathway, one
of the pathways that underlies the decrease in fetal testicular testosterone mode of action. Three different
data sources were used to assess rat-to-human pathway similarity, and results showed approximately 85
percent similarity using any of these three approaches. A remaining issue in applying any or all of these
methods to risk assessment is determining whether these are “low” or “high” degrees of similarity. This
issue can be explored further to develop a basis for comparison.

Case study findings include the identification of additional functions (e.g., cell adhesion) and pathways
(e.g., Wnt signaling) affected after in utero DBP exposure that may inform modes of action responsible
for the “unexplained” endpoints. Hypothesis testing studies are needed. Other accomplishments include
the development of a systematic approach for evaluating toxicogenomics data for use in future risk
assessments; the development and exploration of the application of microarray analytical methods to risk
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assessment including the pathway activity method, the gene network model over time, and the exploration
of methods to assess cross-species conservation on a given pathway; and the identification of research
needs for toxicity and genomics studies for use in risk assessment.

Recommendations based on the case study are to evaluate genomic and other gene expression data for
consistency of findings across studies for affected genes and pathways, perform benchmark dose response
modeling when high-quality reverse transcriptase-polymerase chain reaction data are available for genes
known to be in the causal pathway for a mechanism of action or outcome, and perform new analysis of
genomic data if re-analysis is expected to yield new information useful to risk assessment.

Dr. Kavlock asked the STAR Center researchers in general whether STAR funding had been useful in
obtaining other grant funding, including stimulus funding. The consensus among the group was that the
STAR funding had been useful for leveraging additional funding.

Carolina Environmental Bioinformatics Research Center
Fred Wright, University of North Carolina

The Carolina Environmental Bioinformatics Center (CEBC) was funded to extend capabilities in
computational toxicology. Specific capabilities include omics expertise and strengths in elucidating
genetic variation. The Center’s three research projects focus on biostatistics, cheminformatics, and
computational infrastructure for systems toxicology; each project collaborates directly with environmental
scientists. The Center also includes an administrative unit and an outreach and translational activity unit.
The Center has collaborated extensively with EPA; seven joint papers are in various stages of publication,
and 14 joint abstracts/posters have been accepted at scientific meetings. Whereas the Carolina Center for
Computational Toxicology is more highly focused on biology and mechanistic modeling, the CEBC
focuses on discovering and obtaining valid statistical conclusions.

Project 1, the biostatistics in computational toxicology project, includes an emphasis on strengths in
microarray analysis, elucidation of networks/pathways, and eQTL analysis. There is a new emphasis on
dose-response testing, data mining, and penalized regression. Analysis of ToxCast™ Phase | data from
EPA and development of related methods likely will be a large portion of the remaining activity. Project
objectives include providing biostatistical support to the Center, performing data analysis and developing
methods, and collaborating with EPA and the computational toxicology community. Recent activities
include direct collaborations via data analysis work with Project 2 investigators on toxicity prediction and
data mining methods and work with Project 3 investigators on rodent toxicity modeling. In addition, the
project is performing analysis of clinical toxicity and metabolomic data to explore a large number of
prediction approaches, analysis of ToxCast™ data, and expression QTL mapping relevant to toxicity.
Collaborations have inspired the development of new methods. For example, CEBC scientists worked
with EPA scientists on a microarray dose-response study. This work led to new considerations for using
dose-response data; there currently are relatively few methods for dose-response that are tuned to gene
expression studies and even fewer that consider pathways (gene sets). An important question that arose
from this work was how to aggregate evidence across transcripts within a pathway. For dose-response
modeling for gene expression and pathways, the researchers have performed extensive investigation of
simple (approximate) two-parameter logistic fits, establishing reasonable false positive rates and power
for small sample sizes. A new tool that will perform dose-response pathway analysis for gene expression
data is under development. Other collaborations with EPA include comparing machine learning
algorithms in a simulated model for chemical toxicity and various efforts to predict chemical toxicity.
Another example of methods development is the work on methods for detecting true trans-bands in eQTL
studies and consideration of the importance of PC-based stratification control for eQTL analysis. In the
next year, Project 1 will focus on completing the methodology for open projects and collaboration,
completing the dose-response pathway analysis method, bringing the ToxCast™ data analysis to an
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intermediate conclusion, and deepening the ToxCast™ data analysis in terms of choices of endpoints,
sensitivity versus specificity, and domains of applicability.

The objectives of Project 2 (cheminformatics) include coordinating the compilation and mining of data
from relevant external databases, performing analysis and methods development for building statistically
significant and externally predictive QSAR models of chemical toxicology data, and performing joint
work within the Center and with EPA collaborators. Under this project, one subproject works to improve
guantitative models of chemical toxicity through the use of hybrid chemical and biological descriptors.
The Center is working with EPA scientists, using high-throughput screening dose-response curves to
assist QSAR modeling of carcinogenicity. In this work, more than 300 chemical descriptors, 150
biological descriptors, and 400 hybrid descriptors are being used to predict carcinogenicity. Also under
development is a two-step hierarchical QSAR modeling workflow for predicting in vivo chemical
toxicity. Future studies include analyzing the models to identify significant assay-chemical combinations
that are predictive of in vivo outcomes, exploring the entire National Toxicology Program (NTP) dataset,
and applying modeling prospectively to prioritize new compounds for focused toxicity testing. In the next
year, Project 2 will focus on continuing work on QSAR modeling of multiple animal toxicity endpoints
and developing novel QSAR methodology by using in vitro biological information to model in vivo
toxicity endpoints. For all of these activities, the project will continue to use data collected under
ToxCast™, DSSTox, and other EPA projects.

Project 3, the computational infrastructure for systems toxicology project, is using a model for toxicity
profiling in multiple strains of mice to inform and develop an appropriate computational infrastructure,
with a focus on computational methods development and the development of user-friendly software tools
from methods in Projects 1 and 2. Project objectives include developing and implementing algorithms
that aid the analysis of multidimensional data streams in dose-response assessment and cross-species
extrapolation; facilitating the development of a standard workflow for analysis of the omics data, linkages
to classical indicators of adverse health effects, and integration with other types of biological information
such as genome sequences and genetic differences between species; and building Web-based open source
and user-friendly graphical interfaces associated with interoperable computational tools for data analysis
that facilitate the incorporation of new data streams into basic research and decision-making pipelines
(methods from Projects 1 and 2). This project has created a framework for handling emerging omics data
on genetic susceptibility in model organisms, provides programming expertise to create graphical tools
that are used by partners within the Center and in collaboration with EPA personnel and other environ-
mental scientists, and works to strengthen and advance the field of computational toxicology through
direct partnerships and the dissemination of tools used by both bioinformatics and bench scientists. The
driving biological problem is how to make population-wide predictions from toxicity profiling. Efforts
toward integrating varying types of biological information have been informed by examples such as the
study of the genetic factors underlying interindividual susceptibility to acetaminophen toxicity. In this
unique human-to-mouse-to-human work, the researchers have shown that the power of mouse genetics
can be extremely useful in discovering susceptibility genes, even when human data are available from
very small cohorts. Project 3 also is developing software tools, including a graphical interface for the
Significance Analysis of Function and Expression (SAFE) software, which assesses the significance of
biological categories in microarray studies while properly accounting for the effects of correlations
among genes. Investigators in this project also are key players in the integration of existing and new tools
into the Predictive Toxicology Web Portal (http://ceccr.unc.edu). Papers on the algorithms used are in
various stages of publication. In the next year, Project 3 will continue integration/support of tools from
other CEBC projects, continue programming and algorithmic developments, further improve algorithms
in tools and applications, develop specific data-mining algorithms for genomic databases, and continue
biology-driven research that generates appropriate datasets for testing and implementing novel
computational and biostatistical approaches.

The Office of Research and Development’s National Center for Environmental Research 9
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Across the Center, there will be more emphasis on dissemination of information and training other
scientists in the use of the tools developed and on bringing open source code and methods to a new stage
in their evolution.

Collaborative Work With EPA
Ann Richard, EPA, ORD, NCCT

The work of the CEBC and the Carolina Center for Computational Toxicology overlaps nicely in terms of
methods development and moving that work into predictive model-building. The recent BOSC review
emphasized the importance of EPA maintaining an ongoing dialogue with academia; the biostatistics
capability at the University of North Carolina has brought high standards of statistical analysis to help
EPA evaluate the new data streams arriving via ToxCast™ and Tox21.

CEBC’s cheminformatics project has the ability to generate thousands of QSAR descriptors representing
categories of structure-based computed properties (DRAGON), and the project has developed a sophisti-
cated predictive QSAR workflow. EPA defines the problems and provides data and guidance on how to
approach these problems. The DRAGON descriptors include many categories of chemicals and different
ways of describing these chemicals, which allows for flexibility in determining how best to approach a
problem. CEBC has developed QSAR models based on DSSTox-published data files and structure
inventories. The processed data files and calculated descriptors then are shared with EPA researchers for
public release. EPA and CEBC have co-authored several publications.

DSSTox has published structure annotated toxicity data, which have been used in the cheminformatics
work. A major objective of this project is to try to curate quality structure annotation and publish datasets
that provide representations of activity that are particularly amenable to structure activity modeling.
EPA’s contribution to the Project 2 work has been through the ToxCast™ Phase | Chemical Inventory
and the ToxRefDB in vivo endpoints for modeling. CEBC used this information to process datasets
(ZEBET Acute Tox) and to calculate chemical descriptors (DRAGON) for the ToxCast™ Inventory.
CEBC’s cheminformatics project overlapped published data for 1,408 compounds from the NTP High-
Throughput Screening Program with data from a carcinogenicity potency database. The aim was to
determine the ability of the NTP high-throughput assays to predict carcinogenicity. Data generated to date
show that the in vitro assays used have some ability to enhance modeling capabilities. The idea is that if
in vitro assays that presumably are unrelated to the endpoint can enhance modeling, in vitro assays that
are related to the endpoint should prove even more useful.

For years, there has been an effort to replace in vivo assays with in vitro screening methods. Many efforts
have been made to correlate in vitro half-maximal inhibitory concentration (1Cs) with in vivo rat oral
median lethal dose (LDsg), but none have been successful. It is important to consider new ways of
incorporating the 1Cs, data. Two key questions arose: Can the problem be broken into regions of higher
correlation? Can QSAR methods be used to define those regions based on chemical structure alone?
Moving regression was used to define regions of higher correlation, and a classification QSAR was
applied to assign the chemicals to one of three groups. The LDs, then was predicted for each group.

The Texas-Indiana Virtual STAR Center: Data-Generating In Vitro and In Silico Models of
Developmental Toxicity in Embryonic Stem Cells and Zebrafish

Maria Bondesson Bolin, University of Houston; Richard Finnell, Texas A&M University; James
Glazier, Indiana University

Approximately one in every 33 U.S. infants has a congenital anomaly. Heart defects are the most
common anomalies; others include neural tube defects and orofacial clefts. Although the causes of
congenital anomalies are both genetic and environmental, there is major concern about environmental
compounds as causative agents. In some cases, it is known that specific compounds cause anomalies. For
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example, methyl mercury and other heavy metals have been shown to be teratogenic. There remains,
however, a large knowledge gap in terms of which compounds cause congenital anomalies.

The Center’s objective is to develop new screening models for developmental toxicity. The aim is to
move from biological models of developmental toxicity to computer simulations. The main research goals
are to generate developmental models based on mouse embryonic stem cells and zebrafish suitable for
high-throughput screening, generate high-information content models on development and differentiation
using mouse embryonic stem cells and zebrafish, develop computational models for developmental
toxicity with the aim of first re-creating normal development (in wild-type) and then classifying possible
mechanisms by which chemical perturbations cause experimentally observed developmental defects, and
perform proof-of-concept experiments of the in vitro and in silico test platforms with a blind test of
chemicals.

The project has been divided into three investigational areas: (1) zebrafish as a model to elucidate the
morphological and mechanistic effects of environmental pollutants, (2) the effects of environmental
contaminants on mouse embryonic stem cell differentiation, and (3) the development of computer
simulations facilitating assessment of toxicity based on perturbed development in zebrafish and mouse
embryonic stem cells. Courses on zebrafish development, embryonic stem cells, and computer simu-
lations for doctoral students and postdoctoral fellows have been developed. The Center regularly
collaborates with stakeholders and other researchers. For all three projects, 37 chemicals that are known
or expected to be teratogenic have been chosen for study. The chemicals have been ranked by potential
threat to human health as determined by the Agency for Toxic Substances and Disease Registry and EPA.

The first investigational area uses zebrafish models to elucidate the morphological and mechanistic
effects of environmental pollutants. Zebrafish were chosen for a number of reasons: they are small,
embryos are transparent, fish can be transparent, they experience rapid external embryonic development
and produce hundreds of eggs weekly, the genome is homologous to humans, the developmental
pathways between fish and mammals are similar, many zebrafish mutants exist, it is relatively easy to
knock down gene expression in zebrafish, and they are cost-efficient and adaptable to medium- to high-
throughput screening.

Transgenic fish embryos will be produced, with the transgenes marking certain cell types during
development. The Center plans to construct 10 transgenic fish expressing fluorescent markers to follow
development and patterning. The endpoints include gastrulation and early embryonic cell movements,
patterning of the central nervous system and neurogenesis, hematopoiesis and angiogenesis, and yolk
utilization and morphological effects on somitogenesis. Morphology and green fluorescent protein/red
fluorescent protein expression will be recorded during normal development, and the embryos will be
treated with different toxicants to determine whether development is altered by teratogenic chemicals. At
the end of the project, the goal is to scale up and automate for high-throughput screening. High-
information content models based on the transgenic fish will be developed.

The second investigational area uses mouse embryonic stem cells as a model to elucidate the morpho-
logical and mechanistic effects of environmental pollutants. A recently created gene trap library contains
more than 350,000 embryonic stem cell clones and between 10,000 and 13,000 inactivated genes. The
aim is to use these embryonic stem cell resources to study specific markers of differentiation and patterns
to determine how environmental agents affect development. Genes have been selected primarily based on
their role in early embryonic development patterning, particularly those involving gastrulation and cell
movements. Expected results include documentation of morphology and p-geo expression during normal
development and teratogenic chemical exposure.

The third investigational area will develop computer simulations facilitating the assessment of toxicity
based on perturbed development in zebrafish and mouse embryonic stem cells. This work still is in its
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infancy. The major research question is how to move from cell phenomenology to tissue-level patterning
and structure. The goal is to build simulations that address some of these missing pieces in the under-
standing of increased developmental defects. Other related projects include the CompuCell3D Multi-Cell
Modeling Environment project, which is developing an open source, multiplatform modeling environ-
ment that allows the building of multicell simulations of developmental phenomena and diseases. Another
project is the Systems Biology Workbench (SBW) Reaction-Kinetics Modeling Environment, which is a
standard for performing reaction kinetic modeling of subcellular regulatory metabolic networks. Multicell
modeling in CompuCell3D and SBW will integrate molecular-, cellular-, and whole-organ-level data to
predict developmental effects of pathway disruption.

The BOSC review that took place immediately prior to this workshop included discussion of platforms
for many possible directions of approaching toxicological development. Questions yet to be answered
include: Is it more useful to develop organ systems that already are NCCT foci (e.g., liver, limb, gastru-
lation) or novel ones (e.g., vasculogenesis)? What are the best ways to integrate the biological approach
of the Texas-Indiana Virtual STAR (TIVS) Center team with the prioritization outcomes for EPA? Should
the focus be on one or two classes of perturbation agents? Should the focus be on tool/data or model
development?

Collaborative Work With EPA
Thomas Knudsen, EPA, ORD, NCCT

The RFA under which the TIVS Center was funded encouraged a different approach that studies expo-
sures that perturb biological events during formative stages of the reproductive cycle affecting embryo
and fetal development, postnatal development, fertility and reproduction, and children’s health. Some key
research issues illustrate the complexity of this work, including timing of cellular interactions, sensitivity
of these systems, complexity of interactions, and maternal influence. Many developmental patterns can be
tracked and studied in vitro to define how chemicals disrupt fundamental control in patterning, timing,
differentiation, and morphogenesis.

TIVS will use in vitro models (zebrafish embryos, mouse embryonic stem cells) and in silico compu-
tational models to elucidate the morphological and mechanistic effects of environmental pollutants. For
the research on zebrafish embryos, there are a number of opportunities for connections between EPA and
TIVS, including data and resource sharing to evaluate developmental signaling pathways. Some chemical
effects in this system already are represented in ToxCast™ datasets, and the pathways identified by this
project will be added. TIVS can help EPA to prioritize the most important pathways in developmental
toxicity. For the research on the effects of environmental contaminants on mouse embryonic stem cell
differentiation, there also are opportunities for collaboration and data and resource sharing. The gene trap
studies are a nice adjunct to the zebrafish project. It will be important for TIVS and the other three STAR
centers to collaborate and share data analysis methods.

NCCT is interested in moving predictive capacity of ToxCast™ chemicals to developmental impacts. The
development of computer simulations facilitating the assessment of toxicity based on perturbed develop-
ment in zebrafish and mouse embryonic stem cells will provide a means of incorporating chemical and
biological information into systems complex enough to be relevant but not so complex that they are
intractable. NCCT is interested in developing virtual embryo systems to validate or invalidate predictions
generated by researchers. The opportunities for collaboration with TIVS include merging data from
developmentally competent in vitro assays with cellular and molecular assay targets, using predictive
associations from ToxCast™ high-throughput screening data to build hypotheses about mechanisms of
action, conducting studies to generate data testing hypotheses and improving predictive models, and
improving virtual tissue models to a level that can help prioritize chemicals for quantitative risk assess-
ment.

The Office of Research and Development’s National Center for Environmental Research 12
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A Proposal From the European Commission’s Complementary Research Program
Bart van der Burg, BioDetection Systems B.V.

The chemical substance in vitro/in silico screening system to predict human and ecotoxicological effects
(ChemScreen) is a collaborative project involving nine partners in five countries. It has not yet begun but
will span 4 years, with the majority of the practical work to be performed within the first 3 years.

Most of the 100,000 chemicals currently on the market are largely untested. To address this, the Registra-
tion Evaluation Authorisation of Chemicals (REACH) Program began in June 2007. Under REACH,
industry is responsible for providing data on chemicals. For compounds manufactured or imported in
guantities greater than 1 ton, manufacturers and importers must register the compounds with the European
Chemicals Agency (ECHA). ECHA also may request additional data as needed. Authorization is required
for harmful compounds. Approximately 30,000 chemicals are covered by REACH. Prioritized effects
under REACH include chemicals that are carcinogenic, mutagenic, or toxic to reproduction; chemicals
that are persistent, bioaccumulative, and toxic; and chemicals that are very persistent and very
bioaccumulative. It is estimated that REACH will cost between 2.8 and 5.2 billion Euros during the
course of 11 years, but REACH is estimated to save 50 billion Euros over 30 years as a result of health
improvements.

When traditional animal tests are used, the progress of REACH will be seriously hampered by ethics,
costs, capacity, and speed. To be successful, cost-effective, rapid in vitro tests need to be adopted.
REACH offers incentives for the use of alternative (nonvertebrate) tests. ECHA publishes test proposals
(by chemical manufacturers) and invites third parties to submit alternative proposals. There is an explicit
allowance for alternatives to in vivo tests, including in vitro and nontesting methods (QSAR, grouping,
exposure, read across). ECHA accepts the use of suitable methods and regularly reports on the use of
alternative methods. ChemScreen focuses on reproductive toxicity because it is important for assessing
both human and environmental toxicity, and its prioritization under REACH. Reproductive toxicity uses
the most animals in toxicity testing, and unfortunately there are few alternative methods.

The ChemScreen approach is to identify sensitive parameters for reproductive toxicity, identify critical
mechanisms involved in perturbation of these parameters, build a high-throughput system using these
modules, expand step-wise, integrate with bioinformatics/data interpretation, and build integrated testing
strategies, including nontesting methods. Work under ChemScreen will be divided as follows:
(1) establishment of in silico prescreening and toxicity prediction methods prioritizing in vitro toxicity
testing, (2) establishment of a database and an in silico prescreen to identify potential reproductive
toxicants, (3) establishment of sensitive parameters and a medium-throughput minimal essential in vitro
assay panel, (4)establishment of a high-throughput mechanistic pathway screen for reproductive
toxicants, (5) development of integrative methods to predict in vivo reprotoxicity allowing informed
decisions on prioritization for eventual further testing, (6) integration into one user-friendly tool, and
(7) dissemination.

Receptor gene assays that have been shown to reasonably predict the in vivo potency of compounds will
be used in ChemScreen. Dr. van der Burg displayed a table from a review in Pediatrics showing that most
compounds that are teratogenic in humans were not identified in animal studies. Screening systems will
include a panel of 15 to 50 reporter gene assays in human cells (nuclear receptors, dioxin receptor,
signaling/stress/developmental pathways); reporter gene assays in mouse embryonic stem cells
(ReProGlow, developmental pathways); wild-type embryonic stem/transcriptomics, metabolizing cell
systems, zebrafish/transcriptomics; and others for critical reprotoxicity endpoints (e.g., spermatogenesis).
In silico tools include an exposure module, a toxicity screening tool, in vivo reprotoxicity databases, and
an automated decision tool.

The Office of Research and Development’s National Center for Environmental Research 13
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Discussion on Research Needs
Maggie Breville, EPA, ORD

Ms. Maggie Breville facilitated the discussion on computational toxicology research needs, using the
guestions on the handout that was distributed to participants entitled “Research Needs to Advance the
Field of Computational Toxicology.”

Question 1. Can the same techniques used by ToxCast™ to identify chemicals with a high likelihood of
being harmful also be used to identify and/or inform the design of safe chemicals that can be
manufactured and used (i.e., green chemistry)? What additional research is needed to make this happen?

Dr. van der Burg said that there is a great opportunity to develop cost-effective screening methods. There
also is a danger if a certain screening method is relied on too much, as one method may not be able to
identify all toxic chemicals. Research should focus on cost-effectiveness. Dr. Ann Richard noted that it
should be recognized that green chemistry products are safer alternatives; a battery of high-throughput
screening on both chemicals and alternatives would be helpful. A participant added that green chemistry
could help guide modeling efforts to develop safer alternatives. Dr. Dix said that green chemistry needs to
be repositioned to serve as a resource for chemical screening and testing.

Question 2. What type of information can we expect toxicity signatures developed through ToxCast™ and
other computational methods to provide regarding dose-response, chronic exposures, and potency?

There were no comments on this question. Participants were asked to send their answers via e-mail to
Ms. Segal.

Question 3. Is the ultimate goal of computational toxicology research to develop a virtual organism?

Dr. Kavlock said that the ultimate goal is to protect human health and the environment. A virtual
organism is a tool to achieve this goal, but it is not the ultimate goal. Dr. Glazier noted that a virtual
organism could be used to address Question 2. Dr. Kavlock added that more sophisticated tools are
needed to address toxicology in the risk assessment context.

Question 4. For results developed using computational techniques to be used in risk assessments, what
research and regulatory questions need to be answered?

A participant observed that this is an important question for regulatory decision-making support. This
issue has been addressed in Europe. It might be helpful for EPA to develop guidelines for computational
science, especially in terms of metrics and asking questions such as, “Why are we doing this?”
Dr. Richard said that to incorporate all of the methods in ToxCast™ there must be a standard for methods
development. Dr. Glazier noted that the answer depends on the goal. If the goal is to replace in vivo/in
vitro with in silico models, then there will be a different set of false positives and negatives than with in
vivo/in vitro. In the medical device field, changing methods opens up legal liability issues because even if
the new method results in fewer false positives and negatives, some people who would not have been hurt
by the older method are inevitably hurt by the new method. Dr. Glazier noted that when using new
approaches, researchers must be prepared for misses. A participant noted that some models and data are
not suited for regulatory purposes.

Question 5. What additional research needs should be addressed?

Dr. Kavlock said that a point raised in the BOSC review was that the current system under which EPA
manages the STAR Centers does not encourage or allow the renewal of the Centers. Much time and effort
are spent developing synergism and tools, but then it all comes to an end. The BOSC suggests examining
ways to evaluate the success of the STAR Centers and keep the research moving forward via renewal of

The Office of Research and Development’s National Center for Environmental Research 14
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Computational Toxicology Centers Science To Achieve Results (STAR) Progress Review Workshop

the grants. A participant noted that there is some redundancy between the Centers and asked if it would be
possible to have an annual retreat for the Center leaders to allow for more collaboration. Ms. Segal said
that the Centers are asked to set aside funding for attending the progress reviews; having retreats in place
of progress reviews is an alternative that could be considered in the future.

Ms. Breville thanked the presenters and attendees for their contributions to the workshop and the support
contractors for their logistical assistance. She adjourned the meeting at 4:29 p.m.
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