US ERA ARCHIVE DOCUMENT

# Quantifying Stream Ecosystem Responses to Smart Growth: How to Design an Assessment



Allison Roy
Cross-ORD Postdoctoral Researcher
US Environmental Protection Agency
Office of Research and Development
National Risk Management Research Laboratory
Sustainable Technology Division
Sustainable Environments Branch

# Potential Aquatic Ecosystem Benefits of Smart Growth

# **SMART GROWTH may include:**

- Compact development
- Reduced impervious surfaces
- Improved water retention/infiltration
- Protected "sensitive" areas
- Increased public transit







# Which may result in:

- reduced stream "flashiness"
- reduced sedimentation
- improved water quality
- healthier biotic assemblages



# **QUESTION:**

How do you quantify water resource responses to smart growth?













# ANSWER: You can't.

# WHY NOT?

- Proportion of watershed mitigated is often small
- Comparable control streams are hard to find
- Natural temporal and spatial variability overwhelms the ability to detect a response
- Typically don't know stream baseline or reference conditions
  - (e.g., geomorphology, diversity, etc.)
- Unclear what level of indicator is desired









# HOWEVER,

# Monitoring is an Essential Component of Watershed Protection and Restoration

- Must demonstrate improvements to economically, politically, legally, and socially justify protective/restorative measures
- If protective design measures are part of the TMDL process, then need need to quantify improvements
- Helps to identify potential thresholds of response and defend management guidelines





# How do you plan an assessment to maximize the probability of detecting change, if it occurred?

#### STEPS:

- 1) Consider the analysis in initial design phase
- Select ideal indicators
- 3) Choose an appropriate spatial scale
- 4) Pick a useful temporal scale for selected parameters







# 1. Consider the analysis in initial design phase

Before/After Analysis
Control/Treatment Analysis
Replicated treatments?
Replicated controls?

Note: If you don't have the resources to sample controls or to sample long enough to understand temporal variability, then don't bother!!!





#### 2. Select ideal indicators

- Likely to show a response
- Relatively easy to measure
- Able to control for temporal and spatial variation
- Known level of health/improvement
- Clear ecosystem implications





# 3. Choose an appropriate spatial scale

Small scales – higher likelihood of response, but more stochastic variability vs

Large scales – risk of diluting response, but less expected variability

→ Sample at a small enough scale such that the proportion of watershed impacted is large enough to predict a response; if stream is ephemeral or intermittent, also include downstream sites







# 4. Pick a useful temporal scale for selected parameters



# Hydrology:

- continuous monitoring (stage OK for before/after)
- enough events of various sizes (e.g., 40-50 events)

# Water Quality:

- several baseflow and stormflow samples



### Algae & Macroinvertebrates:

- constant habitat
- seasonal (light, organics)
- quantitative

Number of years before/after will depend on how "typical" climate conditions are







### What if no in-stream effect is found???

- Describe any shortfalls in the monitoring design which may have prevented seeing a response.
- Look for project failures...are the low impact design measures doing what they're supposed to?
- Accept that ecosystem improvement may not have happened given:
  - % of watershed mitigated
  - time scale of monitoring





