Clean Air Research Centers
Understanding Air Quality Health Effects in a Mutipollutant Environment

Dan Costa, ScD, DABT
National Program Director
Office of Research & Development
costa.dan@epa.gov
919-541-2532
April 7, 2011
Much has happened since 1970 when EPA was formed and the Clean Air Act Amendments were passed.
“The year 2010 marks the EPA’s 40th anniversary. It is a moment of celebration but also a time when we face some of the most complex and far-reaching environmental challenges in the history of the EPA, our nation and our planet.”

Our Challenge: “21st century environmental problems require 21st century solutions; we cannot effectively address such challenges with 20th century approaches”
History - Particulate Matter Centers

• 1997 – NAAQS for fine particles & 1998 EPA directive to address uncertainties in the evidence of PM health effects
• 1999 – EPA awarded five university-based PM research centers for five years
• 2002 – Science Advisory Board review
• 2004 – National Research Council recommendations
• 2005 – EPA awarded five new PM research centers
• 2009 – Science Advisory Board recommends continued focus on PM and other single pollutant research with new efforts to address mixtures of air pollutants
• 2011 – Announce four new Clean Air Research Centers
PM Center Select Findings

- PM affects both the lung and heart and is a significant contributor to cardiovascular effects.
- There may be other effects on the body (e.g. brain).
- Particle size, number, composition and distribution are important and we are getting better at measuring PM.
- We are getting better at understanding the different toxicity of different sources of PM (e.g. traffic).
- Disease and death can vary across communities and across seasons.
- Reducing fine particulate matter pollution has increased life expectancy by 5 months or more.
Clean Air Research Centers

Key objectives:

• Research health effects of exposure to particulate matter (PM), ozone, and other air pollutants, both singularly and in multipollutant atmospheres.

• Take an integrated approach to their study designs.

• Consider social factors (e.g. where people live) when studying health effects to air pollution sources (e.g. traffic)
What lies ahead?
There is a need for integrated systems approaches that transcend the traditional scientific disciplinary paradigm.
Multipollutant approaches take into account that humans and ecosystems are exposed to many air pollutants at the same time.
“One Atmosphere” is Now

- Climate Change & Air Quality are inherently multipollutant.
- The interactions of air quality-climate with undoubtedly have health and environmental consequences.
- We need to be aware and prepare now.

Embedded critical issues:

- Environmental justice
- Global change
- Communities
- Susceptible populations
Goal and Objectives for Today’s Meeting

Collaborate on Air Quality and Health Research in a Multipollutant Context

Objectives:
• Share information on the CLARC research
• Introduce EPA research capabilities
• Discuss challenges of joint interest
• Explore the evolution of multipollutant research
• Identify potential projects for collaboration
CLARCs

University of Washington

GLACIER

SCAPE

Harvard

EPA - RTP
CLARC Directors

Great Lakes Air Center for Integrative Environmental Research (GLACIER)
• Jack Harkema, DVM, PhD, Michigan State University

Harvard Clean Air Research Center
• Petros Koutrakis, PhD, Harvard School of Public Health

University of Washington Center for Clean Air Research
• Sverre Vedal, MD, MSc, University of Washington

Southeastern Center for Air Pollution and Epidemiology (SCAPE)
• Paige Tolbert, PhD, Emory University
• Ted Russell, PhD, Georgia Institute of Technology
Clean Air Research Centers

WELCOME