US ERA ARCHIVE DOCUMENT

Cryptosporidium Transport in Unsaturated Flow Christophe Darnault, Tammo Steenhuis J.-Yves Parlange, Philippe Baveye, David Cornwell **USEPA/USGS Meeting – Cryptosporidium Removal by Bank Filtration** September 10, 2003 – Reston, Virginia Cornell University EE&T Dept. of Biological and ENVIRONMENTAL ENGINEERING & TECHNOLOGY, INC.

Environmental Engineering

Structure of Seminar

- > Preferential Flow and Vadose Zone
- Preferential transport of solute/biocolloid
 Cryptosporidium parvum oocysts through
 vadose zone
- > Take-home Messages

Vadose Zone

Preferential Flow

- > Process
 - > By-pass transport phenomena
 - > Concentration of flow into channels at soil surface or subsurface
- > Types
 - > Macropore flow
 - > Fingered flow
 - > Funneled flow
- > Impacts on water resources
 - > Non-point sources pollution
 - > Water quality

Preferential Transport of Cryptosporidium

- Characterize the fate and transport of *Cryptosporidium* in the subsurface environment
- Modeling of solute and biocolloid transport

- > 4-6 μm diameter
- Found in feces of infected animals
- Protozoan pathogen that causesCryptosporidiosis

Source of *Cryptosporidium parvum*

- > Application of manure to farm fields
- Wild animals
- > Cryptosporidium in drinking water
 - > Resistant to chlorination

Laboratory Experiments

- > Laboratory column experiments
 - > Cryptosporidium parvum from calves feces
 - > Rainfall simulation event
 - Different porous media: silica sand, water repellent sand, sand with water repellent layers
 - > Undisturbed soil columns
 - Mixture of *Cryptosporidium* parvum and a tracer (chloride)

Microbiology Analysis

Dye-uptake types

- ➤ Oocysts Visualization & Viability
 - >Immunofluorescence Staining
 - Dye Permeability Assay
- Soil extraction protocole
 - Tween & gradient concentration by centrifugation
- > Fluorescence Microscopy
- Nonviable oocysts:

permeable to DAPI and PI

≻Viable oocysts:

impermeable to DAPI and PI, or permeable to DAPI only

(Anguish L.J. and W.C. Ghiorse. 1997)

Results

- > Visualization of preferential flow path
- > Visualization, quantification of oocysts
- Breakthrough curves (BTC)
- > Cryptosporidium distribution and water saturation in soil profile
- > Modeling of solute and colloid transport

Visualization of Fingered Flow

Water Fingered Flow in Sand

3D - 2D Visualization & Fluid Content Profile

BTC of Cl and Oocysts & Soil Profile Distribution of Water and Oocysts

1 cm/hr rainfall, 12/20 sand

BTC of Cl and Oocysts & Soil Profile Distribution of Water and Oocysts

2 cm/hr rainfall, 12/20 sand

BTC of Cl and Oocysts & Soil Profile Distribution of Water and Oocysts

1 cm/hr rainfall, 12/20 sand with two water repellent interfaces layers

Undisturbed Soil Column

BTC of Cl and Oocysts

Schematic and Model for Preferential Flow

Distribution Layer (DL)
Exponential loss of solutes/colloids

$$C = C_0 \exp(-\lambda t)$$

Conveyance Zone (CZ)
Convective-dispersive equation

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - v \frac{\partial C}{\partial t}$$

Observed & Predicted BTC

Solutes concentration

$$C = \frac{1}{2}C_0 \exp(-\lambda t) \left[\exp\left\{\frac{vx}{2D}(1-\alpha)\right\} erfc\left(\frac{x-vt\alpha}{2\sqrt{Dt}}\right) + \exp\left\{\frac{vx}{2D}(1+\alpha)\right\} erfc\left(\frac{x+vt\alpha}{2\sqrt{Dt}}\right) \right]$$

Colloids concentration

$$C = \frac{1}{2}C_0 \exp\left[-\left(\frac{q}{W} + \beta\right)t\right] \left[\exp\left[\frac{vx}{2D}(1 - \alpha')\right] erfc\left(\frac{x - vt\alpha'}{\sqrt{4Dt}}\right)\right]$$

Unsaturated Zone and Bank Filtration

- Unsaturated zone and its occurrence in bank filtration
 - well production overpumping
 - during high river stage
 - flooding of dry river bench

- Unsaturated zone and its role in fate and transport of contaminants
 - preferential transportphenomena
 - gas-water interfaces
 - physical, chemical and biological processes
 - contaminants attenuation and entrapment

Take-home Messages

- Demonstrated fast transport of *Cryptosporidium parvum* oocysts by fingered and macropores flow through vadose zone
- Experiments results suggest that human pathogens, like Cryptosporidium parvum oocysts, can be rapidly transported to significant depths in situations where preferential flow occurs
- > Gas-water interfaces limit the movement of oocysts
- Modeled preferential transport of solutes and colloids
- > Unsaturated zone and its importance in bank filtration

Acknowledgements

Cornell University, USA

U. S. Department of Agriculture