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. Pollution source apportionment and Bayesian methods

Dirichlet based Bayesian multivariate receptor modeling

Dirichlet Process (DP) model for temporally-evolving source
profiles

Bayesian approach for the identification of pollution source
directions

. Conclusions and additional research directions



-
<
L
=
-
O
o
(@
L
>
—
- -
o
o
<
<
o
L
2
=

Pollution source apportionment and Bayesian methods

xy = A f C
px1l PXkEkx1l pxl1

For example, the abundance of EC particulates at time t:

r1; = [% EC in auto exhaust] x
[concentration of auto exhaust in atmosphere (ug/m?3)]
+ [% EC in zinc smelter emissions] x
[concentration of zinc smelter emissions (ug/m?3)]

+... + ey

e A unknown = model is called multivariate receptor model
and is fit using factor analytic methods

e A known = model is called chemical mass balance model
and is fit using regression methods
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“Receptor Models”

Little knowledge Xt =A ft T et “Perfect” knowledge
about pollution px1  pxk kxl  pxl about pollution
sources sources
I _ . |
| e
Multivariate". /' Chemical
Receptor L Vo mrzzozzoizoizzil e Mass Balance
Model . Positive Matrix | Bayesian Models | Model
. Factorization -k is known or
Exploratory (PMF) hypothesized = | @ e
| T -- Priors on Regression
FaCtK/f Oﬁzllzlysm Confirmatory elements of A Models
Factor Analysis kis known
-- k is unk
_ pgfﬁgoﬁ(xm Models Measurement -~ A is known
profiles (A) -- Hypothesized k is Error Models
assessed by GOF -
unknown -- k is known

-- Multiple ambient
measures required

-- Some pollution
source info is
known

-- Multiple ambient
measures required

-- A is “known” up to
known measurement
error
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IDEAS AND

PERSPECTIVES

Ecology Letters, (2005) 8: 2-14 doi: 10.1111/j.1461-0248.2004.00702.x

Why environmental scientists are becoming
Bayesians

James S. Clark

Nicholas School of the
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of Biology, Duke University,
Durham, NC 27708, USA
Correspondence: E-mail:
Jjimclark@duke.edu

Abstract

Advances in computational statistics provide a general framework for the high-
dimensional models typically needed for ecological inference and prediction. Hierarchical
Bayes (HB) represents a modelling structure with capacity to exploit diverse sources of
information, to accommodate influences that are unknown (or unknowable), and to
draw inference on large numbers of latent variables and parameters that describe
complex relationships. Here I summarize the structure of HB and provide examples for

rammnn chatintemnneal Arnhlame The Aevihla framewrnrls meanc that rarameterc
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Basic probability:
Pr{A,B,C} = Pr{A|B,C} x Pr{B|C} x Pr{C}

For complex problems (Berliner, 1996):
p{data,process,parameters} =
p{data|process,params} x p{process|params} x p{params}

“parameter

“data model” “process model” y
model

1. “Data”’: ambient PM concentrations, meteorological data

2. “Process”: transport/dispersion, meteorology, seasonality,
atmospheric chemistry, etc.

3. “Parameters’: daily source contribution values, source pro-
file values

Interest in p{parameters|data,process}



e Auxiliary information for enhancing source apportionment
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— Dispersion models (e.g., EPA's AERMOD)
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II. Dirichlet based Bayesian multivariate receptor modeling
(Lingwall, Christensen, and Reese, submitted)

e Data from St. Louis EPA Supersite includes two years of
daily measurements of metals, carbon, and ions. Also...
— Particle size data
— Weekly organics measurements (extremely important for

wood/agricultural burning, auto/diesel split, etc.)

e Model for ambient PM data, X

xt = Afy + e



e Likelihood and Priors:

— Source profiles (columns of A) ~ Generalized Dirichlet

(Rogers and Young, 1973)

« Individual elements of an a priori source profile (\;)
are associated with different degrees of certainty, but
variances of elements of Dirichlet vector cannot be in-
dividually tuned

g ~ Dirichlet(niAg)

x Generalized Dirichlet is sum of Gamma random variables
with differing scale parameters, so individual variances
can be at least partially tuned to desired degree of un-
certainty (e.g., with genetic algorithm)

x Priors for profile parameters informed by:
- Available profiles
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- Past studies




e Likelihood and Priors:

— Source contributions (elements of f;) ~ Lognormal
x Priors for contribution parameters informed by:
- Toxic release inventories

- Wind data
- Particle size distributions

. Daily, weekly, yearly cycles (e.g., seasonal patterns in
secondary formation and traffic flow)

-
<
L
=
-
O
o
(@
L
>
—
- -
o
o
<
<
o
L
2
=

10




E EPA's AERMOD dispersion model: fate of pollutants emitted
1T from point source locations
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Simulation Studies

Generate pseudo-data based on source apportionment anal-
ysis of Washington DC PMs 5 data

Use approximate profiles as a priori information in Bayesian
model (via prior distributions) and PMF (via “source profile
targeting”)

No a priori information for contribution matrix in this simu-
lation

Calculate Total Median Absolute Error (TMAE) for estimat-
ing source contributions and source profiles:

— PMF5 (uses a priori information on A)

— PMF (does not use a priori information on A)

— Bayesiani (uses a priori information on A)

— Bayesian (does not use a priori information on A)

12
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TMAE for estimating source contributions and source profiles

Parameters CVy CVjx PMFx Bayesiang PMF Bayesian
F 0.3 0.2 4.22 4.02 6.84 4.77
A 0.3 0.2 0.0048 0.0016 0.0136 0.0031
F 0.3 0.4 5.17 4.36 6.84 4.77
A 0.3 0.4 0.0065 0.0019 0.0136 0.0031
F 0.3 0.6 5.01 4.42 6.84 4.77
A 0.3 0.6 0.0069 0.0023 0.0136 0.0031
F 0.6 0.2 7.24 7.05 10.21 7.87
A 0.6 0.2 0.0019 0.0022 0.0283 0.0056
F 0.6 0.4 9.13 7.67 10.21 7.87
A 0.6 0.4 0.0265 0.0035 0.0283 0.0056
F 0.6 0.6 9.80 8.05 10.21 7.87
A 0.6 0.6 0.0296 0.0051 0.0283 0.0056
Average
Relative
TMAE{F} 114% 100% 144% 107%
Average
Relative
TMAE{A} 459% 100% 757% 157%

13
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III. Dirichlet Process (DP) model for temporally-evolving
source profiles
(Heaton, Reese, and Christensen, in preparation)

Dirichlet Process (DP) Model
yi| A, f, 35~ LN [Afy, 3]

Akt ~ DIR [91@)\/{(75—1)}
Assumptions

1. Source emission compositions vary through time.
2. Errors are log-normally distributed.

3. Concentrations are time dependent.

Goal: Compare DP Model to PMF by simulating data sets under
varying degrees of variability in y; and A;.

14



Comparison under time-varying profiles (True,Bayesian,PMF)
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Comparison under time-constant profiles (True,Bayesian,PMF)

Profile Plots MAE Comparison
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Summary of DP Model Performance

Source Source
Profiles Contributions
Profile
SMRAN™  Uncertainty | DP Model PMF | DP Model PMF
low low (CV=0.2) v v
low high (CV=0.8) v v v
high low v v
high high v v v
flat low v v
flat high v v

In the majority of circumstances, the DP model out performs

PMF.
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IV. Bayesian approach for the identification of pollution
source directions
(Williams, Christensen, and Reese, in preparation)

Exploratory Graphical Methods

CPF Weighted Rose
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e Need method amenable to statistical inference

e Must account for the circular nature of the data

Iron Concentrations

log of iron concentration

wind direction

20



-
<
L
=
-
O
o
(@
L
>
—
- -
O
o 4
<
<
o
Ll
2
=

Model
y ~ LN(Bo+ 8120, 1, k) + B3s,0)

keos(0—p) _ o=k

(&
Z(0,p, k) = —
e —e€
Z function
e ]
—
[ee]
g
W Kappa=1
B Kappa=3
© B Kappa =10
S
()
>
T
>
N
<
o
N
S
o | /
o
T T I T T T T
0 1 2 3 4 5 6
Direction

21



22

(o]

o — O
o -
2]
P
®©
[
< o -
[ o m
2 ° 5
= 0
o L O
..5 ©
= o <
) o W
(¢))]
Dn — «N
@)
=
O
=

i |
o
Eo IO

uoIRUB2UO0D UoJI Jo BO|

ININND0A IAIHDOYY vYd3 SN



-
<
L
=
-
O
o
(@
L
>
—
- -
O
o 4
<
<
o
Ll
2
=

Two Source Model
Yy~ LN(BO _I_ 612(07 M1, H’l) + 622(97 m2, ’{2) _I_ 6387 U)
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Zinc concentration

MCMC Result

wind direction
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V. Conclusions and additional research directions

e Bayesian approach has several advantages:

— Efficient use of auxiliary information (in construction of

priors). o _
x Partial source profile information

x Seasonal, meteorological, phenomenonological effects
on sources

— Potential for incorporating partial information synthesizing
data measured with differing temporal resolution (e.g.,
OC & EC available hourly while organics only measured
weekly or monthly)

— Potential for time varying source profiles along with time
varying source contributions

— In simulation, compares well with other source apportion-
ment methods
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e Current and future research directions

PSA using a priori information and PMF (Lingwall and
Christensen, 2007)

Clustering species using size distribution data (Christensen,
Dillner, Schauer, and Reese, 2007)

Species influence in PSA using PMF (Christensen and
Schauer, in preparation)

Embedding deterministic dispersion model (AERMOD)
into a Bayesian hierarchical model for identifying sources
(current work)

Integrating meteorological information in PSA (current
WOrk)

Application to St. Louis Supersite data (current work)
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