US ERA ARCHIVE DOCUMENT

Air Pollutants: Cardiovascular Effects and Mechanisms

Ann Bonham

Chao-Yin Chen

Kent Pinkerton

Mike Kleemon

Barbara Horwitz

Department of Pharmacology

University of California, Davis

Objectives

- 1. Common theme from human literature
- 2. What is reduced HRV?
- 3. Hypothesis and preliminary data from indoor air pollutants.
- 4. Proposed studies and what we hope to accomplish with real world outdoor air pollutants

What do we know from human literature?

Proposed mechanisms for arrhythmias, sudden cardiac death, stroke, and heart failure

- Pulmonary/systemic oxidative stress
- 2. Systemic inflammatory responses
- 3. Impaired cardiac autonomic function

4. Susceptible populations

Pope, NEJM Sept 9,2004

- Decreased heart rate variability (HRV)
- Increased susceptibility to ventricular arrhythmias and sudden cardiac death

Regulation of HRV vs HR

Parasympathetic innervation → "cardio-inhibitory"

Sympathetic — innervation "cardio-excitatory"

Intrinsic HR set by SA node pacemaker cells HRV: set by dual regulation of sympathetic and parasympathetic(vagal) innervation of the SA node

Brainstem "vagal" neurons:

- tonic activity ⇒ low HR
- dynamic activity ⇒ rapidly return HR to normal
- loss of vagal input to SA node

Neurons in discrete brainstem nucleus determines vagal cardiac tone

Overall Hypotheses

- 1. Short-term exposure to ambient air pollutants in the form of concentrated ambient particles (CAPs) PM_{2.5} reduces HRV.
- One underlying mechanism is neuroplasticity in brainstem neurons that regulate HRV.
- 3. Seasonal composition of the CAPs will affect the degree of reduced HRV and neuroplasticity.
- 4. The decreased HRV and neuroplasticity will be exaggerated in the elderly.

First Hypothesis

Short-term exposure to ambient air pollutants reduces HRV.

Approach

- 1. Establish a mouse model that:
 - displays phenotype.
 - allows us to determine mechanisms.
- 2. Develop protocols for short-term exposure to real world pollutants (CAPs).

Approach

Exposure Protocol Surrogate for CAPS

Sidestream Smoke (1° source of indoor air PM_{2.5}) or filtered air (FA)

Expose 6 hrs/day for 3 days

Total suspended particulates 30 mcg/m³

Telemetry

Analyze HRV in time and frequency domains:

- 24 hr HRV
- Day-night difference
- Acute stresses: Exercise stress test

Preliminary Results: Sidestream smoke decreased 24 hr HRV

SDSD: SD of SD of normal RR intervals in all 5min segments

(measure of overall HRV)

HFn: index of vagal activity

Preliminary Results: Sidestream smoke decreased day-night difference

What did we learn from our preliminary studies?

- The mouse displays the phenotype.
- We can explore the mechanisms.

First Question:

Is autonomic regulation of HRV in mouse like human

Preliminary Results: Mouse HRV is regulated like human HRV

Second Hypothesis

- 1. Short-term exposure to ambient air pollutants reduces HRV.
- One underlying mechanism is neuroplasticity in brainstem neurons (nucleus ambiguus, NA) that regulate HRV.
- 3. Seasonal composition of the ambient air pollutants will affect the degree of reduced HRV and neuroplasticity.
- 4. The decreased HRV and neuroplasticity will be exaggerated in the elderly.

What do we know about NA cardiac vagal neurons?

So.. changes in synaptic or intrinsic excitability will change neuron behavior and hence vagal control of HRV

Identify the neurons: Test the hypothesis

synaptic inputs

Results: Indoor PM decreased spiking by enhanced GABA_A-R mechanism

Summary: What we learned from preliminary studies

- Indoor PM exposure results in neuroplasticity - decreases the spiking behavior of the cardiac vagal neurons
- The decreased spiking is mediated by enhanced GABA mechanism

Proposed Studies with CAPs

CAPs exposures

Versatile Aerosol Concentration Enrichment Systems to generate CAPs in the $PM_{2.5}$ fraction (which also includes their UF component).

Winter and summer exposures

when particle size and composition are different in the Central California Valley.

Susceptible (elderly) population:

presenescent mice

Characteristics of PM_{2.5} in the Davis-Sacramento, CA Area

Source- Component	Summer (% Contribution to total PM _{2.5})	Winter (% Contribution to total PM _{2.5})
Motor Vehicle*	43	22
Wood Smoke*	1	21
Nitrate, Sulfate, Dust, Other	8, 21, 16, 11	37, 5, 1,14

Expansion: HRV measures

```
Time domain measures – overall HRV
   RRmean (ms)
   SDNN (ms)
   CV%
   r-MSSD
   SDANN (ms)
   MSD (ms)
Time domain measures – range of vagal influence
               Difference in HRV between day and night
   Day-Night
   SDSD (ms)
Frequency domain measures
   TP (ms2)
   LF (ms2)
   HF (ms2)
                (vagal)
   LFn (nu)
   HFn (nu) (vagal)
   LF/HF Ratio of LF to HF
```

Expansion: Overall and acute-stress related HRV

24 hour HRV

Day night differences

HR recovery from acute stresses:

Exercise stress

Restraint stress

Susceptibility to arrhythmias

Expansion of protocols: Intrinsic and synaptic excitability

Synaptic excitability

Decreased intrinsic excitability

Are there specific changes in K channel function: (conductances and kinetics)

Decreased synaptic excitability:

upregulated inhibitory GABA mechanisms (GABA IPSCs)

downregulated excitatory glutamatergic (GLU) mechanisms (GLU EPSCs)

What gaps do we hope to fill?

The people who made this possible...

Loss of vagal input to the SA node

How do we quantitate HRV in the time domain?

SDNN: Standard deviation (SD) of all normal-to-normal RR intervals (NN)

CV%: $100 \times SDNN/Rr_{mean}$

rMSSD: SD of differences between adjacent normal RR intervals

SDANN: SD of averages of normal RR intervals in all 5 min segments

MSD: Mean of SD of normal RR intervals in all 5min segments SDSD: SD of SD of normal RR intervals in all 5min segments

Day-night difference:

In the frequency domain?

