US ERA ARCHIVE DOCUMENT

Implications of Nanomaterials Manufacture & Use

Earl R. Beaver
USEPA Nanotechnology STAR Review
August 19, 2004

Outline

- Introduction
- Project background & approach
- Progress review
- Next steps
- Personnel

Introduction

- "Implications of Nanomaterials Manufacture and Use: Development of a Methodology for Screening Sustainability"
- BRIDGES to Sustainability and Rice University
- Period: July 1st 2003 June 30th 2005

Underlying Question

How can we incorporate sustainability considerations early in the development of an emerging technology?

Underlying Question

How can we incorporate sustainability considerations early in the development of an emerging technology?

Focus on near-term nanotechnology

Eco-Efficiency vs. Sustainability

Eco-Efficiency at BASF

Saling, Wall, et al., 2002

Decision-Support Tools

- Sustainability metrics
- Lifecycle assessment
- Total benefit & cost assessment
- Thermodynamic analysis (exergy, etc.)
- Sustainability screen (list- and question-driven)

Example Data Available

		Low	High	Best
U.S. overall	Mortality & morbidity – 2nd nitrate PM10	1,326	21,533	
	Mortality & morbidity - NO2	195	949	
	Mortality & morbidity - ozone (50%)	7	72	
	Visibility - NOx	247	1,443	
	Total	1,775	23,997	6,526
U.S. urban	Mortality & morbidity – 2nd nitrate PM10	1,807	29,101	
	Mortality & morbidity - NO2	247	1,248	
	Mortality & morbidity - ozone (50%)	13	91	
	Visibility - NOx	247	1,443	
	Total	2,315	31,883	8,590
Los Angeles	Mortality & morbidity – 2nd nitrate PM10	7,867	98,601	
	Mortality & morbidity - NO2	676	3,433	
	Mortality & morbidity - ozone (50%)	332	2,822	
	Visibility - NOx **)	247	1,443	
	Total	9,122	106,299	31,139

[&]quot;McCubbin & Delucchi, 1999; Delucchi et al, 2001"

Linking Metrics to TBCA Maleic Anhydride Production

Dimensions of Sustainability What is important?

Environmental	Resources	Material Intensity Energy Intensity Water Usage Land Use
	Pollutants Waste	Products / Processes / Services Manufacturing Operations Buildings / Sites Effects: Ecosystems / Human Health
Economic	Internal	Eco-Efficiency Costs Revenue Opportunities Access to capital / Access to insurance Shareholder value
	External	Cost of externalities Benefits to local community Benefits to society
Societal	Workplace	Workplace conditions Employee health / safety / well-being Security Human capital development (ed/train) Aligning values
	Community	Social impacts Stakeholder engagement Quality of Life in community Human rights

Project Issues

- Integrate both quantitative and qualitative aspects of sustainability assessment for emerging technology.
- The most important sustainability cost and benefit drivers for near-term nanomaterials.
- How to communicate with stakeholders.

Near-Term Nano

- Very broad, hard to generalize
- Continuous improvements (c.f. disruptive technologies)
- Many unknowns/uncertainties
 - Nano-particle vs. bulk properties
 - Exposure in use
 - Fate at end-of-life (PBT concerns)

Project Approach

- Identify sustainability aspects/impacts along the lifecycle of nanomaterials
 - Literature review
 - Focus on drivers of costs and opportunities
- Construct inventory of resource use, waste, and emissions in manufacturing
 - Focus on three case studies
 - Identify "preferred recipe" for each nanomaterial
 - Literature + expert "interviews"
- Expand analysis to upstream and downstream
 - Quantitative and qualitative
- Generalize approach

Nanomaterials – General Manufacturing

- Eco-efficiency
 - Resource use intensity & impacts
 - Pollutant intensity & impacts
- Land use
- Economic value generation
- Workplace health and safety

Nanomaterials – General Use

- Product performance/service value
- Eco-efficiency in use
- Consumer health & safety

Nanomaterials – General End-of-Life

- Recyclability
- Release to the environment
 - PBT concerns
 - Low solubility favors persistence
 - Biological intake and possible bioaccumulation
 - Toxicity of nanoparticles (as opposed to their bulk counterparts) largely unknown

Nanotechnology & Sustainability: Promises

- Better and more cost-effective technologies
 - Separation
 - Process sensors and control
 - Emission/effluent/waste treatment and remediation
- Greater material & energy efficiency
- Renewable energy (solar)

•

Health & Safety Concerns

- Ultra-fine particles (< 100 nm)
 - More reactive
 - More potent in inducing respiratory inflammation
 - May cross blood-brain barrier
- Properties of nanoparticles (as opposed to bulk) largely unknown
- Workspace intake (inhalation, oral, ...)
- Consumer intake/chemical trespass (inhalation, skin absorption, ...)

Nanotechnology & Sustainability: Threats

- "Nano-pollutants" and new exposure routes
- Changes faster than human ability to ponder and make necessary corrections
- Affordability leading to increased worldwide consumption
- Widening gap between rich and poor, North and South
- Pseudo-Science

1 - Direct	Capital, labor, raw materials and waste disposal	Operating and maintenance for treatment works
2 - Indirect	Overhead costs not properly allocated to product or process	Community relations Regulatory costs Monitoring costs
3 - Future & contingent liability	Unforeseen, but very real costs	Remediation, fines, restoration & penalties
4 - Internal intangible	Image and relationship costs corporate costs	Employee turnover Recruitment costs
5 - External intangible	Public costs not yet borne internally	Consumer perception Resource depletion

Sustainability Model

Invest when Business revenues > Business costs and Total benefits > Total costs

General Nanotechnology

	Supplier	Production	Use	End-of-life
Benefits	Higher price Less mass	Higher heat transfer More uniformity Less land Less waste	Time to market New products	Recyclability?
Costs	Higher costs P	Workplace safety issues ublic Concern abo	Consumer safety issues out Nanotechnolog	Disposal issues

Selected Cases

- Inorganic sunscreens *bulk- vs. nano-sized titania*
- Ceramic membrane *sol-gel vs. alumoxane* nanoparticles
- Fullerenes (buckyballs)

Nano-tech vs Conventional Inorganic Sunscreens

	Extraction	Production	Use	End-of-life
Benefits	?	?	AestheticBroader protection spectrum	?
Costs	? P	• Workplace inhalation?	• Skin absorption? out Nanotechnolog	• Aquatic releases

Alumoxane vs. Sol-gel Membranes

	Extraction	Production	Use	End-of-life
Benefits	?	Less energyNo hazardous substances	?	?
Costs	? P	Worker exposure to nanoparticle ? ublic Concern abo	? out Nanotechnolog	?
Public Concern about Nanotechn				y

Sustainability Model

Invest when Business revenues > Business costs and Total benefits > Total costs

Evolution of Costs: "Harmless" Odors

Next Steps

- Continue manufacturing inventory
- Collect safety and LCA data on materials used in manufacturing
- Expand analysis of cost/benefit drivers to extraction and end-of-life
- Solicit comments

Identify key nanomaterials

- Bucky balls (C60)
- Single-wall carbon nanotubes
- Quantum dots
- Alumoxanes & Ferroxanes
- Nano-Titanium Dioxide

Implications of Nanomaterials Manufacture RICE and Use: Project Plan

Identify key nanomaterials

Research production methods & required materials

Deliverables for Existing Project

- Preferred "recipe(s)" for each nanomaterial
- Process used with each recipe

- Bucky balls (C60)
- Single-wall carbon nanotubes
- Quantum dots
- Alumoxanes & Ferroxanes
- Nano-Titanium Dioxide

Implications of Nanomaterials Manufacture RICE and Use: Future

Identify key nano-materials

Research production methods & required materials

Project production volumes based on expected applications

Collect
material
characteristics
of inputs,
additives,
and outputs

Model
relative
manufacturing
risk of nanomaterials

- Projected market uses
- Projected production volumes
 - -Variety of opinions
 - -Variety of time horizons

Implications of Nanomaterials Manufacture and Use: Future

Identify key nano-materials

Research production methods & required materials

Project production volumes based on expected applications

Collect
material
characteristics
of inputs,
additives,
and outputs

Model
relative
manufacturing
risk of nanomaterials

Materials:

- Octanol / Water partitioning coefficient
- Molecular weight
- Specific gravity
- pH tolerance ranges
- Toxicity

Processes:

- Temperature
- Pressure
- Enthalpy
- Duration

Implications of Nanomaterials Manufacture and Use: Future

Identify key nano-materials

Research production methods & required materials

Project production volumes based on expected applications

Collect
material
characteristics
of inputs,
additives,
and outputs

Model
relative
manufacturing
risk of nanomaterials

Based on:

- Material properties
- Process characteristics
- Projected volumes

Project Personnel

- PI: Earl Beaver
- BRIDGES to Sustainability
 - Beth Beloff (co-PI)
 - Dicksen Tanzil (co-PI)
 - Balu Sitharaman (intern, Rice Dept. of Chemistry)
- Rice University
 - Mark Wiesner (co-PI)
 - Christine Robichaud
 - Maria Cortalezzi

Acknowledgement

USEPA Nanotechnology STAR Funding