US ERA ARCHIVE DOCUMENT

RESEARCH AND DEVELOPMENT Building a scientific foundation for sound environmental decisions

One-Dimensional Variably Saturated Microbial Transport Simulations

Bart Faulkner
Hydrologist, ORD/NRMRL/GWERD
USGS/EPA STARS Grant Meeting on
Cryptosporidium Removal by Bank filtration
September 9 & 10, 2003

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Collaborators

William Lyon, ManTech Env Research Services
Sandip Chattopadhyay, Battelle Columbus
Peter Breidenbach, ManTech Env Research Services
Faruque Khan, US EPA Headquarters
Jerome Cruz, Washington State Dept of Ecology

Building a scientific foundation for sound environmental decisions

Outline

Modeling goals

Conceptual model

Governing equations and their solution

Monte Carlo Simulations and sensitivity analyses

Conclusions/Questions

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental

decisions

Modeling Goals

Motivated by Ground Water Rule:

Physically based

Probabilistic

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Modeling Goals

Predict probability of viable viruses passing through soil to reach water supply aquifer

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Modeling Goals

Predict probability of viable viruses passing through soil to reach water supply aquifer

Building a scientific foundation for sound environmental decisions

Conceptual model

Building a scientific foundation for sound environmental decisions

Governing equations

$$\begin{split} \frac{\partial C}{\partial t} + \rho \frac{\partial C_s}{\partial t} + \frac{\partial C_a}{\partial t} &= D \frac{\partial^2 C}{\partial z^2} - \overline{v} \frac{\partial C}{\partial z} - C \lambda - \rho C_s \lambda_s - C_a \lambda_a \\ \\ \rho \frac{\partial C_a}{\partial t} &= k_s \theta \left(C - \frac{C_s}{K_d} \right) - \lambda_s \rho C_s \\ \\ \theta \frac{\partial C_a}{\partial t} &= k_a \theta C - \lambda_a \theta C_a \end{split}$$

Sim Y, Crysikopoulos CV, 2000. Virus transport in unsaturated porous media. Water Resources Research 36(1):173-9.

Building a scientific foundation for sound environmental decisions

Initial and boundary conditions

$$egin{aligned} C(0,z) &= C_s(0,z) = C_a(0,z) = 0 \ & \overline{v}c_o = -Drac{\partial C}{\partial z}igg|_{z=0} + \overline{v}Cigg|_{z=0} \ & z \in [0..\infty) \ & rac{\partial C(t,z o \infty)}{\partial z} = 0 \end{aligned}$$

Building a
scientific
foundation
for sound
environmental
decisions

Method of solution

$$A=rac{M_r}{M_o}$$

$$M_o = \int_0^\omega c_o(0^-,t) \overline{v} d\omega igg|_{\omega o\infty}$$

$$M_r = \int_0^\omega f(z,t) d\omega igg|_{\omega o \infty}$$

$$\lim_{t\to\infty} M_r = \lim_{s\to 0} s\tilde{M}(s,z)$$

$$ilde{M}_r = rac{ ilde{f}(z,s)}{s}$$

Building a scientific foundation for sound environmental decisions

Air-water interfacial area

Rose and Bruce (1949)*

$$a_a = rac{
ho_w g heta h(heta)}{lpha \sigma}$$

^{*}Rose, W., Bruce, W.A, 1949. Evaluation of capillary character in petroleum reservoir rock. Trans Am Inst Metall Eng, 186:127-42.

Building a scientific foundation for sound environmental decisions

Air-water interfacial area

†Kim H, Rao PSC, Annable MD. 1997 Determination of effective airwater interfacial area in partially-saturated porous media using surfactant adsorption, Water Resources Research 33(12):2705-11.

‡Anwar AHMF, Bettahar M, Matsubayashi U. 2000. A method for determining air-water interfacial area in variably saturated porous media. Journal of Contaminant Hydrology 43:129-46.

Building a scientific foundation for sound environmental decisions

Database of soil parameter distributions

Table 1: Hydraulic Properties of Sand, Silt, and Clay

Soil*	Davamastav	N	Mean	Standard	Units
Soll	Parameter	IV	iviean		Units
				Deviation	- 1 - 1
sand	θ_r	308	0.050	0.003	$L^{3}L^{-3}$
	θ_s	308	0.367	0.032	$L^{3}L^{-3}$
	$\log_{10}K_s$	99¶	-0.691	0.218	$\log(m\ hr^{-1})$
	$\log_{10} \alpha$	308	0.5306	0.034	$\log(m^{-1})$
	$\log_{10}n$	308	0.482	0.077	log(dimensionless)
	ρ	168¶	1.58×10^{6}	1.42×10^{5}	$g m^{-3}$
	r_p	0§	4.71×10^{-4}	1.60×10^{-5}	m
	α_z	1^{\dagger}	5.59×10^{-3}	0.00	m
	T	1944*	11.7	7.38	$^{\circ}$ Celsius
silt loam	θ_r	330	0.063	0.013	$L^{3}L^{-3}$
	θ_s	330	0.406	0.050	$L^{3}L^{-3}$
	$\log_{10} K_s$	75¶	-2.160	-0.384	$\log(m\ hr^{-1})$
	$\log_{10} \alpha$	330	-0.207	0.075	$\log(m^{-1})$
	$\log_{10}n$	330	0.206	0.016	log(dimensionless)
	ρ	133¶	1.43×10^{6}	1.48×10^{5}	$g m^{-3}$
	r_p	0§	1.18×10^{-4}	5.50×10^{-5}	m
	α_z	1^{\ddagger}	8.75×10^{-5}	0.00	m
	T	1944*	11.7	7.38	$^{\circ}$ Celsius
clay	θ_r	84	0.101	0.011	$L^{3}L^{-3}$
	θ_s	84	0.515	0.085	$L^{3}L^{-3}$
	$\log_{10} K_s$	22¶	-2.085	0.0475	$\log(m\ hr^{-1})$
	$\log_{10} lpha$	84	0.276	0.129	$\log(m^{-1})$
	$\log_{10}n$	84	0.114	0.015	log(dimensionless)
	ρ	38¶	1.29×10^{6}	1.68×10^{5}	$g m^{-3}$
	r_p	0§	9.95×10^{-5}	6.15×10^{-5}	m
	$\dot{\alpha}_z$	1^{\ddagger}	8.75×10^{-5}	0.00	m
	T	1944*	11.7	7.38	$^{\circ}$ Celsius

^{*} Generated with the Rosetta program (Schaap et al. 1999). unless otherwise noted.

[†] Field lysimeter study by Poletika et al. (1995).

[±] Kaczmarek et al. (1997).

^{*} Data from Remote Soil Temperature Network [1].

[¶] From the UNSODA database (Leij et al. 1996).

[§] Generated with random deviates in soil textural triangle queried by USDA category.

Building a scientific foundation for sound environmental decisions

Database of virus parameter distributions

Table 2: Parameters Used for Poliovirus

Parameter*	N	Mean	Standard	Units
			Deviation	
$\log_{10}\lambda$	12	0.605	0.608	$\log(hr^{-1})$
$log_{10}\lambda^*$	0‡	0.304	0.608	$\log(hr^{-1})$
κ	1†	1.34×10^{-3}	1.80×10^{-3}	$m \ hr^{-1}$
κ^{\diamond}	1†	9.27×10^{-3}	1.80×10^{-3}	$m hr^{-1}$
r_v	0§	1.375×10^{-8}	1.25×10^{9}	
K_d (sand)	87	2.43×10^{-4}	5.66×10^{-4}	$m^3 g^{-1}$
K_d (silt loam)	23	3.77×10^{-4}	7.16×10^{-4}	$m^3 g^{-1}$
K_d (clay)	39	7.20×10^{-4}	9.74×10^{-4}	$m^3 g^{-1}$

^{*} Data complied by Breidenbach et al. (2001) unless otherwise noted.

[†] From Chu et al. (2001), see Appendix A for assumptions.

[‡] Yates and Ouyang (1992) assumed $\lambda^* \approx \lambda/2$.

[§] Mazzone (1998) p. 114.

Building a scientific foundation for sound environmental decisions

Virulo

http://www.epa.gov/ada/

Building a scientific foundation for sound environmental decisions

Results of sensitivity analyses

Building a scientific foundation for sound environmental decisions

Results of Monte Carlo Simulations

Building a scientific foundation for sound environmental decisions

Conclusions/Questions

- Laplace transform solution of advectiondispersion type equation
- Monte Carlo method
- Hydraulic conductivity and air-water interface most important

Publications: http://www.epa.gov/ada/

Predicting Attenuation of Viruses During Percolation in Soils:

- 1. Probabilistic Model (EPA/600/R-02/051a)
- 2. User's Guide to the Virulo 1.0 Computer Model (EPA/600/R-02/051b)

Faulkner BR, Lyon WG, Khan FA, Chattopadhyay S. 2003. Modeling leaching of viruses by the Monte Carlo method. Water Research (in press).